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ABSTRACT: We investigate the properties of relative dispersion of Lagrangian particles in a

global-ocean simulation resolving both inertia-gravity waves (IGW) and meso and submesoscale

(M/SM) turbulence. More specifically, we test if the dispersion laws depend on the shape of the

Eulerian kinetic energy spectrum, as predicted from quasi-geostrophic turbulence theory. To this

end, we focus on two areas, in the Kuroshio Extension and in the Gulf Stream, for which the

relative importance of IGW compared to M/SM vary in summer and winter. In winter, Lagrangian

statistical indicators return a picture in overall agreement with the shape of the kinetic energy

spectrum. Conversely, in summer, when submesoscales are less energetic and higher-frequency

internal waves gain importance, the expected relations between dispersion properties and spectra

do not seem to hold. This apparent discrepancy is explained by decomposing the flow into nearly-

balanced motions and internal gravity waves, and showing that the latter dominate the kinetic energy

spectrum at small scales. Our results are consistent with the hypothesis that high-frequency IGWs

do not impact relative dispersion, which is then controlled by the nearly-balanced, mainly rotational,

flow component at larger scales. These results highlight that geostrophic velocities derived from

wide-swath altimeters, such as SWOT, may present limits when estimating surface dispersion, and

that current measuring satellite missions may provide the complementary information to do so.
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1. Introduction27

Ocean flows at lengthscales smaller than few hundreds of kilometers are composed of a rich28

variety of dynamical structures, e.g. fronts, eddies and internal gravity waves (IGW). On one29

hand, fronts and eddies constitute the so-called meso and submesoscales (M/SM), which evolve30

over timescales of days to weeks. On the other, IGWs are associated with more rapid (of the31

order of hours) temporal dynamics, which tend to interact with, and dampen, lower-frequency32

balanced motions (Barkan et al. 2017). Understanding these interactions is important, for instance33

for the interpretation and exploitation of new, high-resolution satellite-altimetry data (Uchida et al.34

2024) or the characterization of material transport at fine scales (Holmes-Cerfon et al. 2013;35

Hernández-Dueñas et al. 2021).36

Although high-frequency motions, such as internal tides and gravity waves, are often considered37

to weakly contribute to the transport of tracers (see, e.g., Beron-Vera and LaCasce 2016), their effect38

on the dispersion of Lagrangian drifters remains poorly explored (Lumpkin et al. 2017), and the39

results do not seem completely conclusive. Relying on high-resolution numerical simulations in the40

south Atlantic ocean, it was argued that high-frequency motions considerably increase Lagrangian41

diffusivity, particularly at small scales (Sinha et al. 2019). However, Wang et al. (2018), using42

a non-hydrostatic numerical model representing both an upper mixed layer and internal waves,43

showed that while high-frequency motions may have an effect on pair dispersion rates, the details44

of this effect depend on the specific features of the M/SM dynamics.45

Beyond their interest for material transport, Lagrangian studies also reveal useful to characterize46

the submesoscales, as shown in many regions of the world ocean. The link between Lagrangian47

measurements and statistical properties, as those quantified by the kinetic energy spectrum of the48

underlying flow, is then established through different bridging relations, obtained dimensionally49

in the framework of classical fluid-turbulence theory. The utility of this approach for quasi-50

geostrophic (QG) meso and submesoscale dynamics is well documented (LaCasce 2008; Berti51

et al. 2011; Poje et al. 2014; Corrado et al. 2017; Foussard et al. 2017). Assessing whether high-52

frequency motions affect particle dispersion regimes, and their possible impact on the validity of53

these bridging relations, thus remains a question of prime scientific interest.54

If a possible limitation of Lagrangian data is their moderately sparse coverage, a global view of55

ocean-surface currents can be achieved through satellite-altimetry measurements. Conventional56
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instruments, however, were limited in spatial resolution to𝑂 (100) km (Morrow et al. 2023), which57

has not permitted, so far, the observation of structures in the submesoscale range, or even in the58

lower end of the mesoscale one. New-generation, wide-swath altimetry is pushing this limit to much59

smaller scales. Indeed, the Surface Water and Ocean Topography (SWOT) mission has recently60

started to provide sea surface height (SSH) data at an unprecedented resolution of (5−10) km (Fu61

et al. 2024). While this represents a major advancement in our ability to access the fine-scale range,62

the proper exploitation of these data also raises several important challenges. For instance, oceanic63

currents are retrieved from SSH assuming geostrophic balance. However the latter is not granted64

to hold at the smallest resolved scales, where ageostrophic and high-frequency motions may be65

expected to have a non-negligible dynamical signature (Yu et al. 2021). Determining with what66

accuracy (in terms of spatial scales) the velocity fields computed from SSH represent real surface67

currents, and their turbulent properties, then seems crucial. An interesting approach to address this68

point is to examine Lagrangian statistics, which reflect the temporal evolution of fluid parcels in69

the flow and hence sample processes acting on different timescales. This can be done, for instance,70

by comparing Lagrangian statistics from synthetic drifters advected by SWOT-derived velocities71

and real drifters (Tranchant et al. 2025). Another avenue of efforts, which is the one undertaken72

here, is to resort to high-resolution numerical simulations and to compare Lagrangian dispersion73

properties with their predictions from QG turbulence theory. In this case, the availability of the74

velocity field at high spatial and temporal resolution is expected to ease correlating Lagrangian75

diagnostics and Eulerian flow properties and, in the end, to disentangle contributions from the76

different physical processes at play.77

In this work, we use high-resolution velocity fields from the MITgcm LLC4320 simulation (Forget78

et al. 2015), resolving submesoscales and accounting for IGWs, to advect Lagrangian tracer79

particles. We then characterize relative-dispersion statistics using different types of indicators,80

namely computed either at fixed time or at fixed lengthscale. More specifically, we aim to81

assess whether and how high-frequency motions impact the behavior of Lagrangian diagnostics,82

particularly testing the relation of the latter with the spectral kinetic energy of the Eulerian flow.83

We focus on the Kuroshio Extension region and examine the seasonal dependence of the results.84

