
CHAOS VOLUME 12, NUMBER 3 SEPTEMBER 2002
Characterization of finite-time Lyapunov exponents and vectors
in two-dimensional turbulence

Guillaume Lapeyrea)

Program in Atmospheric and Oceanic Sciences, G.F.D.L., Princeton University, Forrestal Campus,
P.O. Box 308, Princeton, New Jersey 08542

~Received 7 February 2002; accepted 19 June 2002; published 21 August 2002!

This paper discusses the application of Lyapunov theory in chaotic systems to the dynamics of tracer
gradients in two-dimensional flows. The Lyapunov theory indicates that more attention should be
given to the Lyapunov vector orientation. Moreover, the properties of Lyapunov vectors and
exponents are explained in light of recent results on tracer gradients dynamics. Differences between
the different Lyapunov vectors can be interpreted in terms of competition between the effects of
effective rotation and strain. Also, the differences between backward and forward vectors give
information on the local reversibility of the tracer gradient dynamics. A numerical simulation of
two-dimensional turbulence serves to highlight these points and the spatial distribution of finite time
Lyapunov exponents is also discussed in relation to stirring properties. ©2002 American Institute
of Physics. @DOI: 10.1063/1.1499395#
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The mixing properties of passive scalars in time-
dependent flows depend very strongly on the chaotic na
ture of Lagrangian particle trajectories. The more rap-
idly particles separate from each other, the more efficient
mixing can be since a patch of tracer will be stretched
into filaments of small width that will spread and mix
through the entire fluid. The stretching process of a patch
of tracer is equivalent to the growth of the tracer gradi-
ent and ideas of dynamical systems can be applied. Her
we follow this approach and compare results from
Lyapunov theory to results concerning the tracer gradi-
ent dynamics in a two-dimensional turbulent flow.
Lyapunov exponents were extensively used for this kind
of problem but we stress here the importance of
Lyapunov vectors. These vectors give information on the
different properties of stirring for finite times, such as
local reversibility „or ‘‘chaoticity’’ … of the tracer gradient
dynamics.

I. INTRODUCTION

An important property of two-dimensional time
dependent flows is that Lagrangian particles can display c
otic trajectories, even in the case of simple Eulerian veloc
fields. Close particles separate very quickly from each ot
and tracer patches spread rapidly to fill the entire cha
region.1–5 This phenomenon is referred to as ‘‘chao
advection.’’6,7 The strong dispersion of particles results in
nonlocal mixing as opposed to local diffusive mixing.
natural way to quantify this chaotic nondiffusive mixing is
compute the exponential rate of particle separation. The
ponent is called Lyapunov exponent by analogy w
Lyapunov theory in dynamical systems. This theory sta
that in the asymptotic limit in time, fluid particles separa
with the same exponential growth rate~except maybe for a

a!Electronic mail: gnl@gfdl.noaa.gov
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region of zero measure! which depends only on the globa
dynamical properties of the flow. However the mixing pro
erties~for instance, transport barriers, hyperbolic points! de-
pend on the local properties of the flow, i.e., on finite tim
integration of the Lagrangian trajectories. The extension
Lyapunov theory to finite times is nontrivial, but som
progress has been made to introduce finite time Lyapu
exponents8,9 ~FTLEs!. In contrast to the asymptotic expo
nents, the finite time exponents depend on the initial po
tions of the trajectories as well as the time of integration
these trajectories. In that sense, they are able to measur
stretching induced by the flow topology and they bear
fingerprints and the persistence in time of the structures
control the stirring processes. Another approach to cha
mixing is related to the theory of invariant manifolds an
was initially developed for time periodic flows.10,11 These
manifolds are special trajectories that serve as templates
the geometry of mixing. Different attempts have been ma
to extend this theory to aperiodic flows12,13and somead hoc
procedures have been proposed to compute finite t
manifolds.14,15 A last approach consists in studying the d
namics of the tracer gradient vector.16,17Actually, the orien-
tation of the tracer gradient can be estimated from the fl
topology, i.e., through the velocity and acceleration gradi
tensors. These different approaches seem to be unrelat
first sight but are actually closely linked together. An e
ample of this relation is that, for periodic flows, the conve
gence of the orientation of tracer gradient on the Poinc´
map allows the determination of the invariant manifolds18

Another example is the theorem by Haller19 that gives a rig-
orous proof of the criterion proposed by Lapeyreet al.15 to
diagnose invariant manifolds based on the dynamics of
tracer gradient orientation. However a general approach
volving all of these concepts is still needed to understa
finite time properties of chaotic mixing in aperiodic flows.

