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The statistical properties of turbulent fluids depend on how local the energy transfers
among scales are, i.e. whether the energy transfer at some given scale is due to
the eddies at that particular scale, or to eddies at larger (non-local) scale. This
locality in the energy transfers may have consequences for the relative dispersion of
passive particles. In this paper, we consider a class of generalized two-dimensional
flows (produced by the so-called α-turbulence models), theoretically possessing
different properties in terms of locality of energy transfers. It encompasses the
standard barotropic quasi-geostrophic (QG) and the surface quasi-geostrophic (SQG)
models as limiting cases. The relative dispersion statistics are examined, both as
a function of time and as a function of scale, and compared to predictions based
on phenomenological arguments assuming the locality of the cascade. We find that
the dispersion statistics follow the predicted values from local theories, as long
as the parameter α is small enough (dynamics close to that of the SQG model),
for sufficiently small initial pair separations. In contrast, non-local dispersion is
observed for the QG model, a robust result when looking at relative displacement
probability distributions. However, we point out that spectral energy transfers do
have a non-local contribution for models with different values of α, including the
SQG case. This indicates that locality/non-locality of the turbulent cascade may not
always imply locality/non-locality in the relative dispersion of particles and that the
self-similar nature of the turbulent cascade is more appropriate for determining the
relative dispersion locality.

Key words: geophysical and geological flows, geostrophic turbulence, mixing and dispersion

1. Introduction
The spreading process of an ensemble of particles advected by a turbulent fluid

depends on the stirring properties of the velocity field, which can be quantified by
its strain rate (Batchelor 1952b; Garrett 1983) and its Lagrangian derivatives (Hua,
McWilliams & Klein 1998; Klein, Hua & Lapeyre 2000). There are intricate relations
between the cascades of two-dimensional (2D) or three-dimensional (3D) turbulence

† Email address for correspondence: glapeyre@lmd.ens.fr
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and the dispersion of passive particles (see e.g. Falkovich et al. 2001; Sawford 2001;
Salazar & Collins 2009). In 2D turbulence, relative enstrophy is transferred towards
small scales through a (marginally) non-local turbulent cascade for which straining
processes at small scales are driven by large-scale eddies (Ohkitani 1990; Oetzel &
Vallis 1997). In contrast, kinetic energy is transferred towards large scales through a
local turbulent cascade (Kraichnan 1967; Boffetta & Ecke 2012). As a result, one can
expect that the large-scale strain will dominate the dispersion properties in the range
of scales corresponding to the direct enstrophy cascade, while the dispersion will be
affected by local scales in the inverse cascade range (Kowalski & Peskins 1981).

Using self-similarity arguments, Morel & Larcheveque (1974) and Bennett (1984)
proposed a relation between the slope of the kinetic energy spectrum and the laws of
relative dispersion between particle pairs. They distinguished two dynamical regimes.
In the first one, qualified as ‘local’, the dispersion laws at a particular length scale l
depend only on flow statistics at that length scale. This is the case for kinetic energy
spectra shallower than k−3 (with k the horizontal wavenumber). For a kinetic energy
spectrum in k−5/3, based on self-similarity arguments of the turbulent cascade, one
would obtain the Richardson dispersion law y2

∝ t3, where y is the distance between
a pair of particles. On the other hand, in the second ‘non-local’ regime, corresponding
to kinetic energy spectra steeper than k−3, the dispersion laws should depend on the
largest and dominant scales of the fluid (Bennett 1984). In this case, y2 would grow
exponentially in time.

This distinction is discussed in a geophysical context by Özgökmen et al. (2012),
who examined the dispersion of particles in oceanic flows with more or less
vigorous submesoscales (scales below the Rossby radius of deformation). For weakly
intensified submesoscales, whose kinetic energy spectrum is steeper than k−3, relative
dispersion is found to be fairly scale-independent. In that situation, relative dispersion
characteristics depend not on the dispersion scale but on much larger ones. For more
intensified submesoscales, the kinetic energy spectrum is shallower than k−3 and
the dispersion laws are a function of the dispersion scale (Özgökmen et al. 2012).
Berti & Lapeyre (2014) obtained a different result in a situation where the kinetic
energy spectrum is close to k−2, for which dispersion could be expected to be local.
They observed that the large-scale stirring was responsible for the formation of a
considerable amount of submesoscales, even if small-scale eddies determined the
spatial distribution of a tracer at very small scales (Berti & Lapeyre 2014). This
suggests that the locality of the stirring or dispersion might have a non-obvious
correspondence with energy spectra in 2D turbulent fluids. This was also noted
by Nicolleau & Yu (2004), who examined particle pair dispersion statistics in 3D
kinematic simulations, focusing on the dependence on the kinetic energy spectral slope.
However, this last result should be taken with some caution, as kinematic simulations
do not take into account the sweeping of small-scale eddies by large-scale ones
(Thomson & Devenish 2005).

Here a caveat has to be given since turbulence is characterized in itself not
by kinetic energy spectra, but by energy cascades between scales. Self-similarity
arguments can then be given, and allow one to relate the dispersion laws to the local
flux of energy and to the local length scale (see e.g. Batchelor 1950). In general,
self-similarity theories based on the kinetic energy spectral slope give the same result
as theories based on the basic characteristics of the turbulence (the existence of
an inertial range and of a local energy flux). The reason is that the kinetic energy
spectral slope is also a by-product of self-similarity arguments on the energy cascade.

Several studies have been devoted to the analysis of relative dispersion from
experimental data and numerical simulations, focusing on the correspondence between
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dispersion laws and energy spectra. In the oceanographic context, numerous studies
have looked for scaling laws for dispersion of floats or surface drifters. In particular
there was some evidence of a t3 power law in the North Atlantic (LaCasce & Bower
2000; Ollitrault, Gabillet & Colin de Verdière 2005) and in the Gulf of Mexico
(LaCasce & Ohlmann 2003). The existence of an exponential regime that would
suggest a direct enstrophy cascade is more delicate (LaCasce & Ohlmann 2003;
Ollitrault et al. 2005; Koszalka, LaCasce & Orvik 2009). More generally, Lumpkin &
Elipot (2010) discuss local and non-local dispersion regimes in different sets of surface
drifters data in the North Atlantic Ocean through different Lagrangian indicators. In
particular, they find a regime of enhanced relative dispersion at small scales that
would suggest a kinetic energy spectrum as shallow as k−2 at submesoscales. Such a
regime has also been observed in a series of other recent works dealing with surface
drifters data in different regions of the world oceans (Ollitrault et al. 2005; Berti et al.
2011; Schroeder et al. 2012). A detailed review of analogous results can be found
in LaCasce (2008). Concerning atmospheric flows, relative dispersion characteristics
were examined by different authors using trajectories of pressure balloons in the
stratosphere (e.g. Lin 1972; Morel & Larcheveque 1974; Er-El & Peskin 1981)
to assess the possibility of a direct enstrophy cascade in the atmosphere. Owing
to the limited availability of data and the anisotropy of the flow, results were not
completely conclusive when examining dispersion as a function of time. Lacorata et al.
(2004) revisited the data of Morel & Larcheveque (1974) using finite-size Lyapunov
exponents (Aurell et al. 1997) and found a dispersion behaviour compatible with
a k−5/3 kinetic energy spectrum. Using trajectories from a Lagrangian dispersion
model employing reanalysis wind fields, Graff, Guttu & LaCasce (2015) found an
exponential growth consistent with non-local dispersion in the upper troposphere.

