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This paper discusses the application of Lyapunov theory in chaotic systems to the dynamics of tracer
gradients in two-dimensional flows. The Lyapunov theory indicates that more attention should be
given to the Lyapunov vector orientation. Moreover, the properties of Lyapunov vectors and
exponents are explained in light of recent results on tracer gradients dynamics. Differences between
the different Lyapunov vectors can be interpreted in terms of competition between the effects of
effective rotation and strain. Also, the differences between backward and forward vectors give
information on the local reversibility of the tracer gradient dynamics. A numerical simulation of
two-dimensional turbulence serves to highlight these points and the spatial distribution of finite time
Lyapunov exponents is also discussed in relation to stirring propertie20@ American Institute

of Physics. [DOI: 10.1063/1.1499395

The mixing properties of passive scalars in time- region of zero measuyevhich depends only on the global
dependent flows depend very strongly on the chaotic na- dynamical properties of the flow. However the mixing prop-
ture of Lagrangian particle trajectories. The more rap- erties(for instance, transport barriers, hyperbolic pojirts-
idly particles separate from each other, the more efficient pend on the local properties of the flow, i.e., on finite time
mixing can be since a patch of tracer will be stretched integration of the Lagrangian trajectories. The extension of
into filaments of small width that will spread and mix Lyapunov theory to finite times is nontrivial, but some
through the entire fluid. The stretching process of a patch  progress has been made to introduce finite time Lyapunov
of tracer is equivalent to the growth of the tracer gradi-  exponent$® (FTLES). In contrast to the asymptotic expo-
ent and ideas of dynamical systems can be applied. Here nents, the finite time exponents depend on the initial posi-
we follow this approach and compare results from tions of the trajectories as well as the time of integration of
Lyapunov theory to results concerning the tracer gradi-  these trajectories. In that sense, they are able to measure the
ent dynamics in a two-dimensional turbulent flow. stretching induced by the flow topology and they bear the
Lyapunov exponents were extensively used for this kind  fingerprints and the persistence in time of the structures that
of problem but we stress here the importance of control the stirring processes. Another approach to chaotic
Lyapunov vectors. These vectors give information on the mixing is related to the theory of invariant manifolds and
different properties of stirring for finite times, such as  was initially developed for time periodic flowt&!! These
local reversibility (or “chaoticity” ) of the tracer gradient  manifolds are special trajectories that serve as templates for
dynamics. the geometry of mixing. Different attempts have been made
to extend this theory to aperiodic flolfsand somead hoc
procedures have been proposed to compute finite time
|. INTRODUCTION manifolds'*1® A last approach consists in studying the dy-

An important property of two-dimensional time- namics of the tracer gradient vect8rt’ Actually, the orien-
dependent flows is that Lagrangian particles can display chdation of the tracer gradient can be estimated from the flow
otic trajectories, even in the case of simple Eulerian velocitytopology, i.e., through the velocity and acceleration gradient
fields. Close particles separate very quickly from each othetensors. These different approaches seem to be unrelated at
and tracer patches spread rapidly to fill the entire chaotidirst sight but are actually closely linked together. An ex-
region!™ This phenomenon is referred to as “chaotic ample of this relation is that, for periodic flows, the conver-
advection.”®’ The strong dispersion of particles results in agence of the orientation of tracer gradient on the Poincare
nonlocal mixing as opposed to local diffusive mixing. A map allows the determination of the invariant manifdi@is.
natural way to quantify this chaotic nondiffusive mixing is to Another example is the theorem by Halfethat gives a rig-
compute the exponential rate of particle separation. The exarous proof of the criterion proposed by Lapeieal ! to
ponent is called Lyapunov exponent by analogy withdiagnose invariant manifolds based on the dynamics of the
Lyapunov theory in dynamical systems. This theory statesracer gradient orientation. However a general approach in-
that in the asymptotic limit in time, fluid particles separatevolving all of these concepts is still needed to understand
with the same exponential growth ratexcept maybe for a finite time properties of chaotic mixing in aperiodic flows.

In this paper, our motivation is to tighten the link be-

dElectronic mail: gnl@gfdl.noaa.gov tween alignment properties of tracer gradients in two-
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dimensional aperiodic flows and Lyapunov theory. Since, in 1 o sin2¢ w+ 0o cos 2
our view, two-dimensional turbulence represents the most [Vu]T=§
challenging test case for mixing and stirring ideas, we will

use such simulations to examine the finite time Lyapunouf we define the normp and the orientatiord of the tracer
vectors and exponents. First, main results of “asymptotic’gradient,

Lyapunov theory(based on Osseledec theof@rare sum-
marized. Then, using a numerical simulation of two-
dimensional turbulence, we highlight the different propertiesthe equations fop and p are simply

associated with finite time Lyapunov vectors and exponents,

such as convergence in time and alignment properties. We 2 —=w—o0cos2 0+ ¢), (2a)
also discuss the relations between the different categories of Dt

Lyapunov vectors. Finally, we examine the spatial distribu- D |og p? _

tion of FTLEs and the associated Lagrangian stirring. Dt~ osin 2060+ ). (2b)

—w+ocos2p —osin2g |

Vg=p (coséh,sing),

We also introduce the resolvent matrix of the system

M(tq,t) which satisfies
II. LYAPUNOV THEORY

: D
A. Tangent linear system a|\/|(tl,t):[Vu(X(t),t)]TM(tl,t)

