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2.1 The Boussinesq approximation
The seawater density is a complicated function of the temperature, salinity and pressure. At first order, one can
linearize this equation: we get

ρ = ρ0[1− α(T − T0) + β(S − S0)] = ρ0 + ρ′ , (2.1)

with ρ the density T the temperature and S the salinity, ρ0 the reference density at temperature T0 and salinity
S0, α = 2×10−4 K−1, the thermal expansion coefficient and β = 7×10−4 g kg−1 the haline expansion coefficient.
We write ρ′ the deviation with respect to the reference density

ρ′ = ρ0(−α(T − T0) + β(S − S0)) . (2.2)

The reference density of a fresh water parcel at 4o C is ρ0 = 1000 kgm−3. Densities for typical values of
temperature and salinity found in the ocean are plotted in Fig. 2.1 with the full equation of state (at constant
pressure). The density variations (ρ′) between the surface and the bottom of the ocean are O(1%).
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Figure 2.1: Density (kgm−3) as a function of temperature and salinity with a full equation of state

The hydrostatic balance is
∂p

∂z
= −ρg = −(ρ0 + ρ′)g . (2.3)

We can then split the pressure in two components: the background pressure p0 and the dynamic pressure p′ such
that p = p0 + p′, and

∂p′

∂z
= −ρ′g , (2.4)
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and p0 is a function of z only. In the momentum equations, we have

(ρ0 + ρ′)
Du

Dt
= −∂p

∂x
= −∂p

′

∂x
(2.5)

(ρ0 + ρ′)
Dv

Dt
= −∂p

∂y
= −∂p

′

∂y
, (2.6)

because the horizontal derivatives along the x and y directions are at constant z. If we divide this equation by
ρ0 and use the fact that ρ′/ρ0 � 1, we have at first order

Du

Dt
= − 1

ρ0

∂p′

∂x
(2.7)

Dv

Dt
= − 1

ρ0

∂p′

∂y
, (2.8)

which correspond to the Boussinesq approximation. We still need to take into account the variations of density
but just to compute the pressure field.

2.2 Static stability
We consider a stratified ocean where the density ρ is function of z only. At t = 0 we displace a water parcel from
its initial height z0 to the height z′ = z0 + δz. This water parcel has a density ρ(z0) and we wish to describe
the dynamics of this parcel. The parcel is only subject to the action of gravity so its acceleration is given by the
archimedes’ principle

ρ(z0)
d2z′

dt
= −g(ρ(z0)− ρ(z0 + δz)) . (2.9)

For small displacements δz, one can approximate (ρ(z0)− ρ(z0 + δz))/δz as the vertical derivative of the density

d2δz

dt
= − g

ρ(z0)

dρ(z)

dz
δz . (2.10)

We write
N2 = − g

ρ0

dρ

dz
, (2.11)

the Brunt Vaisalla frequency (squared). If N2 > 0 the ocean is stably stratified and the water parcel oscillate
around its initial position z0. If N2 < 0, the water column is unstable and the water parcel convects. This occurs
for exemple after a cold event when the water at the surface is cooled by a storm. In the ocean, typical values
for N are N = 10−3 s−1 (a periodicity of ∼ 2 hours).

2.3 Shallow water equations
Both the ocean and the atmosphere are thin layers of fluid: the mean depth of the ocean is Ho = 4 km and the
thickness of the troposphere (main atmospheric layer) is Ha = 10 km, such that the aspect ratio

a =
H

Rearth
� 1 . (2.12)

With these considerations in mind, it is sometimes helpful to describe the ocean as a layer of homogeneous fluid
of uniform density (cf. Fig. 2.2). We note H is the mean depth of the fluid, h the actual depth and η the surface
height anomaly: h = H + η.

The pressure in this layer of fluid is given by the hydrostatic balance integrated between a height z and the
free surface

p(z) = ps + ρg(η − z) , (2.13)
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Figure 2.2: The Shallow water model. H is the mean depth of the fluid, h is its actual depth and η the surface
height anomaly: h = H + η.

with ps the pressure at the surface that we suppose uniform. If we use this expression of pressure in the horizontal
momentum equation, we get

Du

Dt
= − 1

ρ0
∇p = −g∇η . (2.14)

The rhs is independent of z and if the initial condition for u is independent of z then it will remain independent
of z during the entire evolution of the system. Hence the advection operator simplifies in