Relative dispersion in numerical simulations of 2D turbulence has been investigated
both in the inverse energy cascade and in the direct enstrophy cascade. In the inertial
range of the inverse energy cascade, it was found that relative dispersion nearly
followed Richardson’s law (Babiano et al. 1990; Boffetta & Celani 2000; Poje et al.
2010). This is also the case for laboratory experiments reported in Jullien, Paret &
Tabeling (1999). In the inertial range of the direct enstrophy cascade, the exponential
law was more difficult to observe in direct numerical simulations (Kowalski & Peskins
1981; Babiano et al. 1990) and in experiments (Jullien 2003). Laboratory experimental
measurements based on a 2D fluid driven by Faraday waves allowed the observation
of Richardson’s regime (Von Kameke et al. 2011) in the inverse energy cascade.
For electromagnetically forced fluids, Rivera & Ecke (2005) observed doubling-time
statistics (Aurell et al. 1997) consistent with the exponential law predicted in the
direct enstrophy range and a power-law regime in the inverse energy cascade. Many
of these studies found difficulties in observing a clear relation between the kinetic
energy spectral slope and relative dispersion. One reason invoked is the dependence of
scaling laws on the initial particle pair separation. This issue was discussed in detail
by Babiano et al. (1990) and Boffetta & Sokolov (2002) with 2D direct numerical
simulations, and by Nicolleau & Yu (2004) using kinematic simulations in three
dimensions and Ollitrault et al. (2005) with floats in the ocean. Other reasons may
be invoked, such as the presence of coherent vortices (Jullien 2003).

The subject of the present paper is to study a class of 2D flows, the so-called
α-turbulence models (Pierrehumbert, Held & Swanson 1994), which share the
common feature of exhibiting both direct and inverse cascades of an active tracer.
One characteristic of these models is that the kinetic energy spectral slope depends on
the parameter α (Watanabe & Iwayama 2004) and that energy fluxes are supposed to
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be driven by local scales for small α and non-local scales for large α (Pierrehumbert
et al. 1994). Hence, one can try to see if there is some relation between the
non-locality of the spectral energy transfers and the non-locality of particle dispersion.
Two important models of geophysical interest belong to this class of α-turbulence:
the barotropic quasi-geostrophic (QGBT) model and the surface quasi-geostrophic
(SQG) model (Held et al. 1995; Lapeyre 2017). On the one hand, in the QGBT
model, relative vorticity is conserved along the geostrophic flow; on the other hand,
in the SQG model, surface temperature is conserved (along the geostrophic flow) and
potential vorticity is constant within the bulk of the fluid. Both models are relevant, in
particular, for the dynamics of oceanic flows with meso- and submesoscale motions,
as the SQG model resembles what occurs at the ocean surface while the QGBT
model resembles what occurs in the interior (Klein et al. 2011). Phenomenologically,
QGBT turbulence (respectively, SQG turbulence) is related to kinetic energy spectra
in k−3 (respectively k−5/3) in the direct cascade of enstrophy (respectively temperature
variance).

The remainder of this paper is organized as follows. After a short review of the
phenomenology of the relation between 2D turbulence and relative dispersion (§ 2),
we present the numerical model that is used in our study (§ 3). Then § 4 is dedicated
to the properties of the generalized 2D turbulent flows, while § 5 concerns the statistics
of relative dispersion in α-turbulence. Conclusions are drawn in § 6.

2. Theory
2.1. Models of two-dimensional turbulence

In the QGBT model, relative vorticity ζ is a Lagrangian conserved tracer advected by
the geostrophic flow,

∂ζ

∂t
+ u · ∇ζ = 0, (2.1)

where u = −∂ψ/∂y and v = ∂ψ/∂x are the two components of the incompressible
velocity field u, ψ is the streamfunction and ζ = ∂v/∂x− ∂u/∂y=∇2ψ . In horizontal
Fourier space, we can write this last equation as

ζ̂ =−k2 ψ̂, (2.2)

where the hat stands for the Fourier transform and k is the horizontal wavenumber
modulus.

Another classical quasi-geostrophic (QG) model is the SQG model, whose potential
vorticity is uniform throughout the interior of the fluid (Held et al. 1995; Lapeyre
2017). The system simplifies into a form for which surface temperature θ is a
Lagrangian conserved tracer,

∂θ

∂t
+ u · ∇θ = 0, (2.3)

with u defined as above and
θ̂ =−k ψ̂ (2.4)

(see Held et al. (1995) for details of the derivation). Here we considered the non-
dimensional form of the equation so as to have a formal resemblance to (2.2).
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Starting from these two models, it is possible to consider generalized models, where
q is an active tracer obeying

∂q
∂t
+ u · ∇q= 0 (2.5)

and
q̂=−kα ψ̂, (2.6)

with α a fixed parameter (Pierrehumbert et al. 1994). The case of α= 2 corresponds
to the QGBT model and α = 1 gives the SQG model.

Such models possess generalized energies and enstrophies that are quadratic
invariants. The generalized enstrophy expresses the variance of the scalar field q.
Our interest will be focused on the cascade of this quantity to small scales. From
heuristic arguments, its spectral flux η is set by η ∝ σkkQ(k), where σk is the
strain rate responsible for the stirring of the scalar at scale 1/k and Q(k) is the
shell-averaged spectral density of generalized enstrophy. This last quantity is related to
the global tracer variance through Q=〈q2

〉=
∫
∞

0 Q(k) dk, the angle brackets indicating
an average over space. Assuming that σk depends only on the flow properties at the
same local scale k and in the inertial range of the direct cascade of tracer variance,
from η= const. one obtains the (shell-averaged) kinetic energy spectrum

E(k)∝ η2/3k−(4α+1)/3 (2.7)

for α< 2 (Pierrehumbert et al. 1994), where E(k) is related to the total kinetic energy
E through E =

∫
∞

0 E(k) dk. As the scaling law was obtained taking into account
only local quantities (at scale k), this regime is associated with local transfers of
generalized enstrophy. For α> 2 the spectral flux no longer explicitly depends on the
local wavenumber k, and

E(k)∝ η2/3k1−2α (2.8)

(Pierrehumbert et al. 1994; Watanabe & Iwayama 2004). This regime is associated
with non-local generalized enstrophy transfers.

One important consequence of (2.7) is that the strain rate (responsible for the
particle pair separation) between 1/k and 2/k behaves as k2(2−α)/3 for α < 2. For
these values of α, the exponent 2(2− α)/3 is positive and the dispersion of particles
separated by a given distance should be controlled by eddies of comparable size.
This would be associated with the ‘local dispersion’ regime. In contrast, for α > 2,
dispersion will be essentially governed by eddies at the largest scales, a regime
corresponding to ‘non-local dispersion’. However, one should remember that the
presence of nonlinear vortices generally tends to steepen the spectra, so that such
phenomenological scalings are only an indication of what could be observed.

2.2. Relative dispersion
The dispersion of passive particles in a turbulent fluid has been widely studied
and here we only present its main properties. The reader is referred to reviews by
Falkovich et al. (2001), Sawford (2001), Bennett (2006) and Salazar & Collins (2009)
for broader discussions.