Lyapunov theory can be applied either directly to a ma-
terial element vector advected in the flow or indirectly to theWith
tracer gradient vector. Consider the equation of a Lagrangian M (t, ,t;)=1d. 3
trajectory,

DX(t)
Dt

The matrixM(t4,t,) is such that, for any gradien¥, q(t,)
=M(tq,t,) Vq(t;) and the square of the norm of the tracer
gradient is related to the matrM (t;,t,) " M(t;,t5,).

u(X(t),t),

where X(t) is the position of a particle at timé and
u(X(t),t) is its velocity at this time. The equation for the

associated tangent linear system is simply B. The Osseledec theorem
D 6X(t) The Osseledec theoréfrtontains the essential results of
—r~ LVUX(),H]18X(D), the Lyapunov theory. Here we apply these general results to

the tracer gradient problem in a two-dimensional figar a
where 6X(t) stands for a material line element or the dis-more general point of view, one can refer to the reviews by
tance between two particles initially infinitesimally close. Eckmann and Ruelf8 and Legras and Vautar.

The matrix[ Vu(X(t),t)] is the velocity gradient tensor at Consider a time integration of Eql) between timet;
the positionX(t) at timet (hereafter we will drop the depen- and timet, (with t,>t;) and suppose that—t, tends to
dence on position and timeNow, consider the equation for infinity. The Osseledec theorem introduces a forward
a nondiffusive traceq conserved along Lagrangian trajecto- Lyapunov vectoF *(t;) and a Lyapunov exponeht, which

ries, i.e., satisfy the following properties.
Dg (1) For any initial tracer gradierN q(t;), with an orien-
—=0,q+u-Vq=0. tation different from the forward Lyapunov vectdf * (t,),
Dt the tracer gradient grows exponentially at the nateover
The tracer gradienY q satisfies [t1,t2], ie,
DVq : 1 [Vt
Dt —[vul® Va, (1) tz_"tT%tz—MIOQIVQ(tl)I Mo

where[ ] denotes the matrix transpose. It is easy to show (2) If the initial tracer gradient is along *(t;), the
that for an incompressible two-dimensional flow, the vectortracer gradient will decay at the exponential rata.. over
orthogonal to the tracer gradiekk Vq (wherek denotes the [tq,t,].
unit vertical vectoy satisfies the same equation &s. This The two Lyapunov exponents... and —\.,) are of op-
is becauséVq-6X=4q is conserved as it is a tracer differ- posite sign because of the incompressibility of the flow. The
ence between two particléSThus, in the rest of the paper, forward Lyapunov vectofF *(t;) corresponds to the stable
we will only use the tracer gradient vector. direction, i.e., the direction for which the tracer gradient
Lyapunov theory introduces Lyapunov exponents anchorm is decaying in time. Another Lyapunov vec®f (t,)
vectors which are associated, respectively, with the norm andan be introduced, such th&t"(t;) and G*(t;) form an
the orientation of the tracer gradient. To introduce both quanerthogonal basis ok?. An important point of the Osseledec
tities, we decompose the velocity gradient tensor in terms otheorem is that the Lyapunov exponént is independent of
vorticity o, rate of straino, and orientation of the strain axes particle positions whereas the vect&$ andG™ depend on
&b, these positions at timig, .
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We can also introduce a backward Lyapunov vectorand equilibrated. Similarly, the finite time vectbf is also a
F~(t,) at timet, with similar properties when considering a “linear bred mode” since it has the same property but back-
backward integration in time. ward in time. The singular valukgr was introduced to de-

(1) For any initial tracer gradierf q(t,), with an orien-  fine FTLEs by different authof$®and is in common use by
tation different from the backward Lyapunov vector (t,), the predictability community. However, it presents the disad-
the tracer gradient grows exponentially when integratingvantage of being associated with a “singular” behavior as

backward in time(i.e., fromt, to t;, keepingt,>t,). will be explained in Sec. VI.
(2) If the initial tracer gradient is along-~(t,), the
tracer gradient will decay at the exponential rat&.. when  Ill. NUMERICAL METHODS

integrating backward in time.

We also define the backward vecter (t,) as the vector
orthogonal toF " (t,). A consequence of the Osseledec theo-
rem is that the backward vectér (t,) is linked to the be-
havior in the future, and the forward vectsr' (t;) to the
behavior in the past.

(1) For any initial orientation of the tracer gradient at
time tq, it will align with F~(t,) at timet,, whent,—t;
tends to infinity(i.e., whent, tends to—«).

(2) For any initial orientation of the tracer gradient at Phy. A reason for this choice is thatgy is also the integral
time't,, it will align with F*(t,) at timet, for a backward of the strain rate ag¢w?)=(c?) in two-dimensional turbu-
integration, whert,—t, tends to infinity(i.e., whent, tends  lence. As discussed in Lapeyee al,'>*°the strain rate pro-
to + ). vides the time scale for the dynamics of the tracer gradient.