As winter and summer lead to distinct features in terms of meso and submesoscale energetics, this85

will allow us to explore the sensitivity of the difference in intensity of M/SM motions compared to86
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IGWs. In order to test the generality of our main results, we then perform the same analysis also87

in another energetic region, close to the Gulf Stream.88

This study extends previous ones (Maalouly et al. 2023, 2024), conducted in the framework of the89

idealized SQG+1 model, a quasi-geostrophic model including next-order corrections in the Rossby90

number (Lapeyre 2017; Hakim et al. 2002). Those studies showed that including the ageostrophic91

flow component into particle advection has quite marginal effects on relative dispersion over long92

times (Maalouly et al. 2023, 2024). However, by construction, the SQG+1 model only accounts for93

weak deviations from geostrophic balance and, therefore, does not include internal waves, which94

motivates the present investigation.95

This article is organized as follows. Section 2 describes LLC4320 simulation and the setup of96

the Lagrangian-advection numerical experiments. Section 3 provides a characterization of the flow97

properties from Eulerian diagnostics in Kuroshio Extension. In Sec. 4 we examine the related98

Lagrangian pair-dispersion statistics. We then interpret these results through a decomposition of99

fluid motions into their IGW and M/SM components, relying on the computation of frequency-100

wavenumber energy spectra, in Sec.5. A discussion on the comparison with the results in the Gulf101

Stream region is provided in Sec. 6 and conclusions are drawn in Sec. 7.102

2. Numerical simulations103

To explore the impact of high-frequency motions and submesoscales on Lagrangian dispersion,104

we use data from the global-ocean LLC4320 simulation (Forget et al. 2015) to simulate trajectories105

of synthetic particles. LLC4320 was performed using MITgcm (Marshall et al. 1997) with a106

horizontal spatial resolution of 1/48◦, corresponding ≈ 0.75 km in polar regions to ≈ 2.2 km107

in equatorial ones. This resolution allows to resolve mesoscale dynamics and, to good extent,108

submesoscale ones. The model is tidally forced at different frequencies and was shown to reproduce109

diurnal and semidiurnal tidal variances with moderate biases compared to surface drifters (Yu et al.110

2019; Arbic et al. 2022; Caspar-Cohen et al. 2025). The output fields are available at hourly time111

intervals for a 1-year period spanning from September 13, 2011 to November 15, 2012. The model112

capabilities to realistically account for the above mentioned physical processes were extensively113

discussed in previous studies (see, e.g., Torres et al. 2018, 2022; Yu et al. 2019, 2021). Here we focus114

on the dynamics of Lagrangian tracer particles at the ocean surface. Particle advection is performed115
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offline by means of the Python OceanParcels package (Lange and van Sebille 2017; Zhang et al.116

2024), using the surface velocity fields extracted from LLC4320 simulation. The Lagrangian117

evolution equations are integrated using a fourth-order Runge-Kutta method and TRACMASS in118

space of the velocity field at particle positions (Döös et al. 2017; Delandmeter and Van Sebille119

2019).120

In the following, we will examine two regions of the ocean (Kuroshio Extension and Gulf121

Stream). For each region, inside a square of side ≈ 500 km (as in Fig. 1a,c), 𝑁 = 3600 particles are122

initially uniformly distributed in triplets, each arranged in an equilateral triangle inscribed within123

a circle of radius 1 km. After their seeding, particles are tracked in time for a 30-day period during124

both February and August 2012, with hourly temporal resolution. For the statistical analysis of the125

relative dispersion process we consider only original pairs, meaning having a prescribed separation126

distance 𝑅0 at the seeding time.127

3. Eulerian flow properties of the Kuroshio Extension region128

We start our analysis by presenting the region we are focusing on. Figure 1 shows sea surface129

temperature (SST) in both February (top row) and August (bottom row), at the beginning (left) and130

at the end (right) of the particle advection experiments. In both seasons, the region encompasses131

the Kuroshio current, as seen through its associated large-scale SST gradient with warm (cold)132

waters on the equatorward (poleward) side of the jet. In February, large meanders of the SST front133

indicate the presence of mesoscale structures, with a typical size of 150 to 400 km (Fig. 1a,b). In134

addition, a wealth a smaller eddies of 𝑂 (10) km size, due to submesoscale instabilities, can also135

be seen along the large-scale SST front. On the contrary, in August (Fig. 1c,d) the latter fine scales136

seem to fade out. These observations are confirmed by inspection of relative-vorticity snapshots,137

shown in Fig. 2 at mid February and August (i.e. half the total Lagrangian integration time). While138

in winter a dense population of submesoscale eddies and filaments is clearly visible, to the point139

that larger scales are hardly detectable, in summer vorticity is mainly concentrated at mesoscales140

and has a smoother, much more filamentary structure. Note, too, the weaker SST gradients in141

August compared to February as well as smaller values of relative vorticity. Such seasonality is142

consistent with past numerical (Sasaki et al. 2014) and observational studies (Callies et al. 2015).143
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Fig. 1. Snapshots of the SST field in the Kuroshio Extension region in February (top line) and in August

(bottom line) at the beginning (a, c) and at the end (b, d) of the 30-day long Lagrangian experiments. The

corresponding particle distributions are shown with black dots. The green rectangles in (b, d) indicate the largest

area covered by particles on the latest day of the month.

144

145

146

147

Since we aim at understanding how the behaviors of Lagrangian-dispersion indicators depend150

on the Eulerian flow properties, it is important to properly select the spatial domain over which the151

latter are computed. Considering that particles spread in time and distribute over a wider region152

than the one in which they were released (see Fig. 1), for each month we decided to choose an area153

including all the 3600 particles at the end of the Lagrangian-tracking experiment (green rectangles154

in Fig. 1b and Fig. 1d). This ensures that Eulerian statistics reflect the properties of the velocity155

field sampled by Lagrangian tracers.156

The wavenumber spectra of horizontal kinetic energy, averaged in time over February and August157

are presented in Fig. 3. They confirm that the flow in February is more energetic than in August,158

particularly at scales smaller than 100 km. The winter kinetic energy spectrum scales approximately159

as 𝐸 (𝑘) ∼ 𝑘−2, as often observed in the presence of energetic submesoscales (Klein et al. 2008;160

Capet et al. 2008), over slightly more than a decade of wavenumbers. Note, however, that due to the161
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Fig. 2. Snapshots of relative vorticity, normalized by the Coriolis parameter, 𝜁/ 𝑓 in the Kuroshio Extension

region, for February 15, 2012 (a) and August 15, 2012 (b).

148

149

non-negligible uncertainties on 𝐸 (𝑘), particularly at small scales, the spectral slope 𝛽 from a fit [for162

𝑘 between𝑂 (10) km and𝑂 (100) km] varies in the range 5/3 ≲ 𝛽 ≲ 2.4, depending on the specific163

extension of the fitting range. The summer spectrum is characterized by smaller uncertainties164

8



10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
-3

10
-2

10
-1

k
-2

k
-2.3

E
(k

) 
[m

2
/s

2
k
m

]

k [km
-1

]

February

August

Fig. 3. Wavenumber spectra of horizontal kinetic energy, averaged over February (blue squares) and August

(red dots), in the Kuroshio Extension region. For each month, the shaded areas represent the temporal variability

of the spectrum. The reference lines 𝑘−2 and 𝑘−2.3 are also shown for comparison.

