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We describe a shallow-water type atmospheric model which includes the transport of moisture as
well as related precipitation and convection effects. The model combines hydrodynamic nonlinearity
of the standard shallow-water model with the intrinsic nonlinearity due to the precipitation
threshold. It allows for both theoretical treatment by the method of characteristics and efficient
numerical resolution using shock-capturing finite-volume schemes. Linearized in the dynamical
sector, the model adequately reproduces the propagation of the edge of precipitation regions
(precipitation fronts) found in earlier studies. Results of numerical experiments on simple wave
scattering upon a moisture front are in agreement with analytical results and highlight the role of
dissipative reflector played by precipitating zones. We also analyze the evolution of a disturbance
propagating in a uniformly saturated region and obtain criteria for precipitation front formation.
Finally, we simulate wave breaking as an example of essentially nonlinear phenomenon and show
how moist effects modify the classical shock formation scenario. © 2009 American Institute of

Physics. [doi:10.1063/1.3265970]

I. INTRODUCTION

Water vapor plays a fundamental role in the climate sys-
tem as a greenhouse gas but also through the latent heat
release during condensation." This last effect is important for
the large-scale atmospheric dynamics, especially in tropical
areas. Because the deep convection zones are still too small
to be resolved explicitly in general circulation models, at
present moist convection is parametrized in terms of large-
scale variables. Various parametrizations are used in numeri-
cal models (i.e., Arakawa and Schubert®), the Betts—Miller
scheme being the most common.” Based on convective
quasiequilibrium, it expresses latent heat release and precipi-
tation in terms of linear relaxation of the specific humidity
toward an equilibrium profile, once moisture exceeds the
saturation value. Such threshold effect (which, among others,
creates a boundary between nonprecipitating and precipitat-
ing regions) is essentially nonlinear and drastically changes
the way the system should be analyzed, whatever the small-
ness of perturbations of the dynamical variables. For ex-
ample, the traditional harmonic wave wisdom is not appli-
cable anymore in precipitating regions. A favorable moisture
environment can also increase dramatically the growth of
synoptic perturbations through this nonlinearity.‘"5 Other spe-
cific phenomena, such as precipitation fronts,*’ emerge. Al-
though the existing literature on the interaction of moist con-
vection and large-scale circulation is vast (e.g., Refs. 8—11),
the fundamental dynamical aspects of precipitating systems
are not often addressed (see, however, Refs. 4 and 12-16 for
investigation of the role of moist processes in dynamics).

Gill,' in his pioneering work, studied the fundamental
dynamical issues related to precipitation using a heuristic
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linear shallow-water (SW in what follows) equations for ve-
locity and (potential) temperature in one spatial dimension,
combined with a linearized transport equation for water va-
por. An immediate relaxation of humidity was used in order
to couple potential temperature and water vapor equations,
and the behavior of disturbances developing from an initial
temperature perturbation in a saturated atmosphere was ana-
lyzed. The method of characteristics allowed to describe the
edge between dry and moist regions. However (see below)
the success of such analysis strongly relies on the specific
initial conditions.

Recently Majda and co-workers®’ developed a theory of
precipitation fronts by using basically the same model (lin-
ear, except for precipitation and latent heat release effects) as
that of Gill."” This model was motivated by vertical mode
decomposition and truncation at the lowest order. Majda and
co-workers were interested in precipitation fronts, treated as
discontinuities in the spatial derivatives of the dynamical
variables at the boundary between dry and moist regions, and
again worked in the limit of relaxation time tending to zero.
By analyzing the Rankine—Hugoniot (RH) conditions for the
gradients, three possible types of precipitation fronts were
identified. These results were extended to finite relaxation
times in Ref. 18. The effect of precipitation on the propaga-
tion of equatorial waves in the precipitation front framework
was also discussed in Ref. 19.

The goal of the present paper is to derive a SW-type
model that would combine the nonlinearity due to precipita-
tion with genuine hydrodynamic nonlinearity of the primitive
equations, and to analyze their combined effects in the fun-
damental dynamical processes. Our motivation is to have a
simple yet self-consistent and reliable tool for both theoreti-
cal and numerical analysis of moist dynamics. In fact, the
two are interconnected, as shock-capturing high-resolution
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finite-volume numerical schemes® exist for rotating shallow-
water (RSW) models, and were exhaustively tested in geo-
physical fluid dynamics applications (e.g., Ref. 21). Inclu-
sion of a tracer (moisture) in these models is trivial, and
incorporation of a relaxation scheme for precipitation is
straightforward. Thus, a fully nonlinear “moist SW” model
generalizing earlier linear moist SW equations would allow
for a direct high-resolution front-capturing numerical simu-
lations of fundamental dynamical processes in precipitating
systems. Other studies (e.g., Refs. 22 and 23) using SW-type
models examined the dynamical role of latent heat release.
However, in these models, convection was just parametrized
using wind convergence and no moisture equation was used.

The paper is organized as follows. In Sec. II, we propose
a heuristic derivation of the model and then analyze its basic
properties using the standard tools for hyperbolic systems
(characteristics, Riemann invariants). Numerical experiments
are performed in Sec. III to check if the model reproduces
earlier results reported in literature®”!” on the front propaga-
tion and to benchmark the numerical scheme. As typical
examples/benchmarks, we have chosen the interaction be-
tween a simple wave and a stationary humidity front (Sec.
III B) and the evolution of a small perturbation in a uni-
formly saturated region (Sec. III C). The nonlinear stage of
evolution of a simple wave in the presence of moisture is
considered as a typical example of combined hydrodynamic
and precipitation nonlinearities in Sec. III D. Section IV con-
tains summary and discussion. A more detailed discussion of
the model and its generalizations in view of the moist en-
thalpy (ME) conservation principle are presented in Appen-
dix A. A generalization of the moisture relaxation scheme is
described in Appendix B and a sketch of its numerical imple-
mentation is given in Appendix C.

Il. THE MODEL: “MOIST-CONVECTIVE” ROTATING
SHALLOW WATER

A. Introducing moist convection in shallow-water
models

Let us remind (cf., e.g., Ref. 24) that RSW models (one-
or multilayer) can be obtained by vertical averaging of primi-
tive equations between pairs of material surfaces, and by
applying the mean-field hypothesis, i.e., replacing the hori-
zontal velocities by their averaged values (corrections can be
incorporated via the turbulence viscosity/diffusivity closures,
if necessary). Traditionally, the average density (potential
temperature in the atmospheric case) is not allowed to vary,
otherwise the generalized SW equations (so-called Ripa’s
equationszs’%) arise instead of the standard ones. We shall
adopt below the standard hypothesis (the case of Ripa’s
equations is briefly discussed in Appendix A). This physi-
cally means that the energy release due to precipitation does
not increase the average potential temperature, but rather
produces convection and a corresponding mass flux (see a
more detailed discussion in Appendix A).

As a starting point we take dry hydrostatic primitive
equations with pseudoheight
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as the vertical coordinate,27 and average them between two
material surfaces (z;,2,) such that dz, »/dt=w|, 5, where w is
vertical velocity in pseudoheight coordinates. We take the
bottom surface, z;(x,y,?), corresponding to constant geopo-
tential (physical ground), and the top one to be isobaric, z,
=const. We obtain in this way the usual RSW equations for
air columns,

ps = const

(2.1)

v+ (- Viv=-¢gVh-fiXuv, (2.2)

Gh+V - (vh) =0, (2.3)

where v=(u,v) is the vertically averaged horizontal velocity,
V is the horizontal gradient, Z is the unit vector in the
z-direction, g is the gravity acceleration, and h=z,—z; is the
thickness of the layer in pseudoheight coordinates.

We want now to include moisture with precipitation sink
and the related convective motions in the model (for simplic-
ity, we will not include the evaporation sources in what fol-
lows). Of course, the neatest way to do this would be to
vertically average the moist primitive equations, along the
lines of the derivation of the “dry” RSW equations sketched
above. However, due to the intrinsic nonlinearity of the equa-
tion of state of the moist air, cf. Ref. 9, this task turns to be
extremely complicated and necessitates a number of ad hoc
hypotheses to proceed. We choose therefore another ap-
proach in the spirit of turbulence closures. We will suppose
that the total amount of water vapor in the air column Q
=f i?qdz, i.e., the specific humidity ¢ integrated over the
layer, is conserved modulo the precipitation sink P. Obvi-
ously, the related latent heat release does not directly influ-
ence the horizontal momentum Eq. (2.2) and the closure
should consist in coupling the moisture equation and thick-
ness equations.