Let us consider N particles whose positions at time t are denoted by xi(t) with i=
1, . . . , N. Let us examine the pairs (i, j) satisfying |xi(0)− xj(0)| = y0. Then relative
dispersion is defined as

〈y2(t)〉 = 〈|xi(t)− xj(t)|2〉, (2.9)
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where 〈 〉 is the average over all of these pairs of particles. The vector y(t)= xi(t)−
xj(t) is the separation vector between particles i and j, and y2

=|y|2. From this, relative
diffusivity can be computed as

Krel(t)=
1
2

d〈y2(t)〉
dt

= 〈δv(t) · y(t)〉, (2.10)

with the relative velocity defined by δv(t) = dxi/dt − dxj/dt = v(xi(t), t) − v(xj(t), t).
Diffusivity can be rewritten as

1
2

d〈 y2(t)〉
dt

= 〈δv(t) · y0〉 +

∫ t

0
〈δv(t) · δv(τ )〉 dτ , (2.11)

with y0 = y(t0). Assuming that relative velocity is independent of the particle pair
separation, i.e. 〈 δv(t) · y0 〉 = 0, for time sufficiently small one has

〈y2(t)〉 ≈ y2
0 + 〈δv0 · δv0〉t2, (2.12)

with δv0= δv(t= 0). This result was obtained by Batchelor (1950) and was confirmed
experimentally for 3D turbulent fluids by Bourgoin et al. (2006) and Ouellette et al.
(2006). This can be further simplified if one assumes that y0 is sufficiently small and
that velocity gradients are square-integrable. In that case, the structure function S(y0)=
〈δv0 · δv0〉 can be replaced by Zy2

0, with Z=
∫
∞

0 k2E(k) dk the total relative enstrophy,
and

〈y2
〉 ≈ y2

0(1+ Zt2) (2.13)

(Babiano et al. 1990). In the opposite limit of long times, one can expect that particles
are separated by a distance larger than the largest eddies and, hence, relative diffusivity
converges towards a constant that is twice the absolute diffusivity, due to uncorrelated
particle velocities.

At intermediate times, for which dispersion scales are within the inertial range
of the tracer variance cascade, the classical assumption of self-similarity for a local
turbulent cascade can be made. In that case, diffusivity will depend only on η (the
spectral turbulent flux of the tracer variance) and y (the distance of pair separation).
The turbulent flux scales as η = L4−2αT−3 (with L and T being typical length and
time scales) and is assumed to be constant in the inertial range of the tracer variance
cascade. We then obtain

1
2

d〈y2
〉

dt
∝ η1/3

〈y2
〉
(α+1)/3 (2.14)

for α < 2, which implies that

〈y2
〉 ∝ η1/(2−α)t3/(2−α). (2.15)

This is a generalization of Batchelor’s (1950) result for α-turbulence. Note that
Morel & Larcheveque (1974) proposed another derivation based on the kinetic energy
spectrum E(k) and the dispersion scale. One can apply a hypothesis of local cascade
using (kE(k))1/2/k as a diffusivity scale. By self-similarity and for a kinetic energy
spectrum E(k)∝ k−β , one can expect that

1
2

d〈y2
〉

dt
∝ 〈y2
〉
(β+1)/4. (2.16)
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Relative dispersion then scales as

〈y2
〉 ∝ t4/(3−β). (2.17)

Models with 0 < α < 2 satisfy β = (4α + 1)/3, and (2.14) and (2.15) coincide with
(2.16) and (2.17).

Fung & Vassilicos (1998) discuss the scaling relations obtained by the ‘locality
hypothesis’ in their study of kinematic simulations of 2D flows possessing different
energy spectra, while Nicolleau & Yu (2004) adopted a similar approach to examine
the scalings in three dimensions. This latter study pointed out the necessity of taking
into account finite scale effects due to the initial distance between particle pairs. This
was also observed in previous studies dealing with direct numerical simulations of
forced 2D turbulence (Babiano et al. 1990) and we will assess its importance in our
simulations.

A different situation occurs when α > 2, that is, for sufficiently steep (β > 3)
kinetic energy spectra. In this case the flow is smooth and it can be shown that
relative dispersion grows exponentially in time with an exponent related to the
maximum Lagrangian Lyapunov exponent of the flow (Falkovich et al. 2001) or,
equivalently, to the square root of enstrophy (LaCasce 2008):

〈y2
〉 ∝ e2c1Z1/2t, (2.18)

where c1 is a non-dimensional constant. Accordingly, one obtains

1
2

d〈y2
〉

dt
∝ c1Z1/2

〈y2
〉 (2.19)

for the relative diffusivity. This exponential growth of 〈y2
〉 is essentially driven

by the largest eddies and it does not depend on the slope of the kinetic energy
spectrum. From a Lagrangian point of view this corresponds to a regime of ‘non-local
dispersion’.

Table 1 summarizes the expected scalings from the type of α-model used (see
§§ 5.2 and 5.3, respectively, for the definitions of FSLE and kurtosis). Note that these
scalings do not contradict the initial ballistic regime (2.13) as discussed by Babiano
et al. (1990) and Nicolleau & Yu (2004). One interpretation is that, as long as the
separation vector does not reorient with respect to the spatial structure of the strain
field (in particular the strain axes), the particle pairs retain memory of the initial
velocity field, which leads to (2.13).

Equations (2.19) and (2.14) indicate that flows with non-local (respectively local)
spectral transfers would imply non-local (respectively local) dispersion. However, the
correspondence between transfers and dispersion properties breaks down if either the
spectral transfers have both local and non-local contributions, or the energy spectra
are steeper than predicted by the theory.

3. Numerical model

To explore in detail how local relative dispersion is in α-turbulence, we conduct
simulations with different values of α (= 1, 1.25, 1.5, 1.75, 2). Two other simulations
with very high viscosity are also performed with α= 1 or α= 2 in order to examine
the relations between energy spectra and dispersion laws.
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0<α < 2 α > 2

Kinetic energy spectral slope β = (4α + 1)/3 β = 2α − 1

Relative dispersion 〈y2(t)〉 ∝ t3/(2−α)
〈y2(t)〉 ∝ exp(c1Z1/2t)

Diffusivity
d〈y2
〉

dt
∝ 〈y2
〉
(α+1)/3 d〈y2

〉

dt
∝ 〈y2
〉

FSLE λ(δ)∝ δ2(α−2)/3 λ(δ)≈ c2

Kurtosis ku(t)≈ c3 ku(t)∝ exp(c4t)

TABLE 1. Scaling relations for relative dispersion indicators at intermediate scales as a
function of α (see §§ 5.2 and 5.3, respectively, for the definitions of FSLE and kurtosis).
The quantity Z is total relative enstrophy, and ci (i= 1 to 4) are constants depending on
properties of the fluid flow.

Equations (2.5) and (2.6) are integrated using a pseudo-spectral code with a
fourth-order Runge–Kutta method for time stepping; an exponential filter provides
numerical dissipation at small scales (LaCasce 1996). This filter allows extension
of the inertial range of tracer variance flux over higher wavenumbers, compared to
the usual hyperviscosity approach, with a very slow decay of energy in time (Smith
et al. 2002). In the two viscous simulations, a standard Laplacian operator accounts
for viscosity forces. Simulations are performed in free decay at a spatial resolution
of 1024× 1024 in a doubly periodic square box of side length 2π.