167

168

169

(except at the largest scales), and its scaling behavior is close to 𝑘−2.3 over a wavenumber range of165

comparable width.166

4. Lagrangian pair-dispersion statistics in Kuroshio Extension170

After having described the main features of the Eulerian flow, we present in this section the171

results about Lagrangian pair-dispersion statistics. We recall that we consider only original pairs,172

with an initial separation distance 𝑅0 ≈ 3.48 km. Distances between particles at different times are173

computed on the sphere using Haversine formula. Uncertainties on the considered indicators are174

estimated as the 95% confidence interval of the bootstrapped mean of 1000 samples.175

A natural approach to analyze pair-separation processes is to measure the mean-square relative176

displacement between two particles as a function of time, i.e. relative dispersion177

⟨𝑅2(𝑡)⟩ = ⟨|x𝑖 (𝑡) −x 𝑗 (𝑡) |2⟩. (1)

In the above expression, 𝑖 = 1, ..., 𝑁 labels a given particle among the 𝑁 considered ones, whose178

position evolves according to ¤x𝑖 = u(x𝑖 (𝑡), 𝑡), with u = (𝑢, 𝑣) the horizontal surface velocity. The an-179
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gular brackets indicate an average over all 𝑖 and all corresponding particles 𝑗 with initial separation180

|x𝑖 (0) −x 𝑗 (0) | = 𝑅0, so that ⟨𝑅2(0)⟩ = 𝑅2
0.181

We first recall the expected behavior of ⟨𝑅2(𝑡)⟩ obtained from dimensional arguments, for homo-182

geneous isotropic incompressible two-dimensional turbulence . As extensively documented (see,183

e.g., Babiano et al. 1990; Foussard et al. 2017) these expectations may be difficult to observe184

for different reasons, such as a finite inertial range of the energy and enstrophy cascades, or the185

sensitivity of ⟨𝑅2(𝑡)⟩ to the distance of the initial pair separation. At short enough times, relative186

dispersion is expected to grow in a ballistic way, ⟨𝑅2(𝑡)⟩ ≃ 𝑅2
0 + 𝑍 𝑅

2
0 𝑡

2 (Batchelor 1950; Babiano187

et al. 1990). Here 𝑍 = ⟨𝜁2/2⟩𝑥 is relative enstrophy, ⟨...⟩𝑥 denotes a spatial average, and vorticity is188

related to the horizontal flow by 𝜁 = 𝜕𝑥𝑣− 𝜕𝑦𝑢. Later in time, when the pair separation distance is189

intermediate between the smallest and the largest eddy sizes, the temporal growth of ⟨𝑅2(𝑡)⟩ can190

be dimensionally linked to the shape of the kinetic energy spectrum 𝐸 (𝑘). Assuming a power-law191

scaling 𝐸 (𝑘) ∼ 𝑘−𝛽, if the spectrum is sufficiently steep (𝛽 > 3) relative dispersion should grow192

exponentially in time, with a rate proportional to 𝑍1/2. Such fast decay of kinetic energy with193

wavenumber, typical of weakly-energetic submesoscales, implies that strain is localized at large194

scale and, hence, that the pair-separation process is controlled by the largest flow features (Fous-195

sard et al. 2017). If instead 1 < 𝛽 < 3, i.e. for energetic submesoscales, a power-law behavior196

⟨𝑅2(𝑡)⟩ ∼ 𝑡4/(3−𝛽) is expected. This is often called a local dispersion regime, because the growth of197

⟨𝑅2(𝑡)⟩ is in this case driven by velocity differences over lengthscales comparable with the distance198

between the two particles in a pair (see, e.g., LaCasce 2008). Clearly, this situation includes the199

well-known Richardson dispersion regime, ⟨𝑅2(𝑡)⟩ ∼ 𝑡3, corresponding to 𝐸 (𝑘) ∼ 𝑘−5/3. At even200

larger times, when the pair-separation distance overcomes the largest eddy size, particles experience201

uncorrelated velocities and thus relative dispersion follows a slower, standard-diffusion behavior,202

⟨𝑅2(𝑡)⟩ ∼ 𝑡.203

For the Kuroshio Extension region, relative dispersion as a function of time is shown in Fig. 4,204

after subtracting the initial value 𝑅0 and normalizing by it. At short times, we observe a behavior205

close to the expected ballistic regime,
(
⟨𝑅2⟩ −𝑅2

0

)
/𝑅2

0 ≈ 𝑍𝑡
2, with 𝑍 independently computed from206

the Eulerian velocity field. The agreement with the theoretical prediction is better in February207

than in August (for which a slower initial growth is observed) but the prediction gives the right208

magnitude for both seasons. We do not have an interpretation of this deviation from the ballistic209
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behavior but remark that it only concerns a time range when the uncertainty on relative dispersion210

is also larger. The larger values of relative dispersion at short times, and hence of enstrophy, in211

winter than in summer align with the observation of generally more energetic small-scale flows in212

this season (see Fig. 2).213

At intermediate times (1 days < 𝑡 < 10 days), in February, ⟨𝑅2(𝑡)⟩ follows a behavior not far from214

the Richardson 𝑡3 law, before a transition to a linear, diffusive scaling at larger times. In August,215

within the same intermediate time range, relative dispersion increases more rapidly (with a slightly216

steeper slope) before eventually transitioning to what appears to be a 𝑡3 scaling. If in terms of217

dispersion regimes the resulting picture qualitatively agrees with the spectra shown in Fig. 3, from218

a quantitative point of view the situation is less clear.219

A connected metric of dispersion is relative diffusivity,223

𝐾𝑟𝑒𝑙 =
1
2
𝑑⟨𝑅2(𝑡)⟩

𝑑𝑡
. (2)
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While clearly by definition 𝐾𝑟𝑒𝑙 is still a function of time, it is often useful to plot it as a function224

of the distance 𝛿 = ⟨𝑅2(𝑡)⟩1/2. The results are shown in Fig. 5. We preliminarily remark that at the225

largest separations [𝛿 > 𝑂 (100) km], relative diffusivity approaches a constant value, as expected.226

In this range, one finds that indeed 𝐾𝑟𝑒𝑙 ≈ 2𝐾𝑎𝑏𝑠, where 𝐾𝑎𝑏𝑠 is absolute diffusivity (not shown).227