We thus change the kinematic boundary condition at the
upper surface to allow for mass exchanges,

dz
W2=_2+W

I (2.4)

and suppose that the convective vertical velocity W is di-
rectly proportional to P: W=pP (c.f. Fig. 1). In this way we
obtain the following equations:

v+ -Viv=-gVh-fi X, (2.5)
ah+V - (vh)=— BP, (2.6)
0+V-(vQ)=-P. (2.7)

It should be noted that a similar representation is used to
model convection in the SW models of the deep ocean (e.g.,
Ref. 28). In consequence, the model will be referred below
as moist-convective RSW (MC-RSW).

The second element of the closure is parametrization of
the precipitation in terms of the dynamical variables of the
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FIG. 1. Sketch of the representation of the moisture effects in the MC-RSW
model. Deep convection regions are associated with an additional vertical
velocity supposed to be proportional to the precipitation: W=SP.

model. We will use below a simple relaxation closure ex-
pressing P in terms of Q and its saturation value Q,

p=2"%po-0,,

T

(2.8)

where 7 is the relaxation time and H(-) is the Heaviside
function. Such relaxation is close in spirit to the Betts—Miller
scheme widely used in general circulation models (GCMs),
although the genuine one corresponds to adjustment of the
specific humidity g to a vertical convective reference profile
¢“(z).> The closure falls in the class of “quasiequilibrium
closures” which relax the excess instability (here simply the
excess moisture) to its critical value. The immediate relax-
ation limit 7— 0 is usually referred to as “strict quasiequilib-
rium,” see Ref. 8. For simplicity, the saturation value Q; is
chosen as constant but it can also depend on the layer thick-
ness h as discussed in Appendix B.

An important observation is that by combining Egs. (2.6)
and (2.7) we find a local conservation law for the combina-
tion

m=h-pQ,

which corresponds to the moist enthalpy (ME). This implies
that for saturated atmosphere Q=Q, with a small perturba-
tion {v, 7} over a state of rest {0, H,}, such that

gn+ (H()_,BQs) V-v=0,

the static stability is smaller than the dry static stability if the
coefficient B is positively definite: Hy—BQ,<H,, in agree-
ment with the standard notion of reduced stability in precipi-
tating regions.13 An alternative derivation of the MC-RSW
model may be obtained by imposing the ME conservation as
a closure hypothesis. It is presented in the Appendix A.

Thus, the hydrodynamic nonlinearity of the RSW is pre-
served in the model, while linearization in one dimension
without rotation (v=0,f=0) gives the equations used in ear-
lier studies®”'7"!8 upon the change in variables 71— —6. Note
that this change in variables allows us to make connection of
our model to the pioneering papers on tropical dynamics by
Gill,”>*° where convection effects were parametrized as a
mass source in the linear SW equations. This line of argu-
ment was pursued under the so-called weak temperature gra-
dient approximation in Refs. 31 and 32. A mass source in
Gill’s SW equations for 6 becomes a mass sink in the equa-
tions for &, as in Eq. (2.6)—see also discussion in Appendix
A.

(2.9)

(2.10)
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B. Mass and energy balances

Since moisture effects result in the source terms in the
MC-RSW equations, it is important to understand their role
in the mass and energy balances. We should emphasize that
no viscosity nor diffusion were introduced in the hydrody-
namical sector of the model.

The mass of the fluid layer in pseudoheight coordinates
is obtained by vertical integration of the pseudodensity r
= pspf_lpl"‘. This quantity weakly varies in the vertical and
is considered approximately constant, see Ref. 27. In conse-
quence, the mass of the layer is proportional to the layer
thickness h: [rdz=rh. Tt appears then that moist processes
reduce the total mass of the layer in the MC-RSW model.
Nevertheless, the conservation of the ME m=h—- 8Q imposes
a constraint on the mass variations because

jfdxdyh(t)>JdedyBQ(t)>O

if h(ty)—BQO(ty) >0. Allowing a (limited) mass loss in the
model means that it should be interpreted as the lower atmo-
spheric layer part of a more complete multilayer model. Yet,
such mass loss will obviously affect the energy balance.

In their one-dimensional (ID) nonrotating linearized
model (v=£=0), Frierson er al.® showed that precipitation
can either increase or dissipate the dry energy depending on
the sign of the perturbation. A similar result was obtained in
Ref. 17 for the moist linearized RSW and in Ref. 4 for a
two-layer moist baroclinic model. In all of these papers, the
energy principle had to be modified to include moisture and
to identify properly the dissipation mechanisms.

The dry energy density e in MC-RSW is expressed in the
same way as in the standard RSW,

(2.11)

e=1(w’h+gh?). (2.12)
The evolution of the associated total energy E= [ [edxdy fol-
lows:

e s [
o [ e

The first term in the right hand side is standard and vanishes
for isolated systems, and the second is negatively definite for
nonzero P and 8>0. We thus observe that precipitation al-
ways dissipates the total dry energy of the system. This dis-
sipation is related to the mass loss in the absence of any
compensating process (e.g., radiative cooling). Note that the
difference in this result with respect to other studies*®!7 is
due to the obvious fact that the full layer thickness % is
positively definite unlike its perturbation. It should be
stressed that it is the ME that is the relevant quantity for the
moist processes, and its conservation in the model is built in.
Note also that for multilayer models with different mean po-
tential temperatures of the layers, the energy budget will be
different.

(2.13)
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C. Hyperbolicity and characteristic equations

Let us be reminded that a standard way of studying wave
systems is the method of characteristics (e.g., Ref. 33). So-
lutions of the hyperbolic (=wave) system can be expressed
via Riemann variables propagating along the characteristic
curves in (x,7)-space. All characteristic velocities are real if
the system is hyperbolic. For a quasilinear system in one

spatial dimension with N variables u;(x,?),
&tui+Aij(~x’t’u)(?xuj+B[=O, (214)

the characteristic velocities ¢;=dx/dt are the eigenvalues of
the matrix A;; corresponding to the left eigenvectors V;

={V,,...,V,y}. The system, thus, can be rewritten in the
form

Vii(d,+ cid)u;+ V;;B;=0 (2.15)
or, equivalently, as

(0, + c;d)ri + fi(x,t,u) =0, (2.16)

where r; are the Riemann variables, which become invariants
in the absence of B;.

The method of characteristics is particularly appropriate
for MC-RSW because the nonlinearity due to the threshold
character of precipitation (formally expressed by the Heavi-
side function) prevents from using the standard Fourier (har-
monic wave) decomposition. This is true even if the hydro-
dynamic part of the system is linearized (i.e., for small-
amplitude perturbations over the state of rest). Indeed, a
harmonic wave in regions of negative divergence of the ve-
locity field creates an excess of moisture and triggers precipi-
tation leading to a nonlinear response.

The method of characteristics was used by Gill * for a
1D linearized SW model in two different regions. Assuming
that the relaxation is immediate (7—0), it was shown that
the dry regions (P=0) and the “wet” regions (P>0) have
their proper characteristic velocities. Such analysis allows to
describe the evolution of the boundary point between the two
regions. However, Gill’s solution of the initial-value problem
explicitly relies on specific initial conditions and is not uni-
versal, as we will show in Sec. III.

We adopt a more general approach and derive the char-
acteristic equations of the ID MC-RSW model (by suppress-
ing the y-dependence of all dynamical variables the model,
in fact, becomes “1.5 dimensional” (1.5D) as it still contains
v, the velocity in the “passive” direction). We analyze the
model both for finite relaxation time (7), and in the limit of
immediate relaxation 7— 0 with special emphasis on hyper-
bolicity, which is the sine qua non condition of applicability
of the method. The characteristic equations will allow us to
clearly identify the role of moist effects in fully nonlinear
dynamics.