The behavior of the tracer gradient thus depends nofhe particle advection method is a fourth-order Runge—
only on the Lyapunov exponent,, but also on the vectors Kutta scheme with bicubic interpolati&ﬁ.Along the La-
F~(t,) andF *(t,) as these vectors control the directions of grangian trajectories, we integrate separately the equations of
decaying tracer gradients and the long-term behavior of thefihe tracer gradient orientation and the logarithm of its norm
orientation. [i.e., Egs.(2a) and(2b)]. This allows one to compute accu-
rately both the norm and orientation of the tracer gradient
since the logarithm of the norm grows only linearly with
time. The integration of the tracer gradient equation is done

Extending the results of the asymptotic theory to finiteoff-line so that it is possible to do forward and backward
times is not straightforward because the evolution of thentegrations in time and test different initial orientations. The
tracer gradient norm is strongly dependent on its initial ori-resolvent matrixM is computed by integrating two initially
entation. However, the Osseledec theorem provides somsithogonal tracer gradients. As a consistency check, we veri-
guidance for introducing finite time Lyapunov exponents andtied that the sum of the eigenvalues Uf are zero at the
vectors. The theorem states that the forward Lyapunov expcrumerical precision of the computer. Also, changing the ini-
nent .. and vectors(F" and G*) are related to the tjal condition of matrixM does not change the singular val-
asymptotic limit of the eigenvectors and eigenvalues of  yes, provided that the columns ®(t;,t;) correspond to

U.(t)= lim U(ty,t,) _orthono_rmal vectors. As we use a Lfigrangian method for
ty—ty o integrating the tracer gradient equations, there is no real

tracer and there is no small scale diffusion in the gradient

equations, contrary to previous studié€d! so that the
U(ty,tp) =[M(ty,t5) TM(ty,t,) M2, (4)  Lyapunov theory can be directly tested. The initial field is
not the gradient of any tracer but this does not seem to be an
issue in light of recent results on topological constraints of
Lyapunov vector$!? They demonstrated that the gradient
nature of the field is recovered after a certain time and this
implies that the asymptotic Lyapunov vectors and exponents
are linked together by an equation involving spatial deriva-
tives.

In order to examine finite time Lyapunov properties, we
use results from a numerical simulation at high resolution
(1024) of freely decaying two-dimensional turbulence. We
have computed the trajectories of 182rticles initially on
a regular grid at a time when vortices and vorticity filaments
are present. The integration is made for 40 eddy turn-over
times. Time is adimensioned by vorticity such thag,
=fii<w2>1’2dt where(w?) is the spatial average of enstro-

C. Definition for finite times

where

More precisely, the eigenvalues bf,(t;) are expk..) and
exp(—\..) and their corresponding eigenvectors &&(t,)
and F*(t;). For finite times, the eigenvector of matrix
U(t,,t,) which corresponds tomaximum growthover
[tq,t5] is often called the “singular vector” in predictability
theory?® We will use the same terminology in what follows
and we will denote it ag™. Its associated eigenvaluer
more exactly its logarithinwill be called the “singular
value” (hereafter denotec\rr). The eigenvectorg™ of
U(ty,t,) converges towar ' (t;) whent,—t, tends to in- Goldhirsh et al?® (see also Ershov and Potapdv
finity. In the same way, the eigenvector corresponding to theshowed that the convergence of the singular value toward the
smallest eigenvalughereafterf ) converges toward * (t,). “asymptotic” Lyapunov exponent is rather sloftypically in

A similar definition forg™ andf~ can be made for backward t~1) but the orientation of the singular vector converges
integration in time by usindJ(t,,t;). This would definef ~ more rapidly (typically exponentially in timg toward the

as a “linear bred mode,” to keep the terminology of predict- Lyapunov vectorG*(t;). We can examine these conver-
ability theory?®> meaning a mode which has already growngence rates in our numerical simulation.

IV. CONVERGENCE IN TIME
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0.5
e FIG. 1. (a) Average cosine of twice the angle difference
1 04 of finite time Lyapunov vectors computed by two dif-
i ferent methods as a function of adimensional timgg,
103 (see the text for an explanatiprContinuous curve: for
g*(t,). Dashed curve fog ~(t,). In the inset, the same
1 0.2\ quantities are plotted, but as a function of dimensional
time. (b) Adimensional standard deviation of Lyapunov
® T 04 exponent\gr as a function of time. Continuous curve:
forward integration. Dashed curve: backward integra-
tion. In the inset, the same quantities are plotted, but in
% 10 20 30 40 ; 50 % 10 20 30 40 ; 50 dimensional units.
adim adim

(@) (b)

To estimate the convergence toward the Lyapunov vecdecrease of the standard deviation discussed above. This is
tor, we use the fact that there are two different methods t@onsistent with theory and with results on FTLE probability
compute the singular vector: first, the forward Lyapunov vec-density functions in chaotic flows and in forced
tor G™(t;) corresponds to the asymptotic limit of the singu- turbulence?3! Second, we observe a shift of the peak of the
lar g* characterized by maximal growth over a finite time pdf toward smaller values as the turbulence is decaying in
interval; second, random tracer gradients should align alongme. However we can anticipate that the narrowing rate of
the vector orthogonal tG " (t,) [i.e.,F " (t;)] when integrat- the pdf toward its mean value should depend also on the
ing backward in time. Thus, we compared the orientatiormagnitude of the stirring processes and the narrowing rate
6,(t;) of g* with the orientationd,(t,) of the vector or- would decrease as time increases. The processes of homog-
thogonal to a tracer gradient integrated backward in timeenization of the FTLE$associated with the narrowing of the
with a random orientation at tintg. Figure 1a) presents the pdf) and of decay of the exponents are thus competing and
average cosine of 2 — 6,) as a function of the adimen- the homogenization occurs first in our simulation because the
sional integration timer,gi= f:i omdt (keeping fixed ei- turbulence is slowly decaying. If the decay were faster, we

thert, or t,). We observe a rapid convergence and a Correyvould expect the homogenization to be weaker and different
regions of the turbulence would have different long-term

lation of 0.95 is reached after 20 eddy turn-over times.