In February, at intermediate scales (10 km < 𝛿 < 100 km), 𝐾𝑟𝑒𝑙 quite closely follows a 𝛿3/2 scaling,228

indicative of a local dispersion regime, and corresponding to a kinetic energy spectrum 𝐸 (𝑘) ∼ 𝑘−2,229

in agreement with the measured one (Fig. 3). In August, for scales between approximately 10 and230

40 km, relative diffusivity behaves similarly to the February scaling. In this range, taking into231

account uncertainties, it is not possible to distinguish between this behavior and the 𝛿1.65 behavior232

corresponding to the spectral slope 𝛽 = 2.3. Then𝐾𝑟𝑒𝑙 decreases for increasing 𝛿, in agreement with233

Fig. 4 where a slow-down of relative dispersion can be seen at around 10 days. This seems to be234

associated with a change in the regime of growth of ⟨𝑅2(𝑡)⟩, which might be due to efficient particle235

retention in mesoscale eddies. More importantly, when approaching submesoscales (particularly236

for 𝛿 < 20 km), we observe a tendency towards a steeper growth, compatible with 𝐾𝑟𝑒𝑙 ∼ 𝛿2. The237

latter behavior points to nonlocal dispersion and, dimensionally, it corresponds to a smooth flow238

with 𝛽 > 3. Therefore, it is at odds with the spectral slope 𝛽 = 2.3 measured in summer (Fig. 3), a239

fact that deserves further investigation by means of other indicators.240

Another indicator, equally based on a straightforward fixed-time analysis, useful to discriminate246

between different dispersion regimes, is the kurtosis of the probability density function (pdf) of247

the pair separation distance (LaCasce 2008, 2010; Foussard et al. 2017),248

𝑘𝑢(𝑡) = ⟨𝑅4(𝑡)⟩
⟨𝑅2(𝑡)⟩2 . (3)

In a nonlocal dispersion regime, the kurtosis is expected to display fast, exponential growth. For249

local dispersion, it should level off around a constant value over a finite interval of time [e.g.,250

𝑘𝑢(𝑡) = 5.6 for Richardson dispersion]. At larger times, in the diffusive regime, one expects251

𝑘𝑢(𝑡) = 2. As compared to relative dispersion and diffusivity, in the kurtosis temporal evolution252

the differences between winter and summer are much more evident (Fig. 6). At short times, the253

kurtosis grows to values an order of magnitude larger in August than in February, following a254

quasi-exponential regime. In February, after a rapid increase, kurtosis attains an almost constant255

plateau at around 15 days, with a value close to 𝑘𝑢 = 5.6 , the Richardson expectation, before256
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245

decreasing. These observations then support those from relative diffusivity, suggesting that in257

winter dispersion is local, while in summer it is nonlocal.258

The computation of the previous diagnostics requires performing averages over pairs at any261

given time along particle trajectories. It is known that such a procedure has some drawbacks,262

due to the fact that dispersion regimes change in correspondence with lengthscales, not temporal263

ones (Berti et al. 2011; Cencini and Vulpiani 2013). As a consequence, fixed-time statistics may264

be biased by the superposition of different behaviors, due to distinct pairs experiencing different265

dispersion regimes at the same, common time. Fixed-scale analyses, based on computing statistics266

as a function of the length scales, instead, allow disentangling different dispersion regimes (see267

Cencini and Vulpiani 2013, for a review). Therefore, we will now consider the finite-size Lyapunov268

exponent (FSLE) (Aurell et al. 1997; Artale et al. 1997), namely a scale-by-scale dispersion rate269
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260

defined as270

𝜆(𝛿) = ln𝑟
⟨𝜏(𝛿)⟩ , (4)

where the average is over all particle pairs and 𝜏(𝛿) is the time needed for the separation distance271

to grow from 𝛿 to a scale 𝑟𝛿 (with 𝑟 > 1). As for relative dispersion, dimensional arguments272

allow to link the FSLE behavior and the kinetic energy spectrum of the underlying flow. In a273

nonlocal dispersion regime, corresponding to a spectral exponent 𝛽 > 3 and exponential particle274

separation, the FSLE should be independent of 𝛿. Its constant value provides an estimate of the275

maximum Lagrangian Lyapunov exponent and should be proportional to 𝑍1/2. For more energetic276

small-scale flows, when 1 < 𝛽 < 3, dispersion is local and the FSLE scales as 𝜆(𝛿) ∼ 𝛿(𝛽−3)/2. In277

particular, Richardson dispersion (𝛽 = 5/3) translates into 𝜆(𝛿) ∼ 𝛿−2/3. Finally, in the diffusive278

regime, holding for separations larger than the largest eddies, one expects 𝜆(𝛿) ∼ 𝛿−2.279

In February, from the smallest sampled separations up to 𝛿 ≃ 100 km, the FSLE follows the280

scaling 𝛿−𝛾, with 𝛾 ≃ 0.29 from a fit between 𝛿 = 4 and 100 km (Fig. 7), further supporting the281

indication of local dispersion, associated with energetic submesoscales. From the value of the282

exponent 𝛾 one has 𝛽 ≃ 2.4, larger than the mean value (𝛽 = 2) of the slope measured from the283

14



10
-1

10
1

10
2

10
3

δ
-0.29

δ
-2

λ
(δ

) 
[1

/d
a
y
]

δ [km]

February

August
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292

293

294

spectrum, but compatible with its upper bound. In contrast, in August, in the same range of284

scales (5 km ≲ 𝛿 ≲ 100 km), 𝜆(𝛿) is virtually independent of 𝛿. This confirms, once more, the285

essentially nonlocal character of dispersion in this season, in spite of the spectrum [𝐸 (𝑘) ∼ 𝑘−2.3]286

being shallower than 𝑘−3. Finally, in both winter and summer, the FSLE eventually approaches287

a diffusive regime, indicated by a 𝛿−2 behavior, for 𝛿 ≳ 300 km. The latter scale is in reasonable288

agreement with the size of the largest eddies, ℓ𝑀 ∼ 1/𝑘𝑀 ≈ 200 km, estimated from the wavenumber289

𝑘𝑀 where the kinetic energy spectra peak (Fig. 3).290

Summarizing, the picture emerging from this analysis indicates that seasonality has an important295

role on Lagrangian dispersion in this region. In particular, the overall coherence, in each season,296

of the different metrics considered highlights that in winter (February) dispersion is local, while in297

summer (August) it is nonlocal. In winter, the scaling behaviors of the Lagrangian diagnostics tend298

to align with the usual predictions from turbulence theory based on the slope of the kinetic energy299

power spectrum. Specifically, to reasonable extent, they match the dimensional expectations based300
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on a power-law decay of the kinetic energy spectrum with an exponent 𝛽 ≳ 2, as the one measured301

from the Eulerian velocity field. Relative dispersion is the only exception, presenting a slightly302

different scaling perhaps more compatible with 𝛽 = 5/3, which is however not too far from the303

value estimated from other indicators. In summer, the kinetic energy spectrum has a (clearer) slope304