Despite the clear drawback due to their unsteady character, freely decaying runs
can in the present case offer some advantages with respect to forced simulations.
Indeed, these latter ones would necessitate determining what type of forcing to use,
either correlated in space or time, random or deterministic, at large or small scales.
Moreover, dissipation at large scales is also an important parameter since it can alter
the cascade. As discussed by Burgess, Scott & Shepherd (2015), the kinetic energy
spectral slope is sensitive to these choices and the values of these parameters. Also,
one would need to decide which quantity will be kept constant between the different
α cases: kinetic energy, generalized enstrophy or energy flux. We further remark
that coherent eddies are affected by the forcing type, for instance, when using a
random forcing on a particular wavenumber that will break the phase relationships
of the vortices at this scale. This contrasts with freely decaying cases which allow
the spontaneous emergence of coherent vortices. We leave for future investigation the
case of forced simulations for which both direct and inverse cascades are resolved.

One difficulty in the present setting is to properly choose the initial condition for all
the simulations so that the comparisons will be unbiased. Here all the simulations have
been started with the same initial streamfunction, corresponding to Fourier components
ψ̂(k) satisfying

|ψ̂(k)|2 =
Ak4

(k+ km)25
, (3.1)

with km = 14, and with random phases. This choice of km allows one to obtain a
kinetic energy spectral peak at large scales, namely for k= 7km/18≈ 5.4. The various
simulations only differ in the amplitude of the initial streamfunction, as we choose
to set the generalized energy equal to

∫
kα|ψ̂ |2 dk= 2× 10−3, which fixes the value

of A for each experiment. In this way, we only affect the time scales of turbulence
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and dispersion, and not the spatial scales of the stirring field (given by the relative
enstrophy k2E(k)).

Concerning the computation of the trajectories of passive particles, we use the
Lagrangian particle code used in Hua (1994), which calculates the velocity field at
particle positions with a bicubic interpolation in space and integrates the trajectories
in time with a fourth-order Runge–Kutta scheme. Such a scheme allows one to
obtain robust statistics for relative dispersion (Zouari & Babiano 1990) and preserves
the Lagrangian conservation of tracers (Hua 1994). We begin the integration of the
particle trajectories at time t = 40 in dimensional units, when energy spectra of all
simulations have reached an approximate equilibrium with distinct spectral slopes.
The particles are set on a uniform grid and we checked that the initial velocity of
particle separation is not correlated with the separation itself (〈δv0 · y0〉 ≈ 0). Finally,
we assume that particles move in an infinite domain and we use the periodicity
of the fluid flow in physical space to compute their velocities when they leave the
computational box.

4. Turbulent flow characteristics
4.1. Active tracer fields

After a transient period (that lasts until t ≈ 36), the statistical properties of the
different fields evolve more slowly with the continuous decay of the total energy
(see supplementary material available at https://doi.org/10.1017/jfm.2017.253 for more
details about the quasi-steadiness of the turbulent regime). Figure 1 presents the active
tracer fields for different values of α at t= 40. For α = 1 (case of SQG turbulence),
we observe intensified coherent structures from the smallest to the largest scales in
the active tracer field q (figure 1a). These small-scale eddies are due to the instability
of filaments that are expelled from larger-scale eddies (Held et al. 1995; Juckes 1995).
This clearly also occurs in the case of α = 1.5, e.g. for the filament with q< 0 that
wraps up around the vortex at (x, y) ≈ (−2.2, −1.3) (figure 1b). Going to greater
values of α, we observe the progressive disappearance of these small-scale eddies and
the appearance of very long, thin and quasi-passive filaments (see figure 1c for α= 2),
as also observed by Pierrehumbert et al. (1994) in forced simulations. As discussed
by Held et al. (1995), the decay range of the velocity field due to large-scale eddies
is much shorter for SQG than for QGBT. Hence the straining processes that suppress
the development of the filament instability are less efficient in SQG than in QGBT,
which leads to the roll-up of small filaments to form small-scale vortices in SQG.
For the viscous run with α = 1, small-scale vortices completely disappear and only
large-scale vortices with a few thick filaments remain (figure 1d).

4.2. Kinetic energy spectra
Figure 2(a) presents the kinetic energy spectra for the different simulations averaged
over several realizations between times t= 36 and t= 40. At scales below k= 10, they
share approximately the same shape with a maximum of kinetic energy around k= 4.
From k= 20 to k= 200, to a good extent, we observe a constant spectral slope in each
simulation for the non-viscous runs, while the spectrum rapidly falls off for the two
viscous runs. For values of α < 2, the actual slopes are close to the predictions based
on local transfer arguments (see table 2). For the case of α = 2 the kinetic energy
spectrum is observed to be steeper than k−3, probably due to numerical dissipation
effects (Boffetta & Ecke 2012).
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FIGURE 1. Active tracer q at t= 40 for (a) α= 1, (b) α= 1.5, (c) α= 2 and (d) viscous
run with α= 1. Values have been normalized by 〈q2

〉
1/2 and the space domain is [−π,π]2.
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FIGURE 2. (a) Kinetic energy spectra normalized by total energy. (b) Spectral fluxes
(normalized by their maximum value) of active tracer variance as a function of k. Spectra
and fluxes have been time-averaged over several realizations between t= 36 and t= 40.
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α 1 1.25 1.5 1.75 2

Theoretical slope 1.67 2 2.33 2.67 3
Observed slope 1.67 2.01 2.32 2.60 3.15

TABLE 2. Slopes of kinetic energy spectra (E(k)∝ k−β) for different values of α, computed
from a best fit in the range 206 k 6 200. The uncertainties in the fitted values are of the
order of 0.05. The theoretical slopes correspond to β = (4α + 1)/3.

4.3. Spectral fluxes and non-locality
To further substantiate the existence of an inertial range with a corresponding direct
cascade of active tracer q, we computed the tracer variance flux Π(K) at each
wavenumber K:

Π(K)=−
∫
∞

K
[Re(q̂ ∗(û · ∇q))]k dk, (4.1)

where the square brackets indicate an average over time and over spectral shells
around wavenumber modulus k. The notation ( )∗ stands for the complex conjugate
and Re( ) is the real part. Figure 2(b) presents the spectral flux Π(K) for each case,
normalized by its corresponding maximum value. In each simulation we observe that
Π(K) > 0 for 8<K< 300, which confirms the existence of a direct cascade of active
tracer q from large to small scales. Moreover, for most of the simulations, an inertial
range (corresponding to constant flux) is found between approximately K i

min = 30
and K i

max = 300. For some α cases the plateaus of Π(K) extend less towards the
smaller wavenumbers. This might be the reason for the not exactly constant spectral
slopes of the corresponding kinetic energy spectra at the lower boundary (in K) of
the inertial range. The two viscous simulations do not possess any inertial range but
still exhibit positive flux in a narrower range between K≈ 8 and K≈ 80. The absence
of a constant energy flux range explains why there is no clear spectral slope for the
kinetic energy spectrum (figure 2a).