Moreover the correlations for backward and forward integra-l‘yapl::wvI exponents. fth )

tions are overlapping, which means that the process is essen- T € slow convergence o the .exponent toward its mean
tially the same for both integrations in time and thag, value is related to the reorientation of the tracer gradient

captures its time scalgompare with the inset of Fig.(d tovlvard its bequmbnum OIorlenLatlo_n. Actually, th? shmgular
which shows the same quantities as a functiorTgf,=t,  V&Ue can be expressed as the time average of the instanta-
—t,]. neous exponential growth rate of the tracer gradient by

Concerning, the Lyapunov exponent convergence, each _ 1 t2 D log|Vq(t)]
particle in the flow should converge to the same Lyapunov = A== lim t—t f Dt

. . . to—tq—00t2 1
exponent ., . However in decaying turbulence, all quantities 21
(vorticity, strain rate, etg.are slowly decaying following a The instantaneous exponential growth rate of the tracer gra-
power law and the asymptotic Lyapunov exponent should beient depends only on the orientation of the gradiend not
exactly zero. It is thus more interesting to compute the timeon its norn) as seen in Eq2b). Because of the rapid con-
evolution of the standard deviation of the finite time vergence of the orientation toward the Lyapunov vector, we
Lyapunov exponen{(\er(X) — (A gr(x)))?)Y? as a function
of 7.4im AS We can see from Fig.(b), the standard devia-

1

tions of the backward and forward FTLEs decay slowly in 2.5

time, which contrasts with the fast convergence of the

Lyapunov vectors. The decay rate is different for the back- 2.

ward and forward exponenfsee the inset of Fig.(b)] be-

cause the turbulence is decaying in time so that the stirring 1.5

processes are more efficient at tiethan at timet, (with !

t,>t,;). To nondimensionalize the main plots of Fig. 1, we 1 4 s

have used,qim as the Lyapunov exponent is the inverse of a ;‘\\,;

time scale. Some differences still exist for small times be- 0.5l 4

cause of the realignment of the singular vectors toward their L

asymptotic vectors. 4 N |
Concerning the evolution of the Lyapunov exponents to- 0o 1 2 3 4

ward their asymptotic values, the probability density func- ) ) o
FIG. 2. PDF of the Lyapunov exponent for different times. As time in-

tion (pdf) of th_e Lyapunov eXpOf‘er@:'Q- 2) ShOW_S two pro- . creases, the pdf is narrowing and the peak is increasing and shifting toward
cesses occurring at the same time: first, there is a narrowingnatier values. The pdfs are plotted every,=5. The dashed and bold

of the pdf as a function of time, corresponding to the slowcurve corresponds to a total timgg,=6.
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can assume that after a tintg,, the tracer gradient is D log P,
“equilibrated” (i.e., dependent only on the flow properties p
and not on its initial orientatiorthrough the rest of the time. 0.5¢
This implies that the tracer gradient growth rate will be in- ol
dependent of the initial condition after timg, and will be
equal to the growth rate associated with the Lyapunov vector
Thus the difference in orientation between the Lyapunov -1
vector and the singular vector ovir ,ty,,] transforms into
an error of the form

-0.5¢

15[
1 ftllz( ) dt E 1|
to—t, ty ' Dt o5l ¢ ‘ |
Whent, tends to infinity, this is proportional ta{—t;) %, 0 - -
which gives the slow convergence rate for the singular value. _g 5| CI+ . . . ‘ ‘ ]
-5 -4 -3 -2 -1 0 e

V. ALIGNMENT PROPERTIES . .
FIG. 3. Top: O log p)/Dt as a function off. Bottom: D ¢/Dt as a function
The Osseledec theorem states that a tracer gradient |mf. { for r=0.5. The horizontal arrows symbolize the evolution{ofThe
tiaIIy in a “random” orientation at timal will a"gn with the crosses correspond gqg and{_ . £, isindicated twice because it is defined
backward Lyapunov vectoF ~(t,) at timet,>t; whent, modulo 2.
—1t, is large. This proves that for each time there is a

natural tendency for the tracer gradient vector to align in a . ) o
certain orientation independent of its initial orientation. This@NCe as the tracer gradient equation. This is because the “ef-

is also true for an integration backward in time: the tracerf€ctive rotation” in the numerator of is the difference be-
gradient will align alongF *(t;) when integrating front, tween rotation due to vort|C|t)_/ and stra_un axis rotatl()'_ﬁh_e
>t,. As shown in Sec. IV, this convergence is very fastangle between the compressmna_l strain axis anokﬁngs is
indeed (exponentially in timg and contrasts with the slow —¢— 7/4, sSoD¢/Dt is of opposite sign of the strain axis
convergence of the FTLE. This proves that more emphasifotation) Relating this alignment tendency with the
should be put on the dynamics of the tracer gradient orienlyapunov theory, we see that the orientatigyyt,) defined
tation. The rapid convergence allows one to use an assumﬁy