𝛽 ≃ 2.3, which would predict local dispersion, in contrast with the Lagrangian results.305

We conclude this section by noting that these findings appear in line with the visual inspection of306

Fig. 1, illustrating how particles disperse in the flow. After one month of simulation, Lagrangian307

particles tend to accumulate along fronts and inside large-scale vortices in summer (Fig. 1d) while308

they are more efficiently homogenized through the domain and at all scales in winter (Fig. 1b).309

Such a difference hints at Lagrangian transport driven by mesoscale fronts and eddies (i.e. nonlocal310

dispersion) in summer, and at smaller-scale fronts and eddies tending to disperse particles through311

the flow (as under local dispersion) in winter.312

5. Lagrangian dispersion interpretation based on a slow-fast flow decomposition313

The results in the previous section indicate that, in summer, there is a clear disagreement between314

relative dispersion indicators and their predictions from the kinetic energy spectrum, contrary to315

what one would expect within the theory of QG turbulence. Therefore, one question arises: what316

is the origin of such disagreement?317

a. Lagrangian frequency spectra320

One candidate to answer the above question is the presence of IGWs. A first way to determine321

their importance for the Lagrangian dynamics is to compute the Lagrangian frequency spectrum322

of kinetic energy 𝐸 (𝜔). As observed in Fig. 8, for both February and August, the spectra peak323

at low frequencies, suggesting that the advection of Lagrangian particles is governed by slow324

(presumably quasi-balanced) motions. One can also clearly distinguish two peaks, corresponding325

to the Coriolis ( 𝑓 ) and tidal (𝑀2) frequencies with periods 𝑇 𝑓 ≈ 20.53 h and 𝑇𝑀2 ≈ 12.65 h,326

respectively. In August, these peaks (most likely associated with IGWs) are more pronounced and327

constitute a significant part of the Lagrangian energy. This result highlights the fact that Lagrangian328

trajectories are sensitive to the high-frequency components of the flow. In February, on average,329
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318

319

the scaling of the spectrum is not far from 𝜔−2, which corresponds to an exponential decay of the330

velocity autocorrelation function (not shown).331

b. Frequency-wavenumber energy spectra332

We next analyze the respective contributions of M/SM motions and IGWs to the Eulerian kinetic333

energy spectrum. Following the methodology of Torres et al. (2018, 2022), we compute the334

frequency-wavenumber (𝜔− 𝑘) spectrum of kinetic energy, which is shown in Fig. 9a for February335

and in Fig. 9b for August. The distinction between M/SM and IGWs can be made using the336

dispersion-relation curve of IGWs, 𝜔2 = 𝑐2𝑘2 + 𝑓 2 (Torres et al. 2018). Here 𝑐, 𝑘 , and 𝑓 are,337

respectively, the phase speed of inertio-gravity waves, the isotropic horizontal wavenumber, and338

the Coriolis frequency. This relation can be reformulated to incorporate the deformation radius339

𝐿𝑅 ≈ 𝑐/| 𝑓 |, leading to𝜔2 = 𝑓 2 (𝐿2
𝑅
𝑘2+1) (Sutherland 2010). As seen in Fig. 9, using the dispersion340

relation for the 10th vertical mode (dashed-dotted line) allows to make a clear distinction between341

IGWs and balanced, M/SM motions. Indeed this mode corresponds to the highest baroclinic342

mode resolved in the LLC4320 simulation and, hence, is the most relevant one for partitioning343
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Fig. 9. Frequency-wavenumber spectra of kinetic energy 𝐸 (𝑘,𝜔) in the Kuroshio Extension region during

February (a) and August (b); here spectra are shown in variance-preserving form 𝑘 𝜔𝐸 (𝑘,𝜔) with units in

m2 s−2. The horizontal solid and dashed lines indicate the Coriolis ( 𝑓 ) and semidiurnal tidal (𝑀2) frequencies,

respectively, while the dashed-dotted line shows the dispersion-relation curve for the 10th baroclinic mode. The

corresponding deformation radii are 𝐿𝑅 = 65 km (a) and 𝐿𝑅 = 20 km (b).

356

357

358

359

360

the flow into balanced and higher-frequency, wavy motions (Torres et al. 2018). In this region, its344

value is 𝐿𝑅 ≃ 65 km in winter and 𝐿𝑅 ≃ 20 km in summer. This partitioning method is essential345

because IGWs and high-frequency submesoscales share similar frequencies, making it difficult to346

distinguish between them using simpler techniques, as e.g. filtering based solely on frequencies,347

such as 𝑓 or 𝑀2 (Jones et al. 2023).348

In winter (Fig. 9a), the energy is concentrated at frequencies below those of IGWs, while internal349

tides and inertial motions do not seem to contribute to it significantly. This suggests that the350

energy is essentially all contained in M/SM motions. In summer (Fig. 9b), the energetic content351

of high-frequency IGWs increases, with a marked concentration of energy around 𝑀2, while that352

of submesoscales considerably decreases. This is in line with the Lagrangian energy spectrum353

(Fig. 8), for which we observe a spectral gap between the energetic low-frequencies and the inertial354

and semidiurnal motions.355

From the frequency-wavenumber spectrum 𝐸 (𝑘,𝜔), we can evaluate the IGW contributions to the361

wavenumber spectrum of kinetic energy 𝐸 (𝑘) by integrating 𝐸 (𝑘,𝜔) over frequencies satisfying362

only either 𝜔2 < 𝑓 2(1 + 𝐿2
𝑅
𝑘2) or 𝜔2 > 𝑓 2(1 + 𝐿2

𝑅
𝑘2). This procedure reveals that in February363

(Fig. 10a) IGWs are less energetic than M/SM motions by two orders of magnitude. The latter,364
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Fig. 10. Decomposition of the kinetic energy wavenumber spectra 𝐸 (𝑘) for February (a) and August (b) in

the Kuroshio Extension region. The spectrum of the total kinetic energy (KE) is shown by black square points.