117

1. Finite relaxation time

If the relaxation time is finite (7% 0), systems (2.5)—(2.7)
in 1.5D is first order quasilinear and hyperbolic, and can be
readily rewritten in the characteristics form

(§l+cvax)rv=_fu’ (217)
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BO\P
(9, + Cq’?x)rq=_<1_7)z’ (2.18)
(0, +ced)re=fv ¥ ﬂ\/%P, (2.19)

where the Riemann variables, {r,,r,,r,,r_}, are defined as

Fy=U, F,= and r.=u=* 2\5’@. (2.20)

[
They evolve along their proper characteristic curves dx/dt
=c in the (x,7)-plane,

=c,=u and ct=uiw’/(g_h. (2.21)

Cy q

Equations (2.17) and (2.18) are conservation laws because
their relative characteristic velocities are zero. Equation
(2.19) defines propagating solutions and their relative char-
acteristic velocity corresponds to the nonlinear gravity wave
velocity of the standard SW model which is called the dry
velocity (c,=\gh) below. Without rotation (f=0), we ob-
serve that all Riemann variables are invariant in the nonprec-
ipitating regions (P=0). However, in the precipitating region
(P>0), the moist Riemann variable (r,>Q) and the east-
ward propagating (r,) variables are decreasing and the
westward-propagating variable r_ is increasing. This fact al-
lows us to anticipate a role of reflector played by precipita-
tion in the propagation of simple waves, which will be con-
firmed below by direct numerical simulations (DNS). Note
that there is no real asymmetry between eastward and west-
ward solutions because Riemann variables are defined up to
a constant, e.g., —1, and may be exchanged r_— —7_.

The mass nonconservation in the model due to convec-
tion imposes obvious restrictions on initial conditions. Be-
cause ME is conserved and serves as static stability param-
eter, initial ME should be positive: m(z,)=h(t,)— BQ(t,) > 0.
We also require Q to be positive such that 0<gr,<1.

2. Immediate relaxation

The relaxation time scale in the atmosphere is rather
small (between 2 and 12 h) and, for large-scale motions, it is
reasonable to assume that the relaxation is immediate: 7
— 0. However, it is easy to make a straightforward but long-
reaching observation: The limit 7— 0 corresponding to the
strict quasiequilibrium hypothesis is singular and system
(2.5)—(2.7) is not hyperbolic anymore. It becomes piecewise
hyperbolic and matching rules should be prescribed at the
boundaries between different hyperbolic regions. In the non-
precipitating zones (P=0), the same characteristic equations
(2.17)—(2.19) as above are valid. Yet, in the precipitating
zones (P>0) the system should be reanalyzed.

If we assume that in the precipitating region the moisture
field has a typical time scale much shorter than the velocity
field |d,q|/|g|=7">13,V -v)|/|V-v|, then the equation for
the small perturbation of moisture about the saturated state
q=0-0,>0 can be integrated in time assuming that the
gradients are weak: |V-(vgq)|=0,
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sg~-L_0,v.v (2.22)
T

and

t

40 = 9o eXP{— -} +7Q,V o=,V .v. (223
T

By injecting this expression into P [Eq. (2.8)], we obtain a

standard parametrization (e.g., Ref. 17),

P=-0,V -v, (2.24)

which directly links precipitation with wind convergence. We
thus get a typical conditional CISK (Conditional Instability
of the Second Kind)-parametrization since the pseudoheating
source (BP) is proportional to the total convergence of mois-
ture (cf. Ref. 12).

In this case, the MC-RSW system in the precipitating
region (P>0) becomes

v+ -Viv=-gVh-fk Xv, (2.25)

dh+@ -VYh==(h-BOY)V -v. (2.26)

This is a quasilinear hyperbolic first order system and can be
studied by the method of characteristics.
In 1.5D, the characteristic equations are

(0, + ¢ a)r) =— fu, (2.27)
(0, + Lo )r = fu, (2.28)
where the moist Riemann variables are given by
-
ri=v and r¥=u=x2Vg(h-pO,), (2.29)

and propagate along their respective characteristic curves
dx/dt=c",

cy=u and c%=u=xg(h-pBQ,. (2.30)

Equation (2.27) is identical to Eq. (2.17) and Eq. (2.28) is the
moist equivalents of Eq. (2.19). We notice here that the moist
Riemann variables are always invariant in the nonrotating
case (f=0). The relative characteristic velocity of the propa-
gating solutions will be called the moist velocity following
Frierson ef al.® and is weaker than the dry velocity (8>0),

cn=g(h-BO,) < cs=gh. (2.31)

It can be interpreted as a velocity of moisture-coupled waves.
The fact that it is always lower than the dry gravity wave
velocity is usually explained in literature'? by the reduction
in the static stability of the atmosphere due to the moist
convection.

Thus, in the singular limit (7—0), moisture abruptly
changes the characteristic properties of the model and the
boundary between nonprecipitating and precipitating regions
appears as the intersection between dry and moist character-
istics.

Note that the system is not necessarily piecewise hyper-
bolic, its type depending on the values of parameters. If &
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-B0O,<0, ¢"—u is imaginary and the system becomes piece-
wise elliptic/hyperbolic for 7— 0. Such a system has been
studied in Ref. 34.

D. Fronts propagation and Rankine—Hugoniot
conditions

In this subsection we analyze the propagation of discon-
tinuities (fronts) in MC-RSW and, in particular, the precipi-
tation fronts which delimit precipitating and nonprecipitating
regions. Propagating discontinuities represent weak solutions
of the hyperbolic system which must satisfy RH jump con-
ditions. These conditions are obtained from the equations of
the system rewritten in the form of mass and momentum
conservation laws (e.g., Ref. 33).

1. The nature of the discontinuities

The 1.5D MC-RSW equations inherit from the parent
RSW model a capability to form strong shocks (i.e., discon-
tinuities in u and A at continuous v) and contact discontinui-
ties (i.e., discontinuities in v at continuous u, %), see Refs. 35
and 36. Indeed at finite relaxation time, P is a continuous
function of Q and does not contain derivatives. Hence it does
not contribute to the RH conditions because in the integrated
equations (serving to deduce the RH conditions),

b
lim limf Pdx =0, (2.32)
a

- +
a—x b—x

where x;, is the position of a discontinuity. The corresponding
RH conditions for the hydrodynamic sector may be found,
e.g., in Ref. 36,

—s[hu] + [hu2 + %ghz] =0,
—s[hv] +[huv] =0,

—s[h]+[hu]=0, (2.33)

where s is the speed of the discontinuity and [ -] is the jump
of any quantity across the discontinuity. As usual, the speed
of a strong discontinuity (shock) is close to the “sound” ve-
locity, i.e., the velocity of the short inertia-gravity waves
Vgh,

h_+h, h,

u_—s)=g=———-,

> (2.34)

where the indices +(—) denote the values on the right (left) of
the discontinuity. It is easy to see that adding a discontinuity
in Q and the corresponding jump condition,

-s[Q]+[Qu]=0,

does not change this analysis. Similarly, at a contact discon-
tinuity moving with a local speed s=u the tangential velocity
v and humidity Q can have arbitrary jumps, while u and &
are continuous. However, it is worth noting that a jump in Q
uniquely determines a jump in the derivative of velocity.
Indeed, by differentiating the equations for # and i we get

Oyt + I (udu + gah) = fow, (2.36)

(2.35)
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Apch + 0.(hdu + udh) =— Bo.P, (2.37)
giving the RH conditions,
(u—s)oul+gldhn]=0, (2.38)
(u - 5)[8,h] + K[ o] = — BLP]. (2.39)

Now, P is a continuous function of Q and, thus, inherits its
jump. Therefore, for a contact discontinuity with s=u we get

[0,h]=0, hldu]=-pBLP]. (2.40)

Hence, we see that jumps in P, i.e., precipitation fronts, are
related to jumps in derivatives of dynamical variables, i.e.,
weak discontinuities. This fact was already emphasized in
Ref. 6 where, by using the energy principle and the linear-
ization of the hydrodynamical sector, it was shown that
smooth initial conditions cannot develop discontinuities in
the dynamical variables, but discontinuities in the gradients
of these variables only.

Note also that for immediate relaxation (7— 0), integral
(2.32) also vanishes except for an eventual discontinuity
point x; inside a precipitating region P=—Qd,u>0. In this
special case, the RH conditions are given by

—s[u] + %[uz] +g[h]=0, (2.41)

—s[h]+[uh] - BO[u]=0. (2.42)

2. Weak discontinuities and the speed
of fronts

Following Frierson et al.b we proceed below with the
analogous analysis for the MC-RSW model. By adding to
Egs. (2.36) and (2.37) the equation for the gradient of mois-
ture,

0 + I(Qdu + ud,Q) = - d.P, (2.43)

we can straightforwardly obtain the corresponding jump
equation

(u—9)[d,0]+ Ol du]=-[P]

and get a full system of RH conditions for the gradients of
the 1.5D MC-RSW. No strong discontinuity is supposed in
the variables {u,/,Q} and the equation

(u—s)[ow]=0

(2.44)

(2.45)

is supposed to be satisfied by [d,v]=0, in order to eliminate
trivial solutions s=u.