tion_ of_stationarity for th_e v_elocity grao_lierl'g tzens('mr its —arccos  where |r|<1

derivative$ as was done in different studi&s’32*4n par- _

ticular, _the assumption of a slowly varying_veloc_:ity gradi(_ant Ceq™ arctar6§
tensor in the strain bas{g/hat we call an “adiabatic approxi- r

gradient dynamic8>’ The strain basis is formed by the |yapunov vectorF ~(t,). Similarly, the orientationt 1 (t,)
eigenvectors of the strain matrike., 2((Vu]+[Vul")). In  defined by

the strain basigformed by the eigenvectors of the strain
matrix 2([Vu]+[Vu]")), the equation of the orientation of

+ g(l—sigr(r)) where |r|>1,

arccog where |r|<1

the tracer gradient simplifies to g; = s\ )
9 | arctan—|+ = (1—sign(r)) where |r|>1,
¢ r 2
—= r—cos{), 5 . . . .
bt 7 ( 0 © is an estimate of the orientation of the forward Lyapunov

vectorF*(t;) in the same approximation.
The adiabatic approximation used to der'g(ég can also
provide an estimate of the singular vectors. In the regime

where{=2(6+ ¢). The quantityr=(w+2(D ¢/Dt))/c is
the ratio between the effect of effective rotati@ue to vor-

ticity in the strain basijsand the effect of strain. Assuming a domi db <1 hat th .
slow variation in time of the quantity and in regions domi- dominated by strain|(|=<1), we can prove that the orienta-

. . +_
nated by strain(where |[r|<1), the tracer gradient should tion of ma?qml_Jm grovvth cqrresponds @ 2—7-r+arcc05r
align with an orientation;_ = —arccog corresponding to When considering long timeg.e., such thaf “o dt>1). To

the stable fixed point of Ed5) as shown by Lapeyret al}®  demonstrate this point, we can examine the instantaneous
In regions dominated by “effective rotation(ivhere|r|>1),  tracer gradient growth ratéupper part of Fig. Band the

the tracer gradient is rotating but the rotation rate is variabld.agrangian time derivative of (lower part of Fig. 3 as

in time so that another parameter is involved in the dynamfunctions of{. We see that the fixed poirdt. is not associ-

ics. This parameter is= [D (o !)]/Dt and corresponds to ated with the largest possible growfivhich corresponds to
the evolution of the time scale of the dynamias ¢). In  ¢{=— #/2). For an initial orientation¢(t=0) of the tracer
these regions, the orientatighaligns with an orientatior gradient alongggg (which has the same growth rate initially
=arctan§/r)+m(1—sign(r))/2 as was observed by Klein as{_), its growth rate is always larger than the one corre-
et all’ An interesting feature is that the quantiteands are  sponding to/_ . Examining the other possible initial condi-
invariant under solid body rotation, keeping the same invaritions (either in[{_ ,{. ], [g“;g,g_] or[l, ,g;g]), we see that
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1 ‘ : ‘ ‘ greater(40%) in regions dominated by straiwhere|r|<1).
Concerning the backward integration in time, an identical
evolution is observe¢hot shown but the roles are changed:
initially the backward singular vectay~ is aligned withS*
! R (corresponding to{=+/2), then it aligned with {,
o S ] whereas the correlation Wlt'beq remains small.
T T SinceF " (t,) andG™*(t,) are orthogonal and smc;aeq

- and {S are also orthogonal the alignment between the for-
-0.5 1 ward vectorF+ andgeq(t ) is exactly equivalent to the align-
ment betweerg”Sg and the forward vectoG*. Thus, Fig. 4
‘ . ‘ ‘ shows thatgeq(t 1) well approximates the forward Lyapunov
0 10 20 30 140 vector F*(t,). Similarly, Ledt2) well approximates the

adim backward Lyapunov vectoF ~(t,) (not shown, which is
FIG. 4. Average cosine between forward singular vegtorand adiabatic  consistent with our previous resuffs®’
approximation{s*g, compressional strain eigenvec®r and adiabatic equi-
librium solution{_ as a function of adimensional time;,.

0.5F ‘*\—-_7__,_8‘9_ _______________

VI. DIFFERENCES BETWEEN LYAPUNOV VECTORS

A. Singular vectors versus bred modes
:Ee time ;ﬂter\tlal C.?Inbbe Sp“ﬁ mt;nht\f[vch pa::s: tone for Wdh.'Cht In the preceding discussion, two classes of Lyapunov
the grow rag will be smaller that Tor the tracer gradient . . < \vere introduced: the “bred modes” associated with
initially along ¢¢y; and another one for which it will have the

4 . . . alignment of the tracer gradient after equilibratign (t,)
same behav_lor as_the I+atter orientation. This grgument proveg ¢+ (t,) for backward and forward integrations in tifne
that the orientation{s, should be an estimate of the

. . X U -, and the singular vectors associated with maximal tracer gra-
Lyapunov vectoiG " if the adiabatic approximation is valid. g g