The contribution from frequencies such that 𝜔2 < 𝑓 2(1+ 𝐿2
𝑅
𝑘2) corresponds to the green dots, while the blue

triangles are for frequencies 𝜔2 > 𝑓 2(1+ 𝐿2
𝑅
𝑘2). The corresponding deformation radii are 𝐿𝑅 = 65 km (a) and

𝐿𝑅 = 20 km (b). The reference lines 𝑘−2 in (a), 𝑘−3 and 𝑘−2.3 in (b), are also shown for comparison.
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379

then, indeed account for most of the kinetic energy in the surface flow at all scales: the associated365

spectrum is almost identical to that of the total kinetic energy, and both appoximately follow a366

𝑘−2 scaling. In August (Fig. 10b), instead, we observe that at small wavenumbers (lengthscales367

> 100 km), mesoscale motions still dominate, but at larger wavenumbers (lengthscales < 50 km),368

submesoscales become less energetic and IGWs provide the leading contribution to the kinetic369

energy spectrum. The small-scale IGW spectrum scales as 𝑘−2.3 , while that of low-frequency370

(M/SM) motions behaves as 𝑘−3 up to 𝑘 = 0.04 km−1. Such steeper spectrum (from M/SM)371

corresponds theoretically to a regime of nonlocal particle dispersion. This result is thus consistent372

with IGWs having little to no effect on relative dispersion, despite having a prominent signature373

on the small-scale energetic content of the flow.374

c. Decomposition into rotational and divergent motions380

To obtain a finer picture of what dynamical processes affect Eulerian spectra, kinetic energy381

can be decomposed into rotational (KE𝜁 ) and divergent (KEΔ) components, using Helmholtz382
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decomposition (Bühler et al. 2014; Rocha et al. 2016; Torres et al. 2018):383

𝐾𝐸𝜁 (𝑘) =
1
2

∫ ��𝜁 (𝑘,𝜔)��2
𝑘2 𝑑𝜔 (5)

and384

𝐾𝐸Δ(𝑘) =
1
2

∫ ��Δ̂(𝑘,𝜔)��2
𝑘2 𝑑𝜔 , (6)

where 𝜁 (𝑘,𝜔) and Δ̂(𝑘,𝜔) are the spatiotemporal Fourier transforms of vorticity 𝜁 and divergence385

Δ= 𝜕𝑥𝑢+𝜕𝑦𝑣, respectively. Mesoscale motions are typically close to geostrophic balance and hence386

nondivergent. On the other hand, in general, both submesoscales (induced by frontal dynamics)387

and IGWs contribute to the divergence field. We then further separate each component into 𝐾𝐸−
𝜁,Δ

,388

representing low-frequency processes such that 𝜔2 < 𝑓 2(1+ 𝐿2
𝑅
𝑘2), and 𝐾𝐸+

𝜁,Δ
, representing high-389

frequency processes such that 𝜔2 > 𝑓 2(1+ 𝐿2
𝑅
𝑘2).390

Figure 11 shows the results of this partitioning for February [panels (a) and (b)] and August391

[panels (c) and (d)]. In February, the flow is dominated by its rotational component, primarily from392

M/SM motions (Fig. 11a). At all scales, the divergent component from both M/SM and IGWs393

contributes little to the overall kinetic energy (Fig. 11b). In August, the situation is different. At low394

wavenumbers [lengthscales > (50−100) km], rotational M/SM motions dominate (Fig. 11c), while395

at higher wavenumbers the divergent contribution from IGWs becomes dominant in the kinetic396

energy spectrum (Fig. 11d). Notably, the spectrum of slow motions associated with vorticity 𝐾𝐸−
𝜁

397

has, in this season, a clear 𝑘−3 scaling over an extended wavenumber range. The corresponding398

spectrum of fast IGWs 𝐾𝐸+
𝜁

is generally shallower, with values smaller than those of 𝐾𝐸−
𝜁

, except399

in a narrower range of scales where it is comparable (and behaves similarly) to 𝐾𝐸−
𝜁

. These400

results clearly show that the full wavenumber kinetic energy is not necessarily representative of the401

balanced dynamics.402

6. Comparison with results in the Gulf Stream region407

In order to test the generality of the results in Sec. 4 and Sec. 5, here we provide a discussion of408

the main picture emerging from the same approach in another energetic region, close to the Gulf409

Stream. Its exact location and a more extensive characterization of the Eulerian and Lagrangian410

properties for this case study are reported in Appendix A.411
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Fig. 11. Wavenumber spectra of kinetic energy 𝐸 (𝑘) in the Kuroshio Extension region. The spectrum of the

total kinetic energy (KE) is shown by black square points. (a, c) Spectra of the rotational component KE𝜁 ; (b, d)

spectra of the divergent component 𝐾𝐸Δ. In each case, the flow is further partitioned into low and high-frequency

motions as in Fig. 10. Panels (a) and (b) correspond to February, panels (c) and (d) to August.
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404

405

406

As in Kuroshio Extension, the wavenumber kinetic energy spectrum (Fig. 12a), is in both seasons418

quite energetic at submesoscales. We note, however, that in this region the February and August419

spectra are remarkably close (indeed, they are equal, within error bars) and scale approximately420

as 𝐸 (𝑘) ∼ 𝑘−2.4 over more than a decade. The summer spectrum is a bit more energetic and421

steeper at large scales, while the winter one is slightly shallower, with a slope also compatible422

with 𝛽 = 2 over a shorter wavenumber subrange. To quantify the scale-by-scale intensity of the423

pair-dispersion process, we focus on the FSLE (Fig. 12b). The power-law and constant behaviors in424

February and August, respectively, clearly indicate that dispersion is local in winter and nonlocal425

in summer. Interestingly, from a quantitative point of view, we observe here the same season-426

dependent agreement with the predictions from energy spectra as in Kuroshio Extension. Indeed,427
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Fig. 12. (a) Wavenumber spectra of horizontal kinetic energy in the Gulf Stream region, averaged over February

(blue squares) and August (red dots). For both months, the shaded areas represent the temporal variability of

the spectrum. (b) Corresponding FSLE 𝜆(𝛿) in the same region and for the same months. The 𝛿−0.3 scaling

law (short-dashed line) corresponds the spectrum 𝐸 (𝑘) ∼ 𝑘−2.4, while the 𝛿−2 scaling law (long-dashed line)

corresponds the diffusive limit. Uncertainties are estimated as the 95% confidence interval from a bootstrapping

procedure.
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417

the winter scaling 𝜆(𝛿) ∼ 𝛿−0.3 quite nicely matches the spectrum-based expectation 𝜆(𝛿) ∼ 𝛿(𝛽−3)/2
428