In this paper, our motivation is to tighten the link be
tween alignment properties of tracer gradients in tw
© 2002 American Institute of Physics
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689Chaos, Vol. 12, No. 3, 2002 Finite-time Lyapunov exponents
dimensional aperiodic flows and Lyapunov theory. Since
our view, two-dimensional turbulence represents the m
challenging test case for mixing and stirring ideas, we w
use such simulations to examine the finite time Lyapun
vectors and exponents. First, main results of ‘‘asymptot
Lyapunov theory~based on Osseledec theorem20! are sum-
marized. Then, using a numerical simulation of tw
dimensional turbulence, we highlight the different propert
associated with finite time Lyapunov vectors and expone
such as convergence in time and alignment properties.
also discuss the relations between the different categorie
Lyapunov vectors. Finally, we examine the spatial distrib
tion of FTLEs and the associated Lagrangian stirring.

II. LYAPUNOV THEORY

A. Tangent linear system

Lyapunov theory can be applied either directly to a m
terial element vector advected in the flow or indirectly to t
tracer gradient vector. Consider the equation of a Lagrang
trajectory,

DX~ t !

Dt
5u~X~ t !,t !,

where X(t) is the position of a particle at timet and
u(X(t),t) is its velocity at this time. The equation for th
associated tangent linear system is simply

D dX~ t !

Dt
5@¹u~X~ t !,t !#dX~ t !,

wheredX(t) stands for a material line element or the d
tance between two particles initially infinitesimally clos
The matrix @¹u(X(t),t)# is the velocity gradient tensor a
the positionX(t) at timet ~hereafter we will drop the depen
dence on position and time!. Now, consider the equation fo
a nondiffusive tracerq conserved along Lagrangian traject
ries, i.e.,

Dq

Dt
[] tq1u"¹q50.

The tracer gradient¹q satisfies

D¹q

Dt
52@“u#T ¹q, ~1!

where@ #T denotes the matrix transpose. It is easy to sh
that for an incompressible two-dimensional flow, the vec
orthogonal to the tracer gradientk3¹q ~wherek denotes the
unit vertical vector! satisfies the same equation asdX. This
is because¹q"dX5dq is conserved as it is a tracer diffe
ence between two particles.21 Thus, in the rest of the pape
we will only use the tracer gradient vector.

Lyapunov theory introduces Lyapunov exponents a
vectors which are associated, respectively, with the norm
the orientation of the tracer gradient. To introduce both qu
tities, we decompose the velocity gradient tensor in term
vorticity v, rate of strains, and orientation of the strain axe
f,
Downloaded 26 Aug 2002 to 134.157.1.23. Redistribution subject to AIP
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@¹u#T5
1

2 S s sin 2f v1s cos 2f

2v1s cos 2f 2s sin 2f D .

If we define the normr and the orientationu of the tracer
gradient,

¹q5r ~cosu,sinu!,

the equations foru andr are simply

2
Du

Dt
5v2s cos 2~u1f!, ~2a!

D logr2

Dt
52s sin 2~u1f!. ~2b!

We also introduce the resolvent matrix of the syste
M (t1 ,t2) which satisfies

D

Dt
M ~ t1 ,t !5@¹u~X~ t !,t !#TM ~ t1 ,t !

with

M ~ t1 ,t1!5Id. ~3!

The matrixM (t1 ,t2) is such that, for any gradient,¹q(t2)
5M (t1 ,t2) ¹q(t1) and the square of the norm of the trac
gradient is related to the matrixM (t1 ,t2)T M (t1 ,t2).

B. The Osseledec theorem

The Osseledec theorem20 contains the essential results
the Lyapunov theory. Here we apply these general result
the tracer gradient problem in a two-dimensional flow~for a
more general point of view, one can refer to the reviews
Eckmann and Ruelle22 and Legras and Vautard23!.

Consider a time integration of Eq.~1! between timet1

and time t2 ~with t2.t1! and suppose thatt22t1 tends to
infinity. The Osseledec theorem introduces a forwa
Lyapunov vectorF1(t1) and a Lyapunov exponentl` which
satisfy the following properties.