D

Dt
≡ ∂

∂t
+ u

∂

∂x
+ v

∂

∂x
. (2.15)

which looks like a 2d operator even though the vertical velocity is non zero. The horizontal momentum equations
are

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −g ∂η

∂x
(2.16)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −g ∂η

∂y
. (2.17)

To get the equation of evolution of h, we use the incompressibility condition

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 , (2.18)

and we know that u and v are independent of z. We can then integrate this equation over the entire layer depth

h

(
∂u

∂x
+
∂v

∂y

)
+ w(η)− w(−H) = 0 , (2.19)

and we use the kinematic boundary condition at the surface

w(η) =
Dη

Dt

∣∣∣∣
η

. (2.20)

At the bottom, the impermeability condition is w(−H) = 0 (for a flat bottom). We thus get

Dη

Dt
+ h

(
∂u

∂x
+
∂v

∂y

)
= 0 . (2.21)

We have three equations and three unknowns (u, v and h); this set of partial differential equations is called the
shallow water system. In a rotating framework, we simply add the Coriolis force in the horizontal momentum
equations

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fv = −g ∂η

∂x
(2.22)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ fu = −g ∂η

∂y
(2.23)

Dη

Dt
+ (H + η)

(
∂u

∂x
+
∂v

∂y

)
= 0 (2.24)
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We define the vorticity (which is the vertical component of the curl of u in this 2d system)

ω =
∂v

∂x
− ∂u

∂y
, (2.25)

and we can show that the quantity

q =
ω + f

h
, (2.26)

is conserved:
∂q

∂t
+ u

∂q

∂x
+ v

∂q

∂y
= 0 (2.27)

We call q the potential vorticity.

2.4 Linear adjustment
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Figure 2.3: Initial configuration of the unstable configuration. In this exemple ρ1 > ρ0

We consider the problem shown in Fig. 2.3: we fill the right part of the domain (x > 0) with water of density
ρ1 and the rest of the domain with water of density ρ0

ηi = 0 for x < 0

= η0 for x ≥ 0 ,
(2.28)

As soon as we release the gate at x = 0, we expect that the dense water will fill the left part of the domain. .
We suppose that the dynamics is invariant along the y direction (∂/∂y = 0).

2.4.1 Non rotating linear solution
In the non rotating case, the linear shallow water equations are

∂u

∂t
+ g

∂η

∂x
= 0 (2.29)

∂η

∂t
+H

∂u

∂x
= 0 (2.30)

which can also be written as
∂2η

∂t2
− gH ∂2η

∂x2
= 0 . (2.31)

and which admits solutions of the form of non dispersive waves F (x± ct), with c =
√
gH, the velocity at which

the front propagates. The initial discontinuity propagates to the left and to the right (cf. Fig. 2.4). The final
state for an infinite domain is η = η0/2.
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Figure 2.4: Adjustment in the linear non rotating case (transient state)

2.4.2 Linear solution in the rotating case
Rotation completely changes the outcome of the problem. The linear rotating shallow water equations are (with
∂/∂y = 0)

∂u

∂t
− fv = −g ∂η

∂x
(2.32)

∂v

∂t
+ fu = 0 (2.33)

∂η

∂t
+H

∂u

∂x
= 0 (2.34)

∂q

∂t
= 0 (2.35)

with the linear potential vorticity

q =
ω + f

H
− f η

H2
, (2.36)

with
ω =

∂v

∂x
(2.37)

The initial linear potential vorticity distribution is

qi =
f

H
− f ηi

H2
, (2.38)

with ηi given in Eq. (2.28). The final potential vorticity distribution is

qf =
f

H
+

1

H

∂vf
∂x
− f ηf

H2
, (2.39)

and we know qi = qf (because of Eq. 2.35), such that

∂vf
∂x
− f ηf

H
= f

ηi
H
. (2.40)

and with equation (2.32), we have

fvf = g
∂ηf
∂x

. (2.41)

We combine these last two equations and get

∂2ηf
∂x2

− f2

gH
ηf =

f2

gH
ηi . (2.42)
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We can solve this equation for x > 0 and x < 0 and use the conservation of volume to adjust the constants of
integration. We find that the surface deviation profile is an exponantial with characteristic length scale

Rd =

√
gH

f
(2.43)
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Figure 2.5: Linear adjustment in the rotating case (final state)

Asoociated to this elevation profile, there is a non zero velocity field in the page.