(with 𝛽 = 2.4), but the extended plateau, 𝜆(𝛿) ≃ const, found in summer is in evident contrast with429

the corresponding spectrum, which would even indicate a different dispersion regime (local rather430

than nonlocal).431

As before, we then resort to frequency-wavenumber kinetic energy spectra to assess the relative432

importance of high and low frequency motions in each season (Fig. 13). The global picture returned433

by such spectra is very similar to the one found in Kuroshio Extension, which also confirms that434

these two energetic regions share the same qualitative dynamical features. Specifically, M/SM435

motions dominate the energetic content of the flow in February; in summer IGWs are considerably436

more energetic than in winter, and in parallel the intensity of the flow at submesoscales gets437

reduced. Minor quantitative differences among the two regions can also be noticed. For instance,438

here the flow is less energetic, particularly in the submesoscale range in winter (as also observed439

from the slightly steeper February wavenumber spectrum), with respect to that found in Kuroshio440

Extension.441
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Fig. 13. Frequency-wavenumber spectra of kinetic energy 𝐸 (𝑘,𝜔), defined as in Fig. 9, in the Gulf Stream

region during February (a) and August (b). For the (dashed-dotted) curve representing the dispersion relation,

the deformation radii are 𝐿𝑅 = 65 km (a) and 𝐿𝑅 = 20 km (b).

442

443

444

Using the spatiotemporal spectra 𝐸 (𝑘, 𝜔), we next compute the contributions of low and high-448

frequency motions to the total wavenumber kinetic energy spectrum. The results, shown in Fig. 14449

for both seasons, closely resemble those found in Kuroshio Extension. In winter, M/SM motions450

[corresponding to frequencies 𝜔2 < 𝑓 2(1+ 𝐿2
𝑅
𝑘2)] essentially account for the full kinetic energy451

at all scales and their spectrum is then close to 𝑘−2.4. The summer spectrum is dominated by452

the slow M/SM at scales larger than 50− 100 km and by IGWs [corresponding to frequencies453

𝜔2 > 𝑓 2(1+ 𝐿2
𝑅
𝑘2)] at smaller scales. The M/SM spectrum scales as 𝑘−3, the IGW one as 𝑘−2.4.454

Therefore, the winter and summer energy spectra, when temporally filtered to retain only the455

contribution from low-frequency motions, are respectively compatible with the observed local and456

nonlocal dispersion regimes. This illustrates that the picture found in Kuroshio Extension might457

be more general and, thus, confirms that while contributing to the kinetic energy spectrum, IGWs458

are unlikely to have a measurable impact on relative dispersion, at least in the range of separations459

explored in this study.460

7. Conclusions461

We investigated Lagrangian particle transport at the ocean surface, using the high-resolution462

ocean general circulation model LLC4320, which incorporates internal tides in addition to meso463

and submesoscale dynamics. We examined in details particle pair dispersion in the Kuroshio464
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Fig. 14. Decomposition of the wavenumber spectra of kinetic energy 𝐸 (𝑘) as in Fig. 10 for February (a) and

August (b) in the Gulf Stream region. The reference lines 𝑘−2.4 in (a), 𝑘−3 and 𝑘−2.4 in (b) are also shown for

comparison. The deformation radii are 𝐿𝑅 = 65 km (a) and 𝐿𝑅 = 20 km (b).
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446

447

Extension in two different seasons. We then extended our analysis to another study region, close465

to the Gulf Stream.466

The surface velocities from the model were used to advect Lagrangian tracers over the months467

of February and August (representative of winter and summer, respectively). The pair-dispersion468

process was analyzed by means of two-particle statistical indicators, which allow to identify469

different dispersion regimes and, in principle, to link the Lagrangian results and the Eulerian flow470

properties via dimensional arguments developed in the framework of QG turbulence (LaCasce471

2008; Foussard et al. 2017).472

Our findings demonstrate that dispersion is local, meaning controlled by flow features having the473

same size as the particle separation distance, in winter, and nonlocal, i.e. dominated by the largest474

flow scales, in summer. This is most clearly revealed by the FSLE, measuring the scale-by-scale475

dispersion rate, but it is also confirmed by other space or time-dependent diagnostics. In winter,476

the observed behaviors of Lagrangian indicators, to fair extent, match the dimensional expectations477

constructed from the slope of the wavenumber kinetic energy spectrum. In summer, however,478

the predictions based on the spectrum are not confirmed by the actual Lagrangian statistics. The479

disagreement is not only quantitative but also qualitative: based on the spectrum one would expect480

local dispersion, while the analysis of particle trajectories indicates that dispersion is nonlocal.481
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Examination of spatiotemporal kinetic energy spectra revealed key to understand this apparent482

discrepancy in summer. Computing how energy is distributed among both wavenumbers and483

frequencies, indeed, allows to separate the contributions from the slower M/SM components of484

the flow and faster IGWs. Through this approach, we could show that the observed dispersion485

behaviors reasonably agree with the predictions based on the wavenumber kinetic energy spectrum486

associated with the slow, nearly balanced (and mainly rotational) part of the velocity field. In487

winter high-frequency motions marginally contribute to the spectrum. In summer, they dominate488

energetically only at scales smaller than roughly 50 km, and our results are consistent with the489

dispersion process being controlled by the more intense strain associated with the large-scale,490

lower-frequency flow and not by the high-frequency flow. No evidence of an impact of internal491

waves on pair dispersion was found in the LLC4320 simulation in the Kuroshio Extension region.492

This picture is further supported by the same analysis conducted in another energetic region, close493

to the Gulf Stream, sharing similar statistical properties of the Eulerian flow, where we essentially494

observed the same Lagrangian phenomenology.495

Understanding how general these conclusions are remains an open point, and examining the496

geographic (and seasonal) variability of relative dispersion appears to us a valuable perspective497

for future work. To our knowledge, to date only few studies have addressed the impact of IGWs498

on Lagrangian tracer dispersion, and the conclusions appear varied. For instance, in a study using499

in-situ and synthetic surface drifters in the Gulf of Mexico (Beron-Vera and LaCasce 2016) it was500

argued that fixed lengthscale indicators, like the FSLE, should be affected by inertial oscillations,501

which, however, is not the case in our findings. It might then be interesting to correlate the502