~1! For any initial tracer gradient¹q(t1), with an orien-
tation different from the forward Lyapunov vectorF1(t1),
the tracer gradient grows exponentially at the ratel` over
@ t1 ,t2#, i.e.,

lim
t22t1→`

1

t22t1
log

u¹q~ t2!u
u¹q~ t1!u

5l` .

~2! If the initial tracer gradient is alongF1(t1), the
tracer gradient will decay at the exponential rate2l` over
@ t1 ,t2#.

The two Lyapunov exponents~l` and2l`! are of op-
posite sign because of the incompressibility of the flow. T
forward Lyapunov vectorF1(t1) corresponds to the stabl
direction, i.e., the direction for which the tracer gradie
norm is decaying in time. Another Lyapunov vectorG1(t1)
can be introduced, such thatF1(t1) and G1(t1) form an
orthogonal basis ofR2. An important point of the Osselede
theorem is that the Lyapunov exponentl` is independent of
particle positions whereas the vectorsF1 andG1 depend on
these positions at timet1 .
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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We can also introduce a backward Lyapunov vec
F2(t2) at timet2 with similar properties when considering
backward integration in time.

~1! For any initial tracer gradient¹q(t2), with an orien-
tation different from the backward Lyapunov vectorF2(t2),
the tracer gradient grows exponentially when integrat
backward in time~i.e., from t2 to t1 , keepingt2.t1!.

~2! If the initial tracer gradient is alongF2(t2), the
tracer gradient will decay at the exponential rate2l` when
integrating backward in time.

We also define the backward vectorG2(t2) as the vector
orthogonal toF2(t2). A consequence of the Osseledec the
rem is that the backward vectorF2(t2) is linked to the be-
havior in the future, and the forward vectorF1(t1) to the
behavior in the past.

~1! For any initial orientation of the tracer gradient
time t1 , it will align with F2(t2) at time t2 , when t22t1

tends to infinity~i.e., whent1 tends to2`!.
~2! For any initial orientation of the tracer gradient

time t2 , it will align with F1(t1) at time t1 for a backward
integration, whent22t1 tends to infinity~i.e., whent2 tends
to 1`!.

The behavior of the tracer gradient thus depends
only on the Lyapunov exponentl` , but also on the vectors
F2(t2) andF1(t1) as these vectors control the directions
decaying tracer gradients and the long-term behavior of t
orientation.

C. Definition for finite times

Extending the results of the asymptotic theory to fin
times is not straightforward because the evolution of
tracer gradient norm is strongly dependent on its initial o
entation. However, the Osseledec theorem provides s
guidance for introducing finite time Lyapunov exponents a
vectors. The theorem states that the forward Lyapunov ex
nent l` and vectors~F1 and G1! are related to the
asymptotic limit of the eigenvectors and eigenvalues of

U`~ t1!5 lim
t22t1→`

U~ t1 ,t2!

where

U~ t1 ,t2!5@M ~ t1 ,t2!TM ~ t1 ,t2!#1/@2(t22t1)#. ~4!

More precisely, the eigenvalues ofU`(t1) are exp(l`) and
exp(2l`) and their corresponding eigenvectors areG1(t1)
and F1(t1). For finite times, the eigenvector of matr
U(t1 ,t2) which corresponds tomaximum growthover
@ t1 ,t2# is often called the ‘‘singular vector’’ in predictability
theory.23 We will use the same terminology in what follow
and we will denote it asg1. Its associated eigenvalue~or
more exactly its logarithm! will be called the ‘‘singular
value’’ ~hereafter denotedlFT!. The eigenvectorg1 of
U(t1 ,t2) converges towardG1(t1) when t22t1 tends to in-
finity. In the same way, the eigenvector corresponding to
smallest eigenvalue~hereafterf 1! converges towardF1(t1).
A similar definition forg2 and f 2 can be made for backwar
integration in time by usingU(t2 ,t1). This would definef 2

as a ‘‘linear bred mode,’’ to keep the terminology of predic
ability theory,23 meaning a mode which has already grow
Downloaded 26 Aug 2002 to 134.157.1.23. Redistribution subject to AIP
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and equilibrated. Similarly, the finite time vectorf 1 is also a
‘‘linear bred mode’’ since it has the same property but ba
ward in time. The singular valuelFT was introduced to de-
fine FTLEs by different authors24,25and is in common use by
the predictability community. However, it presents the disa
vantage of being associated with a ‘‘singular’’ behavior
will be explained in Sec. VI.