For finite relaxation time (7% 0), there is no discontinu-
ity in P because it is a function of Q, which is supposed to be
continuous: [P]=0. Thus, three solutions for s can be found
with the values of the characteristic velocity (2.21). We call
them nonprecipitating fronts, as their speed does not depend
on humidity.

For immediate relaxation, the jump in P can be ex-
pressed as [P]=P,—-P_=-0Q,(du),>0 with the choice
(du), <0 [see Eq. (2.24)] and P_=0, where the precipitating
(nonprecipitating) regions are denoted by +(-). Since [4,0]
<0 and Q=0 at the interface, Egs. (2.38), (2.39), and (2.44)
can be rewritten as follows:
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[ouK(u—-s)* - gh}=gBlP],

(2.46)
[axu]{w - i(l - @)} -~ ¢Al00).

(u—-1s) h

and three different types of solutions—the precipitation
fronts—can exist:

(1) the dry subsonic fronts, ¢,,<§<cy,
(2) the moist subsonic fronts, —c,,<§<0, and
(3) the moist supersonic fronts, §<—c,,

where §=s—u is the relative front velocity and (cy,c,,) are
the dry and moist speeds described in Sec. II D 1. Note that
§——§ if precipitating and nonprecipitating regions are in-
versed: [P]<0 and [9,Q]>0. Such fronts are nonlinear ana-
logs of the precipitation fronts found in Ref. 6. We should
stress that only the dry subsonic fronts satisfy the Lax stabil-
ity criterion: The shock is compressive if the characteristic
velocity behind it (c,>3§) is higher than the characteristic
velocity in front of it (§>¢,,). Yet, we were able to reproduce
all types of fronts numerically—see Sec. III. At this point it
is important to remind that information is transmitted along
the characteristics, and not by shocks (fronts), which are the
result of intersections of characteristics. This explains why
supersonic fronts are observable. Note that scattering of
simple waves in the context of immediate relaxation can be
understood as scattering by precipitation fronts, as discussed
in detail in Ref. 7.

lll. NUMERICAL EXPERIMENTS
A. Choice of parameters

In order to make numerical simulations with the MC-
RSW model, we use a second-order finite-volume method
developed by Bouchut.”® The method is efficient, well bal-
anced, treats extremely well topography and Coriolis force
(although these properties are not of utmost importance for
the numerical experiments presented below, they are crucial
for further, more realistic simulations), and is extensively
tested in the geophysical fluid dynamics context (e.g., Ref.
37). In addition, numerical implementation of the Betts—
Miller-type scheme is straightforward (see Appendix C).

In the experiments presented below we work with the
“equatorial” (cf. Ref. 6) 1D version of the model setting f
=0 and v(x,0)=0. The nondimensional horizontal scale of
the domain is fixed at L, X L,=12X12 in the units of length
L. Since there is no intrinsic horizontal scale in the model
without rotation, the length scale is L:ng%T, where H is
the layer thickness at rest and 7 is the unit of time (e.g., the
synoptic scale L=1000 km can be achieved for H,
~5 km and T=1 h).

We choose a grid of high resolution in the zonal direc-
tion x (n,=1000 points). The time step is chosen as the
minimum between a specific value allowing to respect the
Courant—Friedrich-Levy condition, AL and an arbitrary
chosen maximum value Af™*=2 X 1073

We use Neumann boundary conditions which are nu-
merically implemented by requiring that each variable has
the same values in the first two and last two cells of the

Downloaded 17 Dec 2009 to 129.199.72.71. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



116604-7 Fronts and nonlinear waves

domain. These boundary conditions do not forbid complex
reflections of the solutions and numerical dissipation at the
boundaries. Nonetheless, these effects are weak far from the
boundaries and do not affect our simulations (see below).

The precipitation term is parametrized by Eq. (2.8)—see
Appendix C. The relaxation time is linked to the time step of
the numerical scheme,

7= YAt, (3.1

which allows us to control the relaxation by varying the pa-
rameter y. Thus, “immediate” relaxation corresponds to 7y
=1 and slow relaxation to y>1. It is however important to
keep in mind that numerical instabilities do not allow to take
v too small (precipitation being a stiff source), and thus nu-
merically the relaxation is never immediate but just fast.

The system is scaled in a way that the duharacteristic
velocity in the linear limit equals unity, c,=VgH,=1, and we
choose the following values for parameters:

g=1 and Hy=1. (3.2)
The observations in the real atmosphere show that the moist
characteristic velocity values are cm%0.3cd.38 For B=1, we
therefore choose Q;=(1-c2)=0.9, which corresponds to the
value used by Majda and co-workers®”™"® in most of their

numerical experiments with the linearized model.

B. Experiment 1: Scattering of a simple wave
by a moisture front

In the first experiment our numerical scheme is bench-
marked against analytic results and, at the same time, some
typical dynamical effects of moisture are illustrated. A local-
ized simple wave solution, well known in gas dynamics (e.g.,
Ref. 33), was chosen as initial configuration and launched in
the direction of a moisture front. This is an idealized model
of a situation where a large-scale tropical perturbation en-
counters a quasisaturated area. The interaction of the incom-
ing localized perturbation with the moisture front can create
an area of precipitation and modify the properties of charac-
teristics.

1. Initial conditions: Simple wave and moisture front

A simple wave is a solution which propagates along a
single characteristic. To obtain it, the initial condition must
be chosen to cancel one of the propagating Riemann vari-
ables. In the linear limit and for 7# 0O, the Riemann variables
for perturbations are given by

0O
. 3.3
Py=9q H,” (3.3)
| &
c=u* />, 3.4
ps=u HO77 (3.4)

where {u, 7,q} is a small perturbation over the state of rest
{0,H,,Q,}. An eastward-propagating simple wave is then ob-
tained by imposing the condition
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p_=0 (3.5)

(equivalently p,=0 for a westward-propagating simple
wave).
Initially stationary moisture front is taken in the form

0(x,0)= Q1 + g, tanh(x — x ) H(— x + x5,) ], (3.6)

where x,,=6 is the middle of the domain and g,=0.05 is the
amplitude of the moisture jump. We choose

u(x,0) = w(x) and h(x,0)=Hy+ 4/ %,u,(x), (3.7)

and a localized parabolic spatial profile

(x) = o[- (x = xp)> + €|H(x — xp + VOH(= x + xp+ Ve),
(3.8)

where a= * 1, xp is the initial position of the simple wave,
and €=0.025 determines the amplitude and the width of the
perturbation. The amplitude of the wave was deliberately
taken to be small for the sake of comparison with the linear
theory of Refs. 6, 7, 17, and 18.

The simple wave is chosen to start from the unsaturated
region (xp=2), with convergence at its eastern side (a=+1)
such that it triggers precipitation near the moisture front. The
relaxation time is fixed by y=35 and the saturation level is
0,=0.9.

2. Numerical results

In the unsaturated region it is expected from the theory
that the solution propagates along the dry characteristic with
velocity c,=1. On its way, it makes the humidity field g
grow and then decrease. Since the wave is symmetric, the
two effects cancel each other and the net effect is just a
modulation of the humidity field (except for =0). As long as
moisture is not saturated (1<<3.4), these predictions are well
reproduced by the numerical model, as shown by the Hov-
moller (characteristic) diagrams of humidity Q and velocity
u (Fig. 2). Note that the characteristics in the dry region are
straight because of the smallness of the initial perturbation.

When the simple wave approaches the moisture front,
the saturation is reached (near ~3.4) and a precipitating
region appears (Fig. 3). For finite relaxation time (y>0),
precipitation modifies the Riemann variables: The eastward-
propagating simple wave, p,(x,1), is progressively destroyed,
while a westward-propagating simple wave p_(x,?) appears.
This process ends when precipitation stops (¢=4.6). As is
clear from Fig. 2, the precipitation leads to reflection of the
eastward-moving disturbance at the moisture front, which is
accompanied by a weak displacement and smoothening of
the front. As shown in Fig. 4, the total energy E decreases in
time during this process which confirms that the energy bud-
get of the model is consistent with Eq. (2.13).

The specific form of the precipitating region observed in
Fig. 3 may be understood on the basis of the immediate
relaxation approximation phenomenology, which is not out
of place here as the relaxation time with y=5 is still of the
order of the time step of the model and thus very fast. In fact,

Downloaded 17 Dec 2009 to 129.199.72.71. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



116604-8

Bouchut et al.