Similarl - b q " dient growth over a finite time intervéd~ (t,) andg* (t;)].
imilarly, we expects,= m—arccos to be a good approxi- - \ye o yse the adiabatic solutions to gain some insights into
mation of the backward singular vector in regions where

the differences between these vectors.
[r|<1. To extend this results to regions dominated by the

weffocti tation.” the orth lity 57 and As was shown by the dynamical argument in Sec. V, the
c;ec |v§7ro ad'OGn; we f[fntufe o e I(zjrbogona Ptl N 8% orientations¢Z are not at all related to an equilibrium: they
(or an ) so tha {sq Should be equal tor+ e, are associated with a kinematic effect in the sense that

€. growth rate and orientation properties are out of phase, so
m*arccog where |r|<1 that the equilibrium orientation&eiq do not correspond to the
(= s\ largest possible growth rate. This is observed in the numeri-
sg arctarEF + E(3—sigr‘(r)) where |r|>1. cal simulation(Fig. 4) since the correlation of,, with gt

very weak whereas it is stronger fg)gg Moreover the cor-
This last equality uses the notion of biorthogonality of Far-relation of g* with f~ presents the same tendency as the
rell and lonnaod* correlation withZ, (not shown. This behavior is related to
To examine these estimates in the numerical simulationthe non-normality ofVu (expressed in the strain basise.,
we computed the cosine of twice the relative angle of thehe fact that Vu has nonorthogonal eigen-
forward singular vectog™ with different orientations as a vectors>* Two limiting cases can highlight these differences.
function of the adimensional time,q,, (Fig. 4). These ori- In a pure strain fieldfor which r=0), the orientationsggg
entations are the compressional strain &is(correspond-  and ¢, are equal, which means that the tracer gradient con-
ing to {= — m/2) and the adiabatic solutiong, and g’;g, all verges toward the vector corresponding to the largest growth
of these computed at timig . Initially, we observe the sin- rate (the compressional strain axis herén this case, the
gular vectorg™ to be in the direction o§~. This is an exact equation of the norm and of the orientation of the gradient
result since D/Dt) (M™M)(t;,t;)=2S, and in an expan- are in phase and the velocity gradient in the strain basis has
sion at a first order in timeM "M =I1d+2tS+0O(t?). The orthogonal eigenvectors. For an axisymmetric vortex, the
alignment with the strain eigenvector decreases rapidly irsituation is quite different since equals+1 (see Lapeyre
time and after 10 adimensional time units, the average cosinet al1®) and the orientationg,, and g;g are now orthogonal.
is only 0.3. During the same period, the average cosine of thin this case, the tracer gradient at equilibrium is orthoradial
adiabatic approximation of the singular vector increases tovhereas the largest growth over a finite time can be obtained
reach a maximum of 0.8 at about 2 time units and then dewhen the gradient is oriented in the radial direction. It is
creases around 0.5. This demonstrates that our assumptionioferesting to note that these two orientations correspond to
stationarity for the quantity (i.e., the adiabatic approxima- no instantaneous growth of the tracer gradient. This behavior
tion) seems strictly valid for a few turn-over times but the indicates the importance of the rotation due to the vorticity in
estimatedggg direction gives a good estimate of the true sin-the strain basigwhat we call the “effective rotation)’ in
gular vector even for long times. Actually a direct computa-driving the non-normality of the operator. The competition
tion of the mean adimensional time of validity of the adia- between effective rotation and strain is the main mechanism
batic assumptiorinot shown shows that this time is larger that drives the difference betwegp, and gsgand seems also
than one turn-over time for 30% of particles and this is everto explain the difference betweén andG™ in the numeri-
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cal simulation. The orientationg™ (and G*) are therefore

not instructiveper seto understand the dynamics associated 4
with Lyapunov theory. They correspond to the “extreme”
behavior for the tracer gradient whereas the Lyapunov vec-

torsF* correspond to the equilibratédr “mean”) behavior. 2

B. Backward versus forward vectors

There also exists a distinction between forward and
backward Lyapunov vectors. The Osseledec theorem shows )
that these vectors are associated with different properties for
forward and backward integration in time but these proper-
ties are not directly comparable. _4

Again we can use the adiabatic approximation to empha-
size the differences. In the case of a pure strain field ( -4 _2 0 2 4
=0), the backward orientatiotl,, and the forward orienta-
tion é’;’q are Orthogona| Corresponding to the Compressiona|F|G. 5.'J0int F’DF of the fomard an(} backvxard gI’OWth rates Computed,
and extensional strain axes. In this situation, they correspon§SPectively, with an orientation alorig™ andF .
to orientations of growth for the tracer gradient, either in

backward or forward integration in time. For the more 98N and backward the tracer gradient equations along the same

eral caser| <1, the equilibrium orientationb,, are d'ﬁ?re”t. trajectory, we will obtain a different solution than the initial
and also correspond to growth of the tracer gradient inte-

grated forward or backward in time. On the other hand, forcondmon: . .

an axisymmetric vortex, the two orientatioz,igq are equal We tried to rela}te the tyvo regimes to the quantitand