III. NUMERICAL METHODS

In order to examine finite time Lyapunov properties, w
use results from a numerical simulation at high resolut
(10242) of freely decaying two-dimensional turbulence. W
have computed the trajectories of 10242 particles initially on
a regular grid at a time when vortices and vorticity filamen
are present. The integration is made for 40 eddy turn-o
times. Time is adimensioned by vorticity such thattadim

5* t1

t2^v2&1/2dt where^v2& is the spatial average of enstro

phy. A reason for this choice is thattadim is also the integral
of the strain rate aŝv2&5^s2& in two-dimensional turbu-
lence. As discussed in Lapeyreet al.,15,16 the strain rate pro-
vides the time scale for the dynamics of the tracer gradie
The particle advection method is a fourth-order Rung
Kutta scheme with bicubic interpolation.26 Along the La-
grangian trajectories, we integrate separately the equation
the tracer gradient orientation and the logarithm of its no
@i.e., Eqs.~2a! and ~2b!#. This allows one to compute accu
rately both the norm and orientation of the tracer gradi
since the logarithm of the norm grows only linearly wi
time. The integration of the tracer gradient equation is do
off-line so that it is possible to do forward and backwa
integrations in time and test different initial orientations. T
resolvent matrixM is computed by integrating two initially
orthogonal tracer gradients. As a consistency check, we v
fied that the sum of the eigenvalues ofU are zero at the
numerical precision of the computer. Also, changing the i
tial condition of matrixM does not change the singular va
ues, provided that the columns ofM (t1 ,t1) correspond to
orthonormal vectors. As we use a Lagrangian method
integrating the tracer gradient equations, there is no
tracer and there is no small scale diffusion in the gradi
equations, contrary to previous studies,16,17 so that the
Lyapunov theory can be directly tested. The initial field
not the gradient of any tracer but this does not seem to b
issue in light of recent results on topological constraints
Lyapunov vectors.27,28 They demonstrated that the gradie
nature of the field is recovered after a certain time and
implies that the asymptotic Lyapunov vectors and expone
are linked together by an equation involving spatial deriv
tives.

IV. CONVERGENCE IN TIME

Goldhirsh et al.29 ~see also Ershov and Potapov30!
showed that the convergence of the singular value toward
‘‘asymptotic’’ Lyapunov exponent is rather slow~typically in
t21! but the orientation of the singular vector converg
more rapidly ~typically exponentially in time! toward the
Lyapunov vectorG1(t1). We can examine these conve
gence rates in our numerical simulation.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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FIG. 1. ~a! Average cosine of twice the angle differenc
of finite time Lyapunov vectors computed by two dif
ferent methods as a function of adimensional timetadim

~see the text for an explanation!. Continuous curve: for
g1(t1). Dashed curve forg2(t2). In the inset, the same
quantities are plotted, but as a function of dimension
time. ~b! Adimensional standard deviation of Lyapuno
exponentlFT as a function of time. Continuous curve
forward integration. Dashed curve: backward integr
tion. In the inset, the same quantities are plotted, but
dimensional units.
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To estimate the convergence toward the Lyapunov v
tor, we use the fact that there are two different methods
compute the singular vector: first, the forward Lyapunov v
tor G1(t1) corresponds to the asymptotic limit of the sing
lar g1 characterized by maximal growth over a finite tim
interval; second, random tracer gradients should align al
the vector orthogonal toG1(t1) @i.e.,F1(t1)# when integrat-
ing backward in time. Thus, we compared the orientat
u1(t1) of g1 with the orientationu2(t1) of the vector or-
thogonal to a tracer gradient integrated backward in ti
with a random orientation at timet2 . Figure 1~a! presents the
average cosine of 2(u12u2) as a function of the adimen
sional integration timetadim5* t1

t2 s rmsdt ~keeping fixed ei-

ther t1 or t2!. We observe a rapid convergence and a co
lation of 0.95 is reached after 20 eddy turn-over tim
Moreover the correlations for backward and forward integ
tions are overlapping, which means that the process is es
tially the same for both integrations in time and thattadim

captures its time scale@compare with the inset of Fig. 1~a!
which shows the same quantities as a function ofTdim5t2