Lagrangian dispersion properties observed in that region with the statistical features of the slow503

and fast components of the associated Eulerian flow. Another study by Tranchant et al. (2025)504

investigated drifter dispersion in an energetic meander of the Antarctic Circumpolar Current, over505

a specific period of time, where waves seem to be rather weak. By comparing with virtual drifters506

advected by SWOT velocities, the authors showed that balanced motions dominate dispersion at507

scales larger than ≈ 10 km. Those results, to some extent, align with ours in winter. It would seem508

to us interesting to complement them with an analysis over different periods and, again, perhaps509

an examination of spatiotemporal spectra from a high-resolution numerical model.510
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Simplified models and PE simulations in smaller domains may also reveal useful to gain further511

insight into the basic physical mechanisms and to estimate the critical lengthscale under which IGWs512

may become important for dispersion. Following this approach, Wang et al. (2018) investigated the513

destabilization of a circular front in the presence of a wealth on internal waves. While in that case514

the FSLE is sensitive to inertial oscillations, this effect is only observed at scales smaller than an515

inertial-oscillation scale 𝑉/ 𝑓 , where 𝑉 is the typical velocity of Lagrangian particles. In our case,516

in August such lengthscale (4.59 km) is very close to the first separation value (𝛿 ≈ 4.17 km) used517

in the FSLE computation. A similarly crude estimate based on the semidiurnal tidal frequency,518

𝑀2 > 𝑓 , would give an even smaller typical length. Resolving smaller scales in the Lagrangian519

dispersion process would require quite a smaller initial pair separation (currently it is 𝑅0 ≈ 3.48 km).520

For this, in turn, simulations at even higher spatial resolution than the present ones would be needed,521

considering that the inertial-oscillation scale is close to LLC4320 horizontal grid spacing, where522

numerical diffusivity smoothens the flow. These considerations explain, at least qualitatively, why523

our summer FSLE is insensitive to possible effects due to internal waves.524

We conclude by shortly commenting on the implications of our results for the interpretation525

of the new, high-resolution altimetry data provided by SWOT. When high-frequency motions are526

relatively weak, as in our winter situations, the theoretical links between the spectral kinetic energy527

distribution of the Eulerian flow and relative-dispersion properties should reveal useful to predict528

the latter. Pending the geostrophic approximation is sufficiently accurate, the satellite-derived529

velocity field should enable more direct and local predictions of transport and dispersion via530

Lagrangian advection by the geostrophic velocity field. Note that Yu et al. (2021) and Demol531

et al. (2025) have quantified the validity of geostrophy at global scales from numerical models532

and observations, respectively. More studies are required in order to identify general conditions of533

validity, e.g. in terms of spatial/temporal scales and flow conditions, and hence verify our ability534

to estimate dispersion properties from SWOT and the nature of the signal processing required535

to do so. However, when internal waves are more important, as in summer in this study, it536

is unlikely that such theoretical links remain meaningful to obtain information about dispersion,537

unless high-frequency motions are filtered out from the satellite-derived velocities. Future missions538

such as Odyssea (Torres et al. 2023) may bring useful complementary information to estimate the539

low-frequency component of the flow required to assess ocean-surface Lagrangian dispersion.540
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APPENDIX A546

Eulerian and Lagrangian analysis in the Gulf Stream region547

Here we present a more extensive characterization of the Eulerian flow properties and relative548

dispersion results in the Gulf Stream region, to contrast with those found in the Kuroshio Extension549

(see main text).550

For both winter and summer, the particle distributions at the beginning and at the end of the551

1-month advection period, superimposed over the simultaneous SST fields, are shown in Fig. A1.552

In February (Fig. A1a), the flow is characterized by a lot of mixed-layer instabilities, which reveal553

themselves in the roll-up of SST fronts at the smallest scales. In August, the spatial organization of554

the temperature field is driven by the presence of mesoscale features, such as large-scale filaments555

(Fig. A1c). The overall picture is analogous to the one in Kuroshio Extension. Concerning556

the Lagrangian particle distribution, we see that, after one month, particles tend to spread more557

homogeneously in February, while they are more affected by the large-scale structures of the flow558

in summer (Figs. A1b, d). These patterns suggest that dispersion is more local (i.e. more affected559

by smaller-scale flow features) in winter than in summer.560

Figure A2 shows complementary results from Lagrangian indicators completing those presented568

in Sec. 6, namely relative dispersion as a function of time, relative diffusivity versus the separation569

distance 𝛿 = ⟨𝑅2(𝑡)⟩1/2 and kurtosis versus time. The general trends are quite similar to those570

found in Kuroshio Extension. Relative dispersion at short times here shows a clearer agreement571

with the prediction 𝑍𝑡2 also in summer. In August, it later slows down [after 𝑡 ≈ (0.1−0.2) days],572

before approaching a growth close to 𝑡3 or slightly faster. In February, ⟨𝑅2(𝑡)⟩ is generally larger573

at intermediate times. Its subsequent behavior is not very far from that of August (roughly ∼ 𝑡3),574

but less clear in terms of scaling. More generally, also in this region, it is not straightforward575

to identify dispersion regimes from this indicator. Relative diffusivity 𝐾𝑟𝑒𝑙 , when plotted against576
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Fig. A1. Snapshots of the SST field in the Gulf Stream region in February (top line) and in August (bottom line)

at the beginning (a, c) and at the end (b, d) of the 30-day Lagrangian advection experiments. The corresponding

particle distributions are shown with black dots. The green rectangles in (b, d) indicate the largest area covered

by particles on the latest day of the month.

561

562

563

564

the separation distance 𝛿 = ⟨𝑅2(𝑡)⟩1/2 more clearly allows to distinguish the winter and summer577

dispersion regimes. In February, 𝐾𝑟𝑒𝑙 fluctuates around a ∼ 𝛿3/2 law, between 10 and 100 km,578

which would correspond to a spectrum 𝐸 (𝑘) ∼ 𝑘−2. Interestingly, however, in August we find a579

rather clear 𝛿2 scaling from about 5 to 50 km, as one would expect for a spectrum steeper than 𝑘−3
580

and pointing to nonlocal dispersion. Beyond this range, diffusivity shows slower growth, possibly581

suggestive of local dispersion, and roughly compatible with 𝐾𝑟𝑒𝑙 ∼ 𝛿3/2 (or the close scaling582

𝐾𝑟𝑒𝑙 ∼ 𝛿1.7, corresponding to 𝛽 = 2.4, over a smaller subrange of separations). Correspondingly,583

while in winter kurtosis quite soon attains a constant value close to 5.6 [the expectation for local,584

Richardson dispersion, for which ⟨𝑅2(𝑡)⟩ ∼ 𝑡3 and 𝐾𝑟𝑒𝑙 (𝛿) ∼ 𝛿4/3] and stays close to it for almost585

all the advection period, in summer 𝑘𝑢 initially grows to a value 5 or 6 times larger, before starting586

a low decay after about 10 days of advection. In the second half of August, these data do not allow587
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Uncertainties are estimated as the 95% confidence interval from a bootstrapping procedure.
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566

567

to draw a safe conclusion on the dispersion regime, a longer simulation would be needed to clarify588

this point.589
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