0.9

0.89

0.88

0.87

0.02

0.01

0.005

0.0025

0.0005

FIG. 2. Hovméller diagrams of the humidity field Q(x,#) (upper panel) and
the velocity field u(x,z) (lower panel). A parabolic eastward-propagating
simple wave (a=+1, €=0.025) initially centered in the unsaturated region
(xp=2, 0,=0.9) propagates along its dry characteristic (¢,=1) and interacts
with a moisture front (x,,=6). It is destroyed by precipitation and a
westward-propagating simple wave emerges. y=5, n,=1500. The dark ver-
tical line on the upper panel corresponds to a characteristic with zero veloc-
ity related to humidity, cf. Eq. (2.18).

this region arises in front of the moisture front (x <x,,=6)
due to nonlinear precipitation term. It is delimited by two
precipitation fronts. The western side corresponds to a dry
subsonic front (c,,<s;=~0.7<c,) for which the jump con-
figuration is given by

[0u]<0, [d4]<0, and [P]>0, (3.9)

where [a]=a,—a_, (-/+) denoting the western/eastern side.
The eastern side appears as a moist supersonic front (s,
~1.2>¢,) in the following jump configuration:

[ou] <0, [dq]<0, and [P]<O. (3.10)

The lifetime of these fronts depends on the time of existence
of the discontinuity in the humidity gradient d,g. This is
clearly seen for the moist supersonic front which disappears
at the initial moisture front (x,;=6), where the humidity be-
comes saturated: ¢,=0 and (d,q),=0. In the dry subsonic
front case, it persists through the moisture front due to the
wind divergence, (du)_>0, that continues to dry out the
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FIG. 3. Same experiment as Fig. 2. Precipitation P(x,7) zoomed in the
interaction area (upper panel) and corresponding sketch of characteristics
(lower panel). Precipitating region is delimited by a dry subsonic (s,
~(.7) and a moist supersonic precipitation front (s,=~1.2) obtained in the
approximation of immediate relaxation. The third limiting line (s3) can be
viewed as the last (94— 0) eastward-propagating moist characteristic (3.11)
of the gradient system for a quasi-immediate relaxation. In the lower panel,
the limits of the precipitating region (s,,s,,s3) are denoted by solid lines,
the dry (moist) characteristics ¢, (c,,) by dashed (dashed-dotted) lines, and
the characteristic ¢, by dotted lines.

layer and maintains the jump [d,q]<<0 until the end of pre-
cipitation.

Along the same lines, we can test the manifestations of
the moist characteristics in the precipitating region. Figure 5
shows the Hovmoller diagrams of the moist Riemann vari-
ables ¢ [Eq. (2.29)] for the same simulation. The associated
moist characteristics of velocity ¢,,~ 0.3 can be indeed seen
in the precipitating region, as suggested by Egs. (2.27) and
(2.28).

The third limiting line of the precipitating region in Fig.
3 corresponds to a velocity between the dry and the moist
ones: ¢, <s3<cy. Strictly speaking, this is not a front. It can
be viewed as the “last” eastward-propagating moist charac-
teristic. Precisely, in the saturated region Q=Q,, with no
wind divergence (J,u=0), precipitation becomes param-
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FIG. 4. Time evolution of the energy variation [E(f)—E(0)] corresponding
to Fig. 2. Dissipation by precipitation takes place during the interaction
between an eastward-propagating simple wave and a moisture front.
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FIG. 5. Hovmoller diagrams of the eastward- and westward-propagating
moist Riemann variables: r}'(x,7) (upper panel) and r”(x,z) (lower panel)
zoomed in the interaction area. For rapid relaxation with y=5, these vari-
ables display the moist characteristic (c,,~0.3) in the precipitating region
corresponding to Fig. 3. Same simulation as in Fig. 2.
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etrized by P=—Q,d uH(-d,u) =0 for 7— 0. In this case, the
gradient systems (2.36) and (2.37) become totally hyper-
bolic. If we consider a quasi-immediate relaxation approxi-
mation, we can replace the Heaviside function by a regular-
ized one Hy(-) such that Hs o(-)=H(-). Then, one can show
that the speed of the eastward-propagating characteristic of
the gradients system (for linearized hydrodynamic part) de-
pends on the wind convergence value (d,u<0),

¢, = Vg[Ho— BO,H s~ du0)].

This speed increases when wind convergence decreases. The
third limiting line s is then the print of the last of these
moist characteristics in the sense that this is the boundary
between characteristics where convergence and precipitation
still occur but tend to zero, {d,u,P}— 0 and characteristics
which become strictly dry (c,=c,) for du=0 (P=0).

This analysis of the interaction area between the simple
wave and the moisture front is completed by the sketch of
the dry and moist characteristics and of the limits of the
precipitating region presented in the lower panel of Fig. 3.

The same experiment was performed with a different
choice of the relaxation time y=100. In this case, the relax-
ation is slow and no precipitation fronts nor moist character-
istics are expected. The corresponding Hovmoller diagrams
of the velocity field u and precipitation P are shown in Fig.
6. We observe the same reflection process which, however,
lasts longer than in the previous experiment. The precipitat-
ing region is deformed with respect to Fig. 3 but still keeps
track of fronts which are smoother, the higher the value of 7.
The moist characteristics are not visible anymore in the dia-
grams of moist Riemann variables (compare Fig. 7 to Fig. 5).

The configuration with an eastward-propagating simple
wave of the opposite sign (e=-1), with wind divergence at
its eastern side, can be also studied. In that case, no reflected
wave was observed but when the simple wave approaches
the moisture front, it starts drying (not shown). For a per-
fectly symmetric wave a modulation in the humidity field
along its trajectory with no precipitation would be found (not
shown).

(3.11)

C. Experiment 2: Evolution of a perturbation
in a saturated region

We present below another type of numerical experiment
which is also directly comparable to analytical results con-
sisting of the propagation of a small perturbation through a
uniformly saturated region, as in Ref. 17.

1. Initial conditions

We choose a Gaussian perturbation of the velocity field
u(x,0), which propagates into a uniformly saturated region

Q(x,0)=0Q, at rest,

- (x _xM)z)

h(-x70) = HO? M(.X,O) = lu’(-x) = Mo eXp( 2

(3.12)

In order to make connection with the linear theory the am-
plitude is fixed to be small: 1y=0.025>0.
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FIG. 6. Same experiment as in Fig. 2 but for slow relaxation y=100. Ve-
locity field (upper panel) and precipitation (lower panel). Lower panel
shows the same zoom as in upper panel of Fig. 3.

This type of initial condition can be treated analytically
by the method of characteristics for 7— 0. Starting from gra-
dient systems (2.36), (2.37), and (2.43) and its linearized dry
and moist Riemann variables, we can follow the evolution of
the disturbance and identify the precipitation front formation
by the pattern of the intersection of characteristics. A prob-
lem of a priori identification of the precipitation regions
however arises, as this kind of initial conditions is degener-
ate, and the characteristics are not defined for 7=0. To solve
it, we perform a Taylor expansion in time of the linearized
equations at 7# 0. At the first two orders the evolution of the
humidity perturbation g=Q—-Q, is given by

q(x,Ar)
~q(x,0)
q(x,0)
+1- Qsaxu(x’o) - (1 + QS)TH[Q(X,O)] At
1 20,7100 - (1400 XD prge 01 a2

(3.13)
Thus, for ¢(x,0)=0 and 7(x,0)=0 the perturbation is deter-
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FIG. 7. Same as in Fig. 5 but for slow relaxation y=100. Moist character-
istics are not visible anymore in the precipitating region.

mined by du(x,0) and is independent of 7 at the first order.
We therefore deduce from Eq. (3.12) that P=0 for x<x,
and P>0 for x>x,,.

2. Front formation

The gradient systems (2.36), (2.37), and (2.43) can be
linearized in the hydrodynamic sector and rewritten in the
characteristic form in the limit 7— 0. In the nonprecipitating
region, we thus have

d

—Rd—i(a +c,0u)=0 on @—ﬂ”c (3.14)
dt 1—dtgx77— dYx - dt__ d> :

d d d

—R =—(3xq—% ﬂ])=0 on = =0, (3.15)
dt dt H, dt

where c,=VgH,. In the precipitating region, we have

iR"l=i(g&7;ic du)=0 on d—x=ic (3.16)
dt = dt° " " dt "

where ¢,,=+/g(Hy—BQ,). Note that the associated Riemann
invariants {R?,R™} are just proportional to the derivative of
the linearized version of the Riemann variables described in
Egs. (2.20) and (2.29), e.g., in the nonprecipitating region:
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Rg:&qu and R%. = + ¢,9,p+ from Egs. (3.3) and (3.4).
The initial conditions allow to partially determine the
Riemann invariants in each region. For x <x,,,

Ri(x) =—RIx) = cy0u(x) and Rg(x) =0, (3.17)
and for x>x,,,
R} (x) =-R"(x) = ¢,,d,p(x). (3.18)

At the boundary point x=¢&(r) where the characteristics inter-
sect each other, we can have either continuous or discontinu-
ous spatial gradients.