For the more general c:':\se o1>1, £, are also equal bl,.lt fo_und that the regions of |rrever5|blllty are well correlated

the forward growth rate m/btgqlog|Vq|=—asing‘ with |r|_<1 whereas the regions more predictable are corre-
7 . ) eq  lated with|r|>1 (not shown. The numerical simulation thus

=—0 §/yr*+s°is sirictly opposite to the backward growth confirms the prediction of the adiabatic approximation and

rate — (D/D'.[) I_og|Vq|=US|nggq:a S/_Vr +s” (as _tlme IS shows that forward and backward Lyapunov vectors tend to
reversegl This is becaus_e a growth in a forwarq mt_egra_tlon have same sign or opposite sign growth rates but with the
correspor!ds to a decay in a backward integration in this Osame amplitude. This could explain why stable and unstable
tation regime. _ N invariant manifolds often display the same orientatias
The difference betweefl,, and (e, relates to the revers- g, 14 pe the case in regions dominated by “effective rota-

ibility or_|rrever3|blkl]|tyd(_)f1h°f the tracber gradler;]t dﬁ/namms. So tion” ) whereas they intersect near hyperbolic poiats they
we can interpret the difference between the Lyapunov Vec(:orrespond to different or even orthogonal orientations as

- n -
fcorsF .arll_dF to be a consequence .of Ioca! reversibility or should be the case in regions dominated by strain
irreversibility of the flow (of course, if a trajectory passes

from a region with chaotic behavior to a region with revers-
ible behavior, it is globally chaotic To diagnose such a be- VII. SPATIAL DISTRIBUTION OF FTLEs
havior we can compare the instantaneous growth rate of the There have been numerous studies of finite time

tracer.gradient at timée when i.ntegrated' from the paéte., Lyapunov exponents in two dimensions but most of them
from timet, such that—t,>0 is largg with the growth rate  oncentrated on the statistics of the Lyapunov exponents in
at timet when integrated from the futur@e., from timet, relation to the tracer fieldt35-38Some of them examined the
such thatt,—t is large. This corresponds to comparing gpatial distribution of the Lyapunov exponents in a two-
(D/Dt) log|Vqg| for an orientation alongF(t) and  gimensjonal chaotic flof? To our knowledge, we give here

— (D/DY) log|Vq| for an orientation along " (t) [Eckhardt  he first description of the spatial distribution of FTLE in
and Yad® introduced the growth rate alorftj (t) to measure freely decaying turbulence. Only Babiaroal®® examined

a local Lyapunov exponent for a different purppdéigure 5 some particular trajectories for this type of flow.

presents the joint probability density function of these two  The time evolution of the spatial distribution of
quantities c?mputed after a time integration such thajyanunov exponents is very similar in our turbulent simula-
I, omdt=[2ondt=20. As expected, we observe two tions to that found by Pierrehumbert and Yaiy their cal-
different regimes: a regime along the anti-bisector corre<ulation for the troposphere: for small time integration, large
sponding to opposite growth rates. This means that in thesETLESs (Fig. 5 concentrate in patches with shapes identical
regions, the dynamics is instantaneously nonchaotic, and the the distribution of the strain ratéhot shown. This is
behavior of the gradients is reversible. The second regimbecause the strain rate controls the short-term behavior of the
corresponds to the large branch along the bisection in thsingular value as explained in Sec. V. Then, these patches
positive quadrant corresponding to growths forward andbecome thinner and thinner and transform into filaments of
backward in time. These regions are associated with stronigrge FTLEs(see Fig. 6. As time proceeds, these filaments
irreversibility of the system, since if we integrate forward become narrower and fill the background flow but their
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FIG. 6. Finite time Lyapunov expo-
nent for 7,4m= 6, plotted at initial po-
sitions.