To shed more light on the locality of transfers across scales, the tracer variance flux
can be decomposed into transfers between modes. For a given wavenumber k, one can
look for the scales (associated with wavenumbers l and m) that contribute to the flux
at this scale. In such a situation, we have k = l + m. Such a combination of three
scales corresponds to a triadic interaction (Kraichnan 1967).

A coarse-grained version of the tracer variance flux T(n) for a circular shell kn <

|k|< kn+1 can be simply expressed as a triad transfer function from different scales:

T(n)=−
∫ kn+1

kn

[Re(q̂ ∗(û · ∇q))]k dk=
N∑

a=0

N∑
b=0

T(n|a, b), (4.2)

where T(n|a, b) represents the flux due to scales la < |l|< la+1 and mb < |m|< mb+1
(see Watanabe & Iwayama (2007) for more details). The full expression for T(n|a, b)
is given in appendix A.

The transfer function T(n|a, b) is shown in figure 3 (for n = 25); here kn = λ
n,

la = λ
a, mb = λ

b and λ = 1.2. The index n = 25 corresponds to the shell centred on
wavenumber 95, which is in the inertial range. For α = 2 and α = 1.75, we see that
spectral transfers are due to triads with a� b or a� b. This means that nonlinear
transfers between triads are mostly non-local in these cases. While for α = 2 this is

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
:/w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e.

 E
N

S 
Pa

ri
s,

 o
n 

29
 M

ay
 2

01
7 

at
 0

7:
14

:4
2,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

:/w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

25
3

https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2017.253


Relative dispersion in generalized 2D turbulence 369

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

 0.5

 0

 –0.5

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

 0.5

 0

 –0.5

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

 0.5

 0

 –0.5

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

 0.5

 0

 –0.5

(a) (b)

(c) (d)

a a

b

b

FIGURE 3. Coarse-grained triad transfer function T(n|a, b) with n= 25 (corresponding to
k= 95); the horizontal and vertical axes respectively correspond to the shell indices a and
b. Cases with (a) α = 2, (b) α = 1.75, (c) α = 1.5 and (d) α = 1. Transfers have been
time-averaged and normalized by the total tracer variance dissipation.

expected from the theory, this is less so when α = 1.75. In contrast, for α = 1 and
α = 1.5, triads with a≈ b also contribute to the transfer function. In these two cases
(in particular the SQG case), it has to be stressed that both local and non-local triads
are responsible for the transfers while the phenomenological theory would advocate
for only local contributions. Watanabe & Iwayama (2007) obtained the same results
for the cases α = 1 and α = 2 in forced simulations. Hence, this result suggests that
locality and non-locality in terms of turbulent energy transfers are not as exclusive as
one might think a priori.

4.4. Locality of the strain field
The quantity that will matter in the dispersion of particles is the strain rate, as
this governs the stirring of fluid parcels (see Lapeyre (2002) for a discussion on
Lagrangian strain rates). A way to determine if a particular scale k will be strained
by eddies of comparable size or by larger ones is to compute the weight of the
strain rate at a given scale relative to the strain rate at larger scales. To this end we
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FIGURE 4. Ratio, Rk, of enstrophy contained in [k/2, k] to enstrophy contained in [kmin, k].
The horizontal dashed curves correspond to the theoretical predictions Rlim, while the
decreasing one is Rk = log 2/log(k/kmin).

introduce the enstrophy ratio Rk:

Rk =

∫ k

k/2
l2E(l) dl∫ k

kmin

l2E(l) dl
, (4.3)

where the infrared cutoff kmin > 0 corresponds to the smallest wavenumber resolved
in the domain, or the wavenumber containing the largest enstrophy at large
scale. Here the numerator represents the local strain rate (more precisely the
enstrophy l2E(l)) contained in eddies with size between k/2 and k, while the
denominator expresses the strain rate by larger-scale structures felt by a given scale k
(assuming that smaller-scale motions will not contribute to the stirring of larger-scale
structures). Using a power-law spectrum E(k) ∼ k−(4α+1)/3, the quantity Rk is equal
to Rk = (1 − 24(α−2)/3)/(1 − (kmin/k)4(2−α)/3) and tends to Rlim

= 1 − 24(α−2)/3 when k
is large enough for α < 2. For α = 2, Rk decays as Rk = log 2/log(k/kmin). Hence at
large k, small eddies of size 1/k do not contribute to the stirring when α= 2 whereas
they have a non-negligible impact for α < 2.

Figure 4 presents the quantity Rk along with its theoretical limit (dashed lines). At
large scales, Rk is close to 1 for all cases, as can be understood from its definition
in the limit of small wavenumbers. For smaller scales, namely those corresponding
to k > 30, Rk decreases in fair agreement with the theoretical prediction for α = 2,
while it approaches a constant value for α < 2. This value is close to 1− 24(α−2)/3. As
α decreases, local scales have a more and more important weight in the strain rate.
However, Rk only reaches 60 % of the total strain for α= 1. This indicates that larger
scales still provide a non-negligible contribution to the stirring for the SQG case and
raises the possibility that a dispersion theory based on local arguments might not be
sufficient to account for the different processes involved in the dispersion.
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5. Relative dispersion analysis
We now present the results of the relative dispersion analysis based on indicators

computed both at fixed time and at fixed scale. For these calculations, an ensemble
of 1024× 1024 particles homogeneously distributed on a regular grid has been seeded
in the flow after the transient regime, from time t = 40 to time t = 80. During this
time interval, kinetic energy decayed by 17 % or less (depending on the value of α),
while the relative enstrophy decayed by almost 35 % for all non-viscous runs (see
supplementary material). During this time period, the relative enstrophy spectra keep
the same shape for k > 10 while the main peak shifts to lower wavenumbers (not
shown). Statistics were computed using up to 2× 106 particle pairs. In the following,
time t= 0 will correspond to the time of particle release.

5.1. Time-dependent statistics
As previous studies showed (Babiano et al. 1990; Boffetta & Sokolov 2002; Nicolleau
& Yu 2004; Bourgoin et al. 2006), relative dispersion statistics depend on the initial
particle pair separation y(t = 0) = y0. It is then useful to introduce the wavenumber
k0 = 2π/y0, which allows one to compare the initial pair separation with the typical
length scales associated with the inertial range of the active tracer cascade. In the
following we will take k0= 512, corresponding to initial separations y0≈ 1.23× 10−2,
smaller than the scale at which the tracer variance flux vanishes and the kinetic energy
rapidly drops to zero, namely kv ≈ 350. We have also performed a particle release
experiment with k0= 1024 but tracking particles over a more limited time period, and
we obtained qualitatively similar results.

We further introduce a time scale corresponding to the time at which particle pairs
have forgotten their initial separation, i.e. their early behaviour (see (2.12)). Such a
time scale will take into account the period during which particles lose ‘memory’ of
their initial position and velocities, which would delay the onset of scaling relations
(see discussion in Babiano et al. 1990). For that purpose, we introduce a ‘memory
index’,

M(t)=
〈y · y0〉

y0〈y2〉1/2
, (5.1)

and we look for times t such that M(t) ≈ 0. Figure 5 shows such a quantity in
the case of k0 = 512. Here, we rescaled time as tm = t/τm, where τm is such that
M(t= τm)= 0.5 for each value of α. We clearly observe that the separation distance
decorrelates with its initial value in the same manner for all simulations, provided the
appropriate time scale τm is used to make time non-dimensional. The cases α= 1 and
1.25 seem to decorrelate more slowly in time but the difference with the other cases
remains quite small. Hence, the time scale τm seems to provide the typical time scale
of decorrelation with the initial conditions, and in the following we will use tm as
the rescaled time for an appropriate comparison of the different cases. We note that
another time scale Tz= Z−1/2, based on the relative enstrophy Z, could be appropriate.
We found that this time scale is highly correlated with τm since the ratio Tz/τm stays
between 0.5 and 0.8 for the different cases (not shown). However, tm was found to
give better agreement between the different simulations.