3. The continuity condition

Because the initial condition is smooth in &(0)=x,,, let
us suppose first the continuity of gradients,

lim d,ul &(t),¢] = lim d.u[ &t),t] = 0.

x—& x—&t

(3.19)

In terms of Riemann invariants we obtain
RILE®) = cat] = RULED) + ct]
Ca

_ RY[E®) — c,ut] = RITE(D) + ¢ 1]
cm

=0, (3.20)

with analogous condition on &, 7 &(¢),1],
RE®) = cat] + RILED + ]
= RY[&(1) = c,ut] + RZ[E(1) + c,t].

If the motion of the boundary obeys the inequality —c,,t
<(&(1)—xp) <cg4t, we get from the initial conditions the con-
tinuity condition,

Cd(?x/‘l’[g(t) - Cdt] + Cma)uu’[g(t) + Cmt] =0.

(3.21)

(3.22)

The equation for the boundary velocity dé/dt can be found
by differentiating the continuity condition. Equation (3.22) is
verified at the initial time #=0 for the Gaussian profile of the
perturbation u(x). However, it is an implicit equation for the
position of the boundary &(7) and cannot be solved analyti-
cally in general.

We can, nevertheless, find criteria of violation of the
continuity condition. Indeed, the boundary velocity cannot
exceed the velocity of characteristics that emerge from and
in front of the boundary itself, otherwise the intersection of
the characteristics changes, and a shock in the gradients oc-
curs. This is shown in the sketch of Fig. 8 which describes
the characteristics for the continuity condition (upper panel)
and for a shock (lower panel). The latter appears when the
boundary moves faster than the moist Riemann variables R"":
déldt>c,,.

The initial velocity of the boundary can be determined
by using the first order Taylor expansion in time of the con-
tinuity condition,
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FIG. 8. Sketch showing the characteristics for continuity condition (upper
panel) and jump condition (lower panel) for gradients at the boundary &(z)
between precipitating and nonprecipitating regions in the limit of immediate
relaxation for infinitesimal disturbances. Dry (moist) characteristics are de-
noted by dashed (dashed-dotted) lines and the boundary by a solid line.

dé

3.23
| (3.23)

=c;—¢,>0.

Hence, a criterion of immediate shock formation in the ve-
locity gradient d,u is

Ca—Cm>Cpn=0Q,> 18" (3.24)
We should stress that this condition on Q; is different from
the one obtained in Ref. 17 because of the different choices
of initial disturbance [in Ref. 17, u(x,0)=0 and h(x,0)=H,
—0(x), where O(x) is monotonic increasing and antisymmet-
ric about x,,]. By the same method, a simple expression of
the boundary speed for the continuity condition for all times,
dé/dt=(cy;—cm)/2, and the resulting criteria of immediate
shock formation, Q,>8H,/93, were found in Ref. 17.
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4. Jump condition

If a jump in the gradients occurs at the boundary &(r), it
is a precipitation front and it has to satisfy the linearized
version of RH conditions (2.38), (2.39), and (2.44). If the
boundary velocity exceeds the moist characteristic velocity,
dé/dt>c,, the boundary cannot be defined by the condition
dul[ &(r),t]=0 anymore. It rather corresponds to the position
of a dry subsonic front,

, dé

(du)[é@),t] #0, with ¢, <s= & <cy. (3.25)
It is possible to express the front velocity in terms of Rie-
mann invariants,

Cm(cd + Cm)Ri1 + Cm(cd - cm)R,—n - 2CmcdRi

(Cd + Cm)RT - (Cd - Cm)RT - 2CmRi

(3.26)

Since Riemann invariants themselves depend on &(¢), one has
to solve the implicit equation,

FLEW),s(t),1] = (s = ) (e + ) (€= cit)
+ (s + c)(cg— ) Il + cpt)
= 2(s = cg)cad (€ = cqt)
=0, (3.27)

in order to find s(#). When a shock appears immediately
(Q,>3H,/4), a Taylor expansion in time of this equation
gives the initial front velocity which is independent of Q;:
s(0)=c,/2. This value still depends on the choice of initial
conditions and differs from the one obtained in Ref. 17:
s(0)=c,/3.

5. Numerical results

The theory described above can be directly compared to
numerical results. We set a rapid relaxation by taking y=5 as
in the previous experiment. Two sets of simulations were
performed with different saturation values Q..

In the first one, we chose Q,=0.7, such as Q,<3/4 and
continuity condition was initially satisfied. As shown by the
Hovmoller diagrams of the velocity gradient field d,u and the
precipitation P (Fig. 9), the boundary &(7) starts propagating
following the continuity condition. Its velocity increases
with time and no shock appears as long as the velocity is
weaker than the moist velocity. After 7= 1.5, we can distin-
guish a front (which is already seen at =1 in the spatial
profiles, not shown). This is a dry subsonic precipitation
front with velocity increasing with time.

We also solve numerically the implicit Egs. (3.22) and
(3.27) defining the boundary evolution &(z) from the conti-
nuity and jump conditions. For the first equation, we use the
initial conditions found by the Taylor expansion given above:
&0)=x,, and

dé

=cy;— ¢, =~ 04523,
dt =0

(3.28)
while for the second, we need to determine the time #,, when
the boundary velocity exceeds the moist velocity c,,
~(.5477 from the resolution of the first equation. We then
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FIG. 9. Hovméller diagrams of the velocity gradient field du(x,7) (upper
panel) and precipitation P(x,f) (lower panel) for a small Gaussian distur-
bance in velocity (u=0.025) propagating into a saturated domain (Q,
=0.7), and creating precipitating and nonprecipitating regions. In the imme-
diate relaxation limit, the boundary x=£(f) between these two regions cor-
responds to the intersection of dry and moist characteristics. Initially the
gradients are continuous at &(7): This can be interpreted as a smooth pre-
cipitation front. When boundary velocity exceeds the moist velocity c,,
~(.5477, a dry subsonic precipitation front emerges. It is well identified for
t>1.5 in this figure. y=5 and n,=1500.

use the values &(z,) and s(z,) as initial conditions. The two
alternative boundary evolutions thus obtained are compared
to the result of the DNS in Fig. 10. A good agreement be-
tween analytical and the DNS results is observed. The con-
tinuity condition coincides with the boundary evolution
curve of the DNS until =0.75, and then detaches while the
shock condition starts for #,~0.3 and closely follows the
DNS.

For higher saturation values, such as Q,>3/4, a dry
subsonic precipitation front immediately arises. The results
of the numerical experiment with Q;=0.95 are shown in Fig.
11. The implicit equation for shock condition (3.27) was also
solved, starting from the initial conditions found above: &(0),
5(0)=1/2, and the analytical and DNS results for boundary
evolution are still in good agreement, as shown in Fig. 12.
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FIG. 10. Evolution of the position of the boundary &(7) between precipitat-
ing and nonprecipitation regions. The boundary is created by a Gaussian
disturbance in the velocity field (u,=0.025) which propagates into a satu-
rated domain (Q,=0.7). The DNS result (solid) is compared to the solutions
of the implicit equations for continuity (dashed-dotted) and shock condition
(dashed). y=5 and n,=7500 for the DNS.

D. Experiment 3: Nonlinear stage
of the evolution of a simple wave

The first two experiments were deliberately performed in
a quasilinear setting in the hydrodynamic sector regime, in
order to benchmark the numerical scheme. The advantage of
the MC-RSW model is that it is capable to treat the fully
nonlinear dynamics, including strong shock formation. We
therefore choose to study wave breaking as a typical nonlin-
ear example. The influence of the nonlinear precipitation on
the classical wave breaking and shock formation is of par-
ticular interest, as the precipitation term introduces extra dis-
sipation, yet can also produce specific discontinuities.

We consider an initial eastward-propagating simple
wave profile identical to the one used in experiment 1 [Egs.
(3.7) and (3.8)] but of higher amplitude: €=0.5 (e=+1 and
xp=4). The wave propagates through a uniformly dry or uni-
formly moist (saturated or unsaturated) domain with Q;
=0.9.