Lyapunov exponents decrease and tend to the spatial meaame process occurs with the two vortices at the bottom
value as particles are experiencing different straining regiongght- and left-hand corners of Fig. 6, which are responsible
(not shown. This process shows that spatial homogenizatiorfor the filament at the top right-hand corner of Fig. 6 and
of the Lyapunov exponent proceeds rapidly as particles havehich lead to the dipole at the bottom right- and left-hand
time to wander through the flow. Then, the Lyapunov expo-corners of Fig. {remember that the domain is doubly peri-
nent of the particles will slowly decay as the turbulence isodic). A last example corresponds to the vortex at the top
also decaying. Finally, the FTLE field will tend to the value center of Fig. 6: a filament starts from this vortex and ends
\..=0. Figure 6 displays the FTLE after a timgy;,=6 (the  up near the two smaller vortices close to the center of the
most interesting stage in our opinjonorresponding to the figure. In Fig. 7, we see that these three vortices at the top
presence of filaments with large values of the Lyapunov exeenter of the figure are very close at this time, leading to a
ponents(compared with the spatial mean exponéni~1).  very strong straining. These FTLEs that start from the vicin-
For reference, the pdf of FTLES corresponds to the bold anity of one vortex and terminate at the vicinity of another one
dashed curve in Fig. 2. The filaments present in the figur@re due to the future interactions of these vortices that pro-
could be the signature of the invariant manifolds in the tur-vide the straining and nonlocal transport associated with it.
bulent flow field. Another kind of structure corresponds to the filaments
Concerning the spatial distribution of the FTLESs, threethat wind up around the vortices in spirals. This is generally
different categories of structures can be described. There atbe case for vortices that are close to axisymmetric skfape
large scale filaments that correspond to the largest exponenisstance the vortex at the center of Fig. These filaments
These filaments start from the neighborhood of one vortexare associated with ejection of material from inside the vor-
and end close to the vicinity of another vortésee, for in-  tex to its surroundings, thus they materialize the transiport
stance, the long and horizontal filament in the center of Figthe vicinity of the vortexThey are densely packed around
6). They are associated with theraction of vorticesvhich  vortices and the vortex core is characterized by low values of
leads to a large straining. This can be demonstrated by exyapunov exponents, consistent with Babiagioal>° Par-
amining the Lyapunov exponent at tfiral positions of par-  ticles seeded uniformly in a box around the vortéig. 8
ticles att, (Fig. 7) (actually this figure represents the norm of tend to stay in the vicinity of the vortex even if their
the gradient of a real tracer during the stage where diffusio.yapunov exponent is high. Some particles even enter the
does not play any roJeThe very long filament starting from vicinity by the interplay of the large scale filament. The vor-
the top of Fig. 7 and ending at the bottom near the asymmetex core is well defined as particles do not generally leave the
ric dipole corresponds to the horizontal filament with largecore and have low FTLESee the particles in gray in Fig).8
FTLE on Fig. 6. As trajectories indicatgot shown, the  We therefore speculate that the layered structure of FTLE
formation of the dipole of the bottom center of Fig. 7 leads toaround the circular vortices is just the “circulating cell” de-
the ejection of material and to this very long filament. Thescribed by Elhmadiet al? or the “stochastic layer” dis-
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FIG. 7. Finite time Lyapunov expo-
nent for 7,qin= 6, plotted at final posi-
tions.

cussed by Joseph and Legf4dhis region controls the ex- trate our points. Lyapunov theory predicts not only the time
change between the far field and the interior of the vortex: avolution of the norm of the tracer gradient but more impor-
particle that exits a vortex core is trapped for a very longtantly the existence of orientations toward which the tracer
time in that region before it is expelled to the far field. It is gradient converges. The rapid convergence of the orientation
interesting to note that elliptical vortices have a few fila- contrasts with the slow convergence of the Lyapunov expo-
ments that wind up around them, and their ed@es, their  nent and justifies the importance of the dynamics of the ori-
circulatiqg cel) seem thinner. Thgse elliptical \{ortices have agntation. Two types of structures emerge from Lyapunov
geometrical structure very similar to the Kida vorte®’ theory: singular vectorg™ associated with maximum tracer
with two long filaments surrounding the vortex and extend-gradient growth over a finite time and “linear bred mode”

ing to the far field. This circulating cell around the vortices x . : .
. : . . vectorsF~ toward which tracer gradients align. These two
could act as a dynamical barrier: a circular shape is asso {

ated with a thick stochastic layer that prevents mixing be-YPEs are intrinsically different because the first one Is asso-
tween the vortex core and the far field whereas an eIIiptic:aF,"':lted with extreme behavior and the other one with equilib-

shape is associated with a thinner layer and the interior of thEU™ (or .“mean”) behayior of the tracer gradient. Thi? dif-
vortex can be mixed more easily with the far field. ference is due to the importance of strain for the singular

A last category of structures corresponds to low valuedectors and effective rotation for stable Lyapunov vectors as
of Lyapunov exponents in the background turbulent field. Itthe numerical simulations confirms it. Moreover, these orien-
is associated with low values of the strain rate and corretations can be estimated from local velocity and acceleration
sponds to vortices of smaller and smaller scale and amplitud@radient tensors by the so-called “adiabatic approxi-
but with properties analogous to the large scale vortices. mation.” ' Another point is that the relative orientations of

Finally, the distribution of FTLEs shows the intricacy of forward and backward Lyapunov vectors allow one to deter-
chaotic mixing in two-dimensional turbulence: the propertiesmine the local “irreversibility” of the tracer gradient dynam-
of mixing depend not only on the shape of the vortices andcs.
their stochastic layer but also on the nonlocal interaction that  \We also examined the spatial distribution of finite time
allows mixing to spread from the vicinity of one vortex to |yapunov exponents in the two-dimensional flow field. The
another one. The FTLE with largest values are the signatureT|Es present an intricate structure which strongly depends
of the future interactions between coherent structures. on the shape of the vortices for local transpéz., in the

vicinity of the vortex: nearly circular vortices have a broad
Viil. CONCLUSION circulating cell which seems to prevent mixing between the

We have discussed the link between recent results ofar field and the interior of the vortex whereas elliptical vor-
tracer gradient dynamics and Lyapunov theory using a nutices have a narrow circulating cell. Some large scale fila-
merical simulation of two-dimensional turbulence to illus- ments of large values of FTLE are also present because of
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FIG. 8. Initial (left) and final(right) positions of particles seeded near the circular vortex of the center of Fig. 6.

the interaction between vortices and govern the nonlocalyapunov exponent techniqdé? or effective diffusivity*>#4

transport properties. These methods give good results because of their fast con-
Finally, this paper tried to clarify what Lyapunov theory vergence in time but their basic properties are not yet well

can teach us for the properties of chaotic advection by twounderstood.

dimensional flows. The Lyapunov approach was used in
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