2t1#.
Concerning, the Lyapunov exponent convergence, e

particle in the flow should converge to the same Lyapun
exponentl` . However in decaying turbulence, all quantiti
~vorticity, strain rate, etc.! are slowly decaying following a
power law and the asymptotic Lyapunov exponent should
exactly zero. It is thus more interesting to compute the ti
evolution of the standard deviation of the finite tim
Lyapunov exponent̂(lFT(x)2^lFT(x)&)2&1/2 as a function
of tadim. As we can see from Fig. 1~b!, the standard devia
tions of the backward and forward FTLEs decay slowly
time, which contrasts with the fast convergence of
Lyapunov vectors. The decay rate is different for the ba
ward and forward exponents@see the inset of Fig. 1~b!# be-
cause the turbulence is decaying in time so that the stir
processes are more efficient at timet1 than at timet2 ~with
t2.t1!. To nondimensionalize the main plots of Fig. 1, w
have usedtadim as the Lyapunov exponent is the inverse o
time scale. Some differences still exist for small times b
cause of the realignment of the singular vectors toward t
asymptotic vectors.

Concerning the evolution of the Lyapunov exponents
ward their asymptotic values, the probability density fun
tion ~pdf! of the Lyapunov exponent~Fig. 2! shows two pro-
cesses occurring at the same time: first, there is a narrow
of the pdf as a function of time, corresponding to the sl
Downloaded 26 Aug 2002 to 134.157.1.23. Redistribution subject to AIP
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decrease of the standard deviation discussed above. Th
consistent with theory and with results on FTLE probabil
density functions in chaotic flows and in force
turbulence.21,31Second, we observe a shift of the peak of t
pdf toward smaller values as the turbulence is decaying
time. However we can anticipate that the narrowing rate
the pdf toward its mean value should depend also on
magnitude of the stirring processes and the narrowing
would decrease as time increases. The processes of ho
enization of the FTLEs~associated with the narrowing of th
pdf! and of decay of the exponents are thus competing
the homogenization occurs first in our simulation because
turbulence is slowly decaying. If the decay were faster,
would expect the homogenization to be weaker and differ
regions of the turbulence would have different long-te
Lyapunov exponents.

The slow convergence of the exponent toward its me
value is related to the reorientation of the tracer gradi
toward its ‘‘equilibrium’’ orientation. Actually, the singula
value can be expressed as the time average of the inst
neous exponential growth rate of the tracer gradient by

l`5 lim
t22t1→`

1

t22t1
E

t1

t2 D logu¹q~ t !u
Dt

dt.

The instantaneous exponential growth rate of the tracer
dient depends only on the orientation of the gradient~and not
on its norm! as seen in Eq.~2b!. Because of the rapid con
vergence of the orientation toward the Lyapunov vector,

FIG. 2. PDF of the Lyapunov exponent for different times. As time
creases, the pdf is narrowing and the peak is increasing and shifting to
smaller values. The pdfs are plotted everytadim55. The dashed and bold
curve corresponds to a total timetadim56.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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692 Chaos, Vol. 12, No. 3, 2002 Guillaume Lapeyre
can assume that after a timet1/2, the tracer gradient is
‘‘equilibrated’’ ~i.e., dependent only on the flow propertie
and not on its initial orientation! through the rest of the time
This implies that the tracer gradient growth rate will be
dependent of the initial condition after timet1/2 and will be
equal to the growth rate associated with the Lyapunov vec
Thus the difference in orientation between the Lyapun
vector and the singular vector over@ t1 ,t1/2# transforms into
an error of the form

1

t22t1
E

t1

t1/2
~ ! dt.

When t2 tends to infinity, this is proportional to (t22t1)21,
which gives the slow convergence rate for the singular va

V. ALIGNMENT PROPERTIES

The Osseledec theorem states that a tracer gradien
tially in a ‘‘random’’ orientation at timet1 will align with the
backward Lyapunov vectorF2(t2) at time t2.t1 when t2

2t1 is large. This proves that for each timet2 there is a
natural tendency for the tracer gradient vector to align i
certain orientation independent of its initial orientation. Th
is also true for an integration backward in time: the tra
gradient will align alongF1(t1) when integrating fromt2