For short times (tm � 1), we expect relation (2.12) to hold. Figure 6(a) clearly
indicates that this regime is observed up to a time tm ≈ 1. This is in agreement with
other studies (Nicolleau & Yu 2004; Bourgoin et al. 2006). We note that simulations
with different values of α and k0 give exactly the same typical law 〈y2

〉 ≈ y2
0(1 +

ct2
m) for sufficiently small tm, with c a constant independent of α and k0 – see the
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10010–110–2 102101
0
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(viscous)
(viscous)

1.0

FIGURE 5. Particle separation memory index M(t)= 〈y · y0〉/y0〈y2
〉

1/2 as a function of
the renormalized time tm = t/τm. Initial pair separations correspond to k0 = 2π/y0 = 512.

(viscous)
(viscous)

10010–1 103102101 10010–110–2 101

10–4

10–6

102

100

10–2

10–4

100

10–1

10–2

10–3

(a) (b)

y

FIGURE 6. (a) Relative dispersion (after subtraction of the initial value) 〈y2
〉 − y2

0 as a
function of time tm. (b) Diffusivity d〈y2

〉/dt as a function of 〈y2
〉

1/2. In this panel, only
data with M(t)< 0.5 have been plotted. In each case, the initial separation y0 corresponds
to k0 = 512.

good collapse of the different curves in figure 6(a) when varying α at fixed k0 and
figure 7 when varying k0 at fixed α. This indicates that τm is the relevant time scale
for comparing the different simulations. For each value of α the departure from the
ballistic regime seems to occur around a common value between tm = 1 and tm = 2.
At that time, the dispersion scale is of the order of y2

≈ (2π/K i
max)

2
≈ 4.4× 10−4, i.e.

in the inertial range.
We now turn to intermediate times for which the dispersion should obey a power

law 〈y2
〉 ∝ t3/(2−α) for α < 2 and an exponential law for α = 2 and the viscous runs

(table 1). Figure 6(a) shows that relative dispersion increases more rapidly when
α increases, as expected. However, 〈y2

〉 is systematically found to grow in time
more slowly than predicted by the theory. A difficulty in measuring the power-law
exponents (or exponential growth rates) is due to the fact that they strongly depend
on k0, and they typically increase with it. Figure 7 displays 〈y2

〉/y2
0 as a function

of time for different k0 when α = 1 (a) and α = 2 (b). In both cases, we see that
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FIGURE 7. Relative dispersion as a function of time tm for different values of y0 (with
k0 = 2π/y0) for α = 1 (a) and α = 2 (b). Here d is a constant proportional to the square
root of relative enstrophy.

the asymptotic dispersion regime is better realized when increasing k0. For α = 1
(figure 7a), relative dispersion tends to approach the theoretical expectation 〈y2

〉 ∼ t3

when y0 is decreased, but the scaling is still limited to a quite short range even
for the smallest y0 considered. On the other hand, for α = 2 (figure 7b), after a
growth in 1 + ct2

m up to tm ≈ 1, the time evolution of relative dispersion might
suggest an exponential law, but only visible for smaller and smaller values of y0
and up to a time tm ≈ 2. Such difficulties in observing clear scalings relating relative
dispersion with time were noted by numerous authors (Morel & Larcheveque 1974;
Boffetta & Sokolov 2002; Jullien 2003; Nicolleau & Yu 2004). Here two reasons can
be invoked. Relative dispersion 〈y2

〉 involves particle pairs with different histories:
some may separate more slowly than others, e.g. if they are trapped inside coherent
vortices. This can lead to spurious behaviours due to averaging together, at fixed
time, potentially very different pair separations (Artale et al. 1997). Another possible
reason lies in the weakly non-stationary character of the turbulent flow; indeed,
relative enstrophy slowly decreases in time, causing a temporal variation of the
exponential growth rate of the squared separation for α = 2.

5.2. Scale-dependent statistics
Statistics at fixed scale are preferable to avoid the superposition of different dispersion
regimes due to particle pairs having different histories (Morel & Larcheveque 1974;
Bennett 1984; Aurell et al. 1997; LaCasce & Bower 2000).

Figure 6(b) shows relative diffusivity d〈y2
〉/dt as a function of pair dispersion y=

〈y2
〉

1/2 for an initial separation corresponding to k0 = 512. Only data for which the
particle pairs have forgotten their initial separation (i.e. t > τm) have been plotted.
The existence of a power-law regime appears more clearly when using this indicator.
To better estimate the correspondence with the theory, a compensated plot d〈y2

〉/dt×
〈y2
〉
−(α+1)/3 can be examined (figure 8). When decreasing the initial separation distance

y0 (or increasing k0) for α < 2, we see that a regime of quasi-constant compensated
diffusivity (i.e. a broadening of the main peak) appears. This is more true when α is
small and when k0 is large. In particular, for α = 1 and α = 1.25 (figure 8a,b), we
clearly see that the compensated diffusivity becomes constant over a large range of y.
Note also that for the viscous case α= 2, a restricted range of constant compensated
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y y y

FIGURE 8. Compensated diffusivity d〈y2
〉/dt× 〈y2

〉
−(α+1)/3 as a function of 〈y2

〉
1/2. Panels

(a–e) α = 1, 1.25, 1.5, 1.75, 2. Panel ( f ) is the viscous case α = 2. The different curves
correspond to different values of initial separation distance.

diffusivity appears (figure 8f ). For these different cases, we are confident that the
dispersion statistics obey scaling laws predicted by the self-similarity theory based on
a local cascade. However, this is only confirmed for small enough y0. For α= 2, the
compensated diffusivity does not show a clear plateau even for k0 = 1024 (figure 8e).
A similar conclusion is obtained for the viscous case α = 1 (not shown).

With regard to the difficulty of observing exponential growth when α = 2, an
alternative diagnostic is the characteristic time of relative dispersion, defined in
Babiano et al. (1990) as

τexp(y)=
〈y2
〉

d〈y2
〉/dt

. (5.2)

A constant value of τexp(y) corresponds to an exponential separation and defines the
range of separations over which this regime is found. The behaviour of this quantity
for different initial separations is presented in figure 9, again for α = 1, α = 2 and
the viscous run with α = 2. We have rescaled τexp with its minimum value in each
case and only data in the inertial range are shown. For α = 1, we do not expect an
exponential regime and this serves to contrast with the other two cases. Indeed, in this
case, the time scale τexp increases very rapidly with y (figure 9a), which indicates that
an exponential growth is not present for the values of y0 considered. For α = 2 the
characteristic time τexp is found to be constant, or at least to vary weakly (between 1
and 2) over a broader range of scales (almost a decade in y for the smallest y0). This
strongly suggests that non-local dispersion is taking place in the inertial range. As can
be seen, the smaller the initial separation, the larger the range of separations for which
τexp(y)= const., consistent with Babiano et al. (1990). In contrast to the α = 1 case,
the minimum of τexp was found to be independent of y0 (not shown). The viscous run
with α = 2 reveals a much clearer exponential range, indicating that steeper energy
spectra are accompanied by more non-local dispersion.