1. The dry case: P=0

We repeat here a standard dry simulation as a benchmark
for moist cases treated afterward. The system is given by the
usual SW equations and a simple tracer conservation law for
humidity Q. The classical wave breaking and shock forma-
tion correspond to an intersection between characteristics of
the system. This is a weak solution that obeys the RH con-
dition (2.33).

The Hovmoller diagram of the velocity field for the dry
simulation (Fig. 13) clearly shows that different parts of the
initial profile I?Qpagate along characteristics with different
speeds c=u+\gh. These characteristics intersect each other
and produce a shock. The breaking front velocity is not con-
stant and is slightly larger than the unperturbed dry velocity:
s(t)>c,=1. A weak westward-propagating simple wave of
weak amplitude emerging from the initial perturbation can
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FIG. 11. Same as Fig. 9 but for Q;=0.95. The boundary between precipi-
tating and nonprecipitating regions corresponds to the intersection of dry
and moist characteristics. Since Q,>3/4, the boundary velocity exceeds
from the very beginning the moist velocity (c,,~0.2236), and a dry sub-
sonic precipitation front arises. y=5 and n,=1500.
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FIG. 12. Same as Fig. 10 but for 0,=0.95>3/4. The evolution of the
boundary from the DNS (solid) is compared to the solution of the implicit
equation for shock condition (dashed) deduced from the analytical results.
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FIG. 13. Hovmoller diagram of the velocity field u(x,7). An eastward-
propagating simple wave of significant amplitude is breaking in a dry ex-
periment P=0 (e=0.5, a=+1, and xp=4). A shock front emerges with a
velocity slightly larger than the unperturbed dry velocity ¢,=1. y=5 and
n,=1000.

also be seen. It appears due to nonlinearity because the am-
plitude of the initial bump is too high to preserve the linear-
ized simple wave condition p_=0, cf. Eq. (3.5).

The time evolution of the spatial profile of the velocity is
shown in Fig. 14. The nonlinear steepening and shock for-
mation takes place on the eastern (downstream) side of the
initial bump. On the western (upstream) side, emission of a
secondary westward-propagating simple wave takes place.
Finally, we confirm numerically that wave breaking is a dis-
sipative process as the total energy E(r) starts to decrease
once the shock is formed, as shown in Fig. 15.

2. Moist cases

We first consider the uniformly unsaturated case with
00=0.7, with the same initial simple wave configuration. We
can expect that if the wind convergence on its eastern side is

0.6 q

> 031

02

0.1

2 25 3 3.5 4 4.5 5 5.5 6 6.5 7

FIG. 14. The profile of the velocity field u(x,r) for different times: =0
(solid), r=0.3 (dashed), r=0.9 (dotted), and t=1.4 (dashed-dotted). Same
simulation as in Fig. 13. The shock formation occurs downstream and a
secondary westward-propagating simple wave is emitted upstream.
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FIG. 15. Time evolution of the deviation of total energy from its initial
value [E(t)—E(0)] for the dry wave of Fig. 13 (solid) and the moist cases of
Fig. 16 {Qy=0.7, y=5} (dashed), Fig. 19 {Q,=0.9; y=5} (dotted), and Fig.
20 {0y=0.9, y=100} (dashed-dashed). The dissipated energy in the moist
cases is clearly larger than the one only due to wave breaking. This large
decrease in energy is associated with precipitation starting at t=~0.25 for
00=0.7 and =0 for Q;,=0.9.
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FIG. 16. Hovmdller diagrams of the velocity field u(x,) (upper panel) and
precipitation P(x,t) (lower panel). An eastward-propagating simple wave of
significant amplitude is breaking inside a uniformly moist unsaturated do-
main: Q)=0.7 (¢=0.5, a=+1, and xp=4). Two fronts emerge: a breaking
front (s,~ 1.2) with a velocity higher than the unperturbed dry velocity ¢,
=1 and a dry subsonic precipitation front (sp=~1) for 7>0.25. y=5 and n,
=1000.
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sufficiently strong, the wave triggers precipitation. For rapid
relaxation y=35, the Hovmoéller diagram of the velocity field
is shown in Fig. 16. A thin precipitating region, associated
with a dry subsonic precipitation front, emerges at r=0.25
with a weaker velocity (sp=1) than the breaking front ve-
locity (sg=1.2) (cf. Fig. 17). It is important to remind that
the nature of the two fronts is different: The precipitation
front is a shock in the gradients only.

As in experiment 1, precipitation partially reflects the
initial simple wave since dry Riemann variables are no more
constant [cf. Eq. (2.19)]. Consequently, the eastward-
propagating characteristic velocities are modified in the pre-
cipitating region such that between the two fronts, a plateau
in {u,h} is formed (see Fig. 18). In this particular nonprec-
ipitating area, the characteristic velocity is thus constant (by
constant values of u and &) and is the same as the velocity of
the characteristic that is the limit between the group of char-
acteristics affected by precipitation and the group uniquely
affected by breaking process. This can be seen in the upper
panel of Fig. 17. The moist effects can then change the
breaking front velocity, as compared to the dry case. In the
present experiment, they make it slower (compare Figs. 14
and 18). They also lead to a much more efficient energy
dissipation than in the pure breaking process, as shown in
Fig. 15.

The question we now ask is whether precipitation can
prevent wave breaking. We consider the same simple wave
propagating inside a uniformly saturated region: Q,=Q,
=0.9. One can thus expect that since precipitation starts im-
mediately, the wave is reflected and dissipated before having
time to break, as shown in the lower panel of Fig. 17. This is
exactly what happens at rapid relaxation (y=5) in the Hov-
moller diagram of the velocity field for the corresponding
simulation (Fig. 19). There still exists a front but uniquely a
precipitation one. We compare this experiment with another
one with slow relaxation (y=100) to confirm the nature of
this front (precipitation or breaking front). One sees no front
formation in this case (Fig. 20), which means that no break-
ing occurs for each relaxation and that the lower panel of
Fig. 19 represents indeed a precipitation front. This can also
be confirmed by the evolution of the spatial profiles of the
velocity field presented in Fig. 21.

IV. SUMMARY AND CONCLUDING REMARKS

We studied the dynamical effects of moisture for
synoptic-scale motions with the help of a MC-RSW model.
The model includes a standard relaxation scheme for precipi-
tation with a relaxation time 7 and a convective mass sink. It
has the advantages to be fully nonlinear in the hydrodynamic
sector, and to be equivalent in its linearized version to pre-
viously studied systems.6’7’17’18

The properties of the MC-RSW in 1.5D have been ana-
lyzed using the method of characteristics. For finite relax-
ation time 7, the system is hyperbolic and precipitation modi-
fies the Riemann variables along the characteristic curves: In
this case precipitation zones play a role of dissipative reflec-
tors. For immediate relaxation, the system is piecewise hy-
perbolic. Precipitation is directly linked to wind convergence
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FIG. 17. Sketch of eastward-propagating characteristics for the propagation
of a simple wave of significant amplitude in uniformly unsaturated (upper
panel) and saturated (lower panel) domains. A precipitation front (sp) occurs
in the approximation of immediate relaxation and prevents the breaking
front (sg) to appear in the saturated case.
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FIG. 18. Spatial profile of the velocity field u(x,) for different times: =0
(solid), t=0.3 (dashed), t=0.9 (dotted), and t=1.4 (dashed-dotted). Same
simulation as in Fig. 16.

Downloaded 17 Dec 2009 to 129.199.72.71. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



116604-16 Bouchut et al.

0.5

25r 1

0.4

0.3

0.05

0.01

V 0.08

FIG. 19. Hovmoller diagrams of the velocity field u(x,) (upper panel) and
precipitation P(x,#) (lower panel). Same simulation as in Fig. 16 but with
0p=0,=0.9. Precipitation starts immediately: A dry subsonic precipitation
front emerges and reflects the wave preventing breaking.

such that moist characteristics with slower velocity than in
the dry zone emerge in the precipitating region.

In the singular strict quasiequilibrium limit 7— 0, the
boundary between precipitating and nonprecipitating regions
is defined as the intersection between the two different types
of characteristics. If a discontinuity in the gradients appears
at this boundary, it defines a precipitation front. The corre-
sponding RH conditions have been derived for the MC-RSW
in 1.5D leading to a nonlinear generalization of the three
types of precipitation fronts found in Ref. 6.