Another way to diagnose local/non-local dispersion is to investigate the exponential
growth rate of separation, not as a function of time, but scale by scale. To this end,
one can measure the time τ(δ) needed to observe the growth of separation from a
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FIGURE 9. Characteristic time of relative dispersion τexp as a function of y/y0 for α = 1
(a), α = 2 (b) and the viscous run with α = 2 (c). Only data for which y is within the
inertial range are displayed and tm > 1. The value τexp has been rescaled by its minimum
value. For k0= 1024 the inertial range occurs from y/y0 > 3.4, while it is below 2 for the
other values of k0.

scale δ to a scale rδ (with r> 1). The finite-size Lyapunov exponent (FSLE) is then
defined as

λ(δ)=
log(r)
〈τ(δ)〉

, (5.3)

where the angular brackets indicate an average over all particle pairs (Artale et al.
1997; Aurell et al. 1997). If the kinetic energy spectrum scales as k−β , the FSLE is
expected to be given by

λ(δ)∝ δ(β−3)/2 (5.4)

for β < 3. The power-law dependence as a function of α is then

λ(δ)∝ δ2(α−2)/3 (5.5)

when α < 2. For spectra steeper than k−3 or for α > 2, λ(δ) should reach a constant
value. In such a case of scale-independent FSLE, dispersion is controlled by non-local
processes, that is, by velocity field features at much larger scales than the particle
separation. In the limit of infinitesimal separation, λ(δ) converges to the maximum
Lagrangian Lyapunov exponent λL of the flow.

In our different simulations, the FSLE was computed using the scale separation
factor r = 1.2, original pairs and the time of first crossing technique, but the
results were qualitatively the same using chance pairs or the fastest crossing method
(Lumpkin & Elipot 2010). Consistent with Özgökmen et al. (2012), we rescaled FSLE
with the Okubo–Weiss parameter Q (Okubo 1970; Weiss 1991) that characterizes
hyperbolic regions of the flow.

The behaviour of the FSLE is displayed in figure 10. For 0.03 < δ < 0.3,
approximately corresponding to 20 < k < 200, i.e. in the wavenumber range where
constant spectral slopes were detected (see figure 2a), we observe a power law
λ(δ) ∝ δ−γ with an exponent γ that decreases as the slope of the kinetic energy
spectrum increases (see table 3). This is in qualitative agreement with the theory
but we remark that the decrease of λ(δ) with δ is slightly slower than expected for
α = 1 and α = 1.25. At scales smaller than δ = 0.03, λ(δ) displays some tendency
to flatten in all cases, but no clear plateau region allowing the measurement of λL
is detected, at least for α 6 1.75. The cases with α = 2 and the two viscous runs
present a considerably weaker scale dependence, with almost constant FSLE up to
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10–1

10–2

10–3

10–4

10010–110–2 101

FIGURE 10. FSLE (rescaled by the Okubo–Weiss parameter) computed from original pairs
with particles regularly spaced every 2π/512 in each direction. Regimes λ ∝ δ−2/3 and
λ∝ δ−1 are indicated for comparison.

α 1 1.25 1.5 1.75 2 1 (viscous) 2 (viscous)

γ as in λ(δ)∝ δ−γ 0.56 0.44 0.32 0.21 0.15 0.15 0.11
Theoretical value based on α 0.67 0.5 0.33 0.17 0 0 0

TABLE 3. Slopes of FSLE λ(δ) computed in the range 0.03< δ < 0.3 (with uncertainties
of the order of 0.05) and comparison with predictions based on α.

scales δ ≈ 0.5, pointing to an essentially non-local dispersion regime. Notice that the
steepening of the FSLE for δ < 0.1 for the viscous run with α = 1 may be due to
the fact that particles at small separation slowly forgot their initial separation. Finally,
independently of the value of α, for δ > 1 we observe a faster decrease with δ of the
FSLE, but the behaviour of these scales δ > π may be misleading, as periodicity in
the velocity field may modify the dispersion properties.

5.3. Higher-order statistics

Relative dispersion is the second-order moment of particle pair separation. While for
Gaussian probability distributions knowledge of it provides a good characterization
of the statistics, this is no longer true for strongly non-Gaussian distributions, such
as those typically encountered in turbulence. In such a case it is useful to compute
higher-order moments or the probability density function (p.d.f.) itself. As discussed
in detail by Bennett (1984) and LaCasce (2010), the shapes of p.d.f.s give substantial
information to determine what kind of dispersion regime is present.

In a 2D homogeneous incompressible flow the p.d.f. of pair separation P(y, t)
evolves according to the following Fokker–Planck equation (Richardson 1926):

∂P
∂t
=

1
y
∂

∂y

(
y Krel

∂P
∂y

)
, (5.6)
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where y is the pair separation (Bennett 1984; LaCasce 2010). Equation (5.6) must be
supplemented by an initial condition such as, for example,

P(y, t= 0)=
1

2πy
δ(y− y0). (5.7)

For a diffusivity Krel = κya with a< 2, using the Laplace transform one can find the
general solution

P(y, t)=
1

4πκt(yy0)a/2
exp

(
−

1
(a− 2)2

y2−a
+ y2−a

0

κt

)
Ia/(2−a)

(
2

(a− 2)2
(yy0)

1−a/2

κt

)
,

(5.8)
where In is the modified Bessel function of order n. In the limit of large distances but
before the final diffusive range (y� y0 and κt� y2−a), one has

P(y, t)≈
1

4πΓ (2/(2− a))((2− a)κt)2/(2−a)
exp

(
−

1
(a− 2)2

y2−a

κt

)
, (5.9)

which is known as the Richardson p.d.f. for a= 4/3. In contrast, when a= 2, the law
is log-normal, and it is known as the Lundgren p.d.f. (Lundgren 1981):

P(y, t)=
1

4π(πt/T)1/2y2
0

exp
(
−
[ln(y/y0)+ 2t/T]2

4t/T

)
, (5.10)

where the time scale T is proportional to the inverse cube root of the enstrophy
dissipation rate (Lin 1972). Note that if one uses Krel = κtb instead of Krel = κya

in (5.6), a different p.d.f. can be obtained, in particular a Gaussian form in three
dimensions for b= 3 (Batchelor 1952a). In 3D turbulent experiments, Ouellette et al.
(2006) showed the dependence of the observed p.d.f. on the initial pair separations,
which suggests that in particular cases (5.8) is preferable to (5.9) when comparing
with observations.

Figure 11 presents the p.d.f. observed at different times, and with k0= 2π/y0= 512,
for the two extreme cases (a) α = 2 (QGBT) and (b) α = 1 (SQG) corresponding to
a= 2 and a= 4/3, respectively.

Figure 11(a) indicates that the case α = 2 is representative of a Lundgren law, at
least for tm 6 10. Note that the correction 2t/T in (5.10) was found to be small. The
adequacy of the Lundgren law in representing the dispersion p.d.f. provides strong
support for non-local dispersion, in a more unambiguous way than the dispersion,
diffusivity or FSLE. For larger times and y much larger than its initial value, the
p.d.f. is less well approximated by this law. This particularly occurs for the right tail
of the p.d.f. even at tm > 6 and is in agreement with the fact that at such times the
exponential dispersion law is not observed (figure 7b). In the case α= 1 (figure 11b),
the separation p.d.f. substantially differs from the Lundgren solution compared to the
other case but is reasonably well captured by the prediction of (5.9) with a = 4/3,
corresponding to a Richardson distribution, in the range 6.5 6 tm 6 25. The strong
fluctuations of the p.d.f.s visible in figure 11(a,b) for y< y0 are due to limited statistics
at very small separations.

The p.d.f. allows one to compute all moments such as, for example, relative
dispersion. Interesting information is also provided by the kurtosis of relative
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FIGURE 11. Probability density functions of pair separations for (a) α= 2 and (b) α= 1
at different values of tm. In panel (a), the p.d.f.s are shown as a function of the rescaled
variable (y/y0)

1/σ
= exp[(1/σ)(log y − log y0)], where σ is the standard deviation of the

p.d.f. in log space. The Lundgren distribution is represented by the black dashed curve.
In panel (b), the p.d.f.s are shown as a function of y/y0. The dashed lines correspond to
the Richardson solutions. In all cases the initial separation of particle pairs corresponds
to k0 = 512.

displacements, which samples the high tails of the distribution corresponding to
rare and very large particle separations. It is defined as

ku(t)=
〈y4
〉

〈y2〉2
. (5.11)

For a Rayleigh distribution (the expected one for a normally distributed random
process and in the diffusive limit of dispersion), ku = 2 (LaCasce 2010). In the
Richardson regime, the kurtosis would attain a value close to 5.6, while it would
exponentially grow in time in the (marginally) non-local regime of the enstrophy
cascade (associated with exponential growth of relative dispersion) as shown by
LaCasce (2010).

Figure 12 presents the time evolution of kurtosis for initial particle separations
corresponding to k0 = 512. There is a clear difference between simulations with
α > 1.75 or the viscous ones, whose kurtosis reaches values larger than 15, and
simulations with α61.5, whose kurtosis does not exceed 12 and is not so prominently
peaked. The behaviour for α = 2 and the viscous runs is in reasonable agreement
with an exponential growth of separation and a dispersion process driven by large
scales (LaCasce 2008) and seems to be in agreement with the FSLE.

6. Conclusions
We examined a class of generalized 2D turbulent flows (α-turbulence models),

encompassing the QGBT and SQG models as limiting cases (Pierrehumbert et al.
1994). All of these models have dynamics characterized by the conservation of an
active tracer along the geostrophic flow with a direct cascade of tracer variance to
small scales. As expected, the numerically computed kinetic energy spectral slopes are
close to the predictions based on phenomenological arguments for 1 6 α < 2, while
the spectrum was found to be quite steep in our simulations for α = 2 (probably
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FIGURE 12. Relative displacement kurtosis as a function of tm; here k0 = 512. The
black thin line corresponds to a kurtosis of 〈y4

〉/〈y2
〉

2
= 2 (representative of a Rayleigh

distribution).

due to numerical dissipation effects) and the two viscous runs. We examined the
spectral transfers of active tracer variance between scales and found that both local
and non-local triads contribute to the transfers, contrary to the general phenomenology
assumption.

We further analysed relative dispersion statistics both as a function of time and as
a function of scale in order to see how the phenomenological scaling laws predicted
by local self-similarity arguments were verified. As in previous studies, we found that
the scalings of relative dispersion as a function of time are difficult to assess, due to
the strong dependence on initial pair separations. In particular, the exponential growth
of relative dispersion in the case of α = 2 was observed for a limited range of time,
even for initial separations much smaller than the inertial range scales. In that respect,
different fixed-scale statistical indicators were able to reveal this exponential growth.
For 1 6 α < 2, relative dispersion was found to follow the power laws expected from
local cascade theories. This is more true when α is close to 1 and the initial pair
separation is small. Finally, the relative displacement p.d.f.s were consistent with a
Lundgren distribution for α = 2 and a Richardson distribution for α = 1.

This study has provided evidence that relative dispersion in SQG turbulent flows
(α = 1) is local, in the sense that small-scale eddies govern relative dispersion at
their scale, while in QGBT flows (α= 2) dispersion is governed by large-scale eddies
(non-local dispersion). Hence large-scale eddies have little effect on the dispersion
in SQG flows when considering small enough separations. An unexpected element is
that, for the SQG case and more generally for α < 2, spectral transfers of the active
tracer variance between scales have both local and non-local components, i.e. modes
associated with very different wavenumbers do contribute to the transfer. Hence, the
concept of local/non-local interactions in the cascade of an active scalar does not seem
to be straightforwardly related to that of locality of particle dispersion. In our opinion,
what matters for the dispersion of particles is the self-similar character of the turbulent
dynamics, which determines both the spectral behaviour of the flow and the dispersion
laws.

This result was obtained in the context of freely decaying simulations with a
kinetic energy peak at large scale. It would be interesting to examine the case of
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forced simulations with the simultaneous presence of both a direct and an inverse
cascade. Another interesting question would be to compare the dispersion in different
α-turbulence models having the same kinetic energy spectrum but different cascade
directions. In this class of models, the QGBT inverse cascade has a typical k−5/3

law for the kinetic energy spectrum, which is similar to the kinetic energy spectrum
of the SQG direct cascade. Comparing models with similar kinetic energy spectral
slopes would allow one to assess the different features of the turbulent dynamics that
determine the relative dispersion characteristics.
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Appendix A. Coarse-grained transfer function
The transfer of tracer variance towards wavevector k is simply expressed as

−Re(q̂ ∗k (û · ∇q)k). (A 1)

This can be further expanded if we introduce wavevectors l and m as

−Re

(
q̂ ∗k

∑
l+m=k

( ̂ul · ∇qm)

)
, (A 2)

where ul is the component of the velocity corresponding only to the wavevector l and
qm is the tracer component corresponding to wavevector m.

Let us now subdivide the wavenumber space into circular shells k0 < · · · < kn <
kn+1 < · · ·< kN , l0 < · · ·< la < la+1 < · · ·< lN and m0 < · · ·< mb < mb+1 < · · ·< mN .
The contribution to the flux for the shell kn < k< kn+1 (see (4.2)) can be decomposed
into individual transfers:

T(n|a, b) = −
∑

kn<|k|<kn+1

∑
la<|l|<la+1

∑
mb<|m|<mb+1

δk=l+m

×Re
(

q̂ ∗n,n+1[(
̂ua,a+1 · ∇qb,b+1)+ ( ̂ub,b+1 · ∇qa,a+1)]

)
, (A 3)

with Fx,x+1 being the restriction of F to the shell with kx < |k| < kx+1 and δ the
Kronecker symbol. In (A 3), the quantity T(n|a, b) represents the transfer of tracer
variance from shells la < l< la+1 and mb <m<mb+1 to shell kn < k< kn+1.
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