A numerical implementation of the MC-RSW model was
proposed using a finite-volume scheme® developed for SW
equations, supplied with a Betts—Miller-type parametrization
of the precipitation and related latent heat release. A series of
numerical experiments was performed with this model, al-
lowing to (1) benchmark the numerical scheme by compar-
ing it with known theoretical results with quasilinear dynam-
ics in the hydrodynamical sector and (2) reveal new
dynamical effects when hydrodynamic and phase-transition
nonlinearities are combined. Thus, we identified rapid and
slow relaxation regimes by studying the scattering of a
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FIG. 20. Hovmoller diagrams of velocity field u(x,t) (upper panel) and
precipitation P(x,7) (lower panel). Same simulation as in Fig. 19 but with
y=100.

simple wave on the moisture front. The results of our experi-
ments confirm the dissipative reflector role played by the
moist regions. We also investigated and classified conditions
of emergence of precipitation fronts, thus completing and
extending the results of Gill." Finally, we studied the role of
humidity in wave steepening and shock formation that is
essentially a nonlinear hydrodynamic phenomenon, and
showed how precipitation attenuates, and even arrests wave
breaking.

Thus, the MC-RSW model appears as a simple and ad-
equate tool for analyzing the effects of precipitation in fully
nonlinear dynamics. It allows for further improvements, such
as including B-effect and topography, while maintaining the
efficiency of numerical simulations.

It should be stressed, however, that MC-RSW is not a
realistic model of the lower troposphere because of the se-
vere constraint of the adiabaticity imposed as a part of the
closure, as discussed in Appendix A. It should be rather con-
sidered as an effective lower-layer dynamics of the full two-
or multilayer baroclinic model, which can be derived along
the same lines and will be presented elsewhere.
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FIG. 21. Spatial profile of velocity field u(x,r) for different times: =0
(solid), r=0.3 (dashed), r=0.9 (dotted), and t=1.4 (dashed-dotted). Same
simulation as in Fig. 19 (upper panel) and Fig. 20 (lower panel).
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APPENDIX A: MOIST ENTHALPY CONSERVATION
PRINCIPLE AND “MOIST RIPA’S” MODEL

As it was already mentioned in the main text, the ME
conservation may be used as a guiding principle in deriving
simplified moist-convective models. Lagrangian conserva-
tion of ME on the isobaric surface is written as (d6/dt)
+(L/c,)(dq/dt)=0, where d/dt is Lagrangian derivative, 6 is

Phys. Fluids 21, 116604 (2009)

the potential temperature, ¢ is the specific humidity, and L
and c, are the latent and specific heats, respectively. Inte-
grated over the fluid layer this gives

(A1)

Introducing the vertical averages denoted by angles, and sup-
posing, as in the main text, that convective velocity W is
allowed through the upper boundary, we find for the first
term in Eq. (A1),

Jz 450 = 30 + V- (o) (O - (% - W(Zz)) "

dz
+ (ﬁ —W(Zl)>9(21),

=A[(O)h] + W(z,), (A2)

where we define A[A]=d,A+V-({(v)A). The second term is
treated analogously and we arrive to the following conserva-
tion law:

A(@H]+ =A[0] + W( 0z) + qu) —0. (A3
4

p

The relation between /# and W is obtained from the vertically
averaged continuity equation,

W=-[0h+V-({v)h)]=-Alh].
We therefore find that

(A4)

tom+ Earo)- a0 o + g )0 (a9
p P

The standard assumption in the derivation of the RSW mod-
els (2.2) and (2.3) from the primitive equations in
pseudoheight coordinates was the constancy of the mean po-
tential temperature over the layer: (6)=6= 6,. Under this
assumption Eq. (A3) is equivalent to the local conservation
of humidity,

L

—A[Q - q(z)h]=0, (A6)

p
with ¢(z,)=const. By combining Egs. (A4) and (A6) we get
an explicit relation between W and P: W=[1/q(z,)]P.

We see that the standard SW hypothesis is severely re-
stricting the thermodynamics of the model, and it is natural
to try to relax it. It is known that the SW equations obtained
by vertical averaging of the dry primitive equations by con-
sidering the averaged potential temperature of the layer to be
variable contain an additional term in the right hand side of
the momentum equation,

_ihV(G)

9 2 (A7)

This term allows to include the thermodynamic effects into
dynamics, and in the absence of moisture and precipitation
Ripa’s model®?° follows. It was initially introduced in the
oceanographic context precisely to include thermodynamic
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effects. If moisture is added to the model, it seems natural to
introduce a source term corresponding to the latent heat re-
lease in the potential temperature equation and to conserve
mass. Thus

(@) #const and W=0, (A8)
and the ME conservation gives
L
A{(G}h+—Q] =0. (A9)
P

The choice of sources and sinks for Q and {6) is obvious,
L d L
A[Q]l=-P=A[(Oh]=+—P= —()=+ —P,
Cp dt Cph
(A10)

and omitting angles we arrive to the moist Ripa’s model,

( A

&,v+(v~V)v=—§ 0Vh+T)—ﬂc><v, (A1)

0
dh+V-(vh)=0, (A12)
L
39,60+ (v-V)f=—P, (A13)
cph
30+V-(vQ)=-P. (A14)

As compared to the MC-RSW model of Sec. IT A, which
may be called adiabatic convective, this model physically
means that latent heat release due to precipitation increases
the average potential temperature of the fluid layer instead of
ejecting convective plumes through the upper boundary (a
diabatic nonconvective model).

As in the MC-RSW model, we can consider now the
immediate relaxation limit for the precipitation term and ob-
tain the associated characteristic equations in the precipitat-
ing regions (P=—Q,V -v>0). This allows to find the moist
characteristic velocity c,,. Considering the 1D version of
Egs. (A11)—-(A14) one can easily show that this latter is
faster than cy,

L
Cp= \/5(6h+—Q> >cy = \/iﬁh.
00 2Cp 90

This contradicts the observations that display moisture-
coupled waves which are slower than ordinary gravity
waves. The result does not change if one introduces a back-
ground stratification in temperature and humidity:
a(x,y,2,t)=apg+ayz)+alx,y,z,t) for a={0,q} before ver-
tical averaging.

Thus, at least in the simplest one-layer setting without
mass fluxes through the vertical boundaries, Ripa’s atmo-
spheric model, although self-consistent per se, is not compat-
ible with the standard physics, nor with the linearized models
studied in literature, and should be discarded. The explana-
tion of this fact is the effective barotropic character of the
moist Ripa’s model. At the same time, the MC-RSW model
used in the main text mimics baroclinicity by allowing the

(A15)
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extra mass flux through the upper boundary, and thus should
be rather interpreted as a lower-layer dynamics of the full
multilayer model.

Let us mention finally that convective mass flux may be
added to the moist Ripa’s model (a diabatic convective
model). However, additional ad hoc hypotheses are needed
in this case to fix unambiguously the convective mass sink
and the latent heat source originating from the precipitation
sink in the moisture equation, although certain choices, e.g.,
A[{6)h]=0, may give correct relation between dry and moist
characteristic velocities.

APPENDIX B: NONCONSTANT SATURATION VALUE
Q; IN THE BETTS-MILLER SCHEME

As the reference convective profile depends on the ver-
tical coordinates, ¢(z), in the original Betts—Miller scheme,3
we may expect that its vertical average depends on the layer
thickness in Eq. (2.8). As a first approximation, we can as-
sume

0,= f ¢“(2)dz ~ 0 - an, (B1)

2

where Q is a constant and a7 is the deviation from it in term
of the free surface displacement 7 from the basic state H,,.
This linear term is also referred as CAPE (convectively
available potential energy)-parametrization if we use the
analogy between 7 and the (potential) temperature
disturbance.’

In this case, it is easy to show that all the results ob-
tained in the main text still hold. Modifications appear just in
the expressions of the precipitation term and the moist speed
for immediate relaxation with respect to the choice of con-
stant Q,,

Q+C¥H0

Pro== 0B (B2)
and
_ Hy- BQ
R W

consistent with Ref. 4.

APPENDIX C: NUMERICAL PARAMETRIZATION
OF PRECIPITATION

The treatment of moisture follows the same procedure as
for the other variables since in the absence of precipitation, it
is the equation of a conserved scalar. After the dynamical

tendencies of water vapor Q and the thickness 4 have been
n+1

77 and

added to compute the new (intermediate) values 0
ﬁf’“, the precipitation is evaluated via the relation
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An+1
Q:l - Qs
Pl = T

0 if 0/"'=0,.

if 0I"'>Q, -

with 7=vyAz. Then water vapor and layer thickness are up-
dated following

Q;'l+1 — Q;Hl _ P:H—IAI, (Cz)

R = - BRI AL (C3)
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