.t1 . As shown in Sec. IV, this convergence is very fa
indeed~exponentially in time! and contrasts with the slow
convergence of the FTLE. This proves that more emph
should be put on the dynamics of the tracer gradient or
tation. The rapid convergence allows one to use an assu
tion of stationarity for the velocity gradient tensor~or its
derivatives! as was done in different studies.16,17,32–34In par-
ticular, the assumption of a slowly varying velocity gradie
tensor in the strain basis~what we call an ‘‘adiabatic approxi
mation’’! is able to highlight the mechanisms of the trac
gradient dynamics.16,17 The strain basis is formed by th
eigenvectors of the strain matrix~i.e., 1

2(@¹u#1@¹u#T)!. In
the strain basis~formed by the eigenvectors of the stra
matrix 1

2(@¹u#1@¹u#T)), the equation of the orientation o
the tracer gradient simplifies to

Dz

Dt
5s ~r 2cosz!, ~5!

wherez52(u1f). The quantityr 5(v12(Df/Dt))/s is
the ratio between the effect of effective rotation~due to vor-
ticity in the strain basis! and the effect of strain. Assuming
slow variation in time of the quantityr and in regions domi-
nated by strain~where ur u<1!, the tracer gradient shoul
align with an orientationz252arccosr corresponding to
the stable fixed point of Eq.~5! as shown by Lapeyreet al.16

In regions dominated by ‘‘effective rotation’’~whereur u.1!,
the tracer gradient is rotating but the rotation rate is varia
in time so that another parameter is involved in the dyna
ics. This parameter iss5 @D(s21)#/Dt and corresponds to
the evolution of the time scale of the dynamics (s21). In
these regions, the orientationz aligns with an orientationa
5arctan(s/r)1p(12sign(r ))/2 as was observed by Klei
et al.17 An interesting feature is that the quantitiesr ands are
invariant under solid body rotation, keeping the same inv
Downloaded 26 Aug 2002 to 134.157.1.23. Redistribution subject to AIP
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ance as the tracer gradient equation. This is because the
fective rotation’’ in the numerator ofr is the difference be-
tween rotation due to vorticity and strain axis rotation.~The
angle between the compressional strain axis and thex axis is
2f2 p/4, soDf/Dt is of opposite sign of the strain axi
rotation.! Relating this alignment tendency with th
Lyapunov theory, we see that the orientationzeq

2(t2) defined
by

zeq
25H 2arccosr where ur u<1

arctanS s

r D1
p

2
~12sign~r !! where ur u.1,

is in fact an estimate of the orientation of backwa
Lyapunov vectorF2(t2). Similarly, the orientationzeq

1(t2)
defined by

zeq
1 5H arccosr where ur u<1

arctanS s

r D1
p

2
~12sign~r !! where ur u.1,

is an estimate of the orientation of the forward Lyapun
vectorF1(t1) in the same approximation.

The adiabatic approximation used to derivezeq
6 can also

provide an estimate of the singular vectors. In the regi
dominated by strain (ur u<1), we can prove that the orienta
tion of maximum growth corresponds tozsg

15p1arccosr
when considering long times~i.e., such that* t1

t2s dt@1!. To

demonstrate this point, we can examine the instantane
tracer gradient growth rate~upper part of Fig. 3! and the
Lagrangian time derivative ofz ~lower part of Fig. 3! as
functions ofz. We see that the fixed pointz2 is not associ-
ated with the largest possible growth~which corresponds to
z52 p/2!. For an initial orientationz(t50) of the tracer
gradient alongzsg

1 ~which has the same growth rate initiall
as z2!, its growth rate is always larger than the one cor
sponding toz2 . Examining the other possible initial cond
tions ~either in@z2 ,z1#, @zsg

1 ,z2# or @z1 ,zsg
1#!, we see that

FIG. 3. Top: (D log r)/Dt as a function ofz. Bottom:Dz/Dt as a function
of z for r 50.5. The horizontal arrows symbolize the evolution ofz. The
crosses correspond tozsg

1 andz2 . z1 is indicated twice because it is define
modulo 2p.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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the time interval can be split into two parts: one for whi
the growth rate will be smaller that for the tracer gradie
initially along zsg

1 ; and another one for which it will have th
same behavior as the latter orientation. This argument pro
that the orientationzsg

1 should be an estimate of th
Lyapunov vectorG1 if the adiabatic approximation is valid
Similarly, we expectzsg

25p2arccosr to be a good approxi-
mation of the backward singular vector in regions whe
ur u,1. To extend this results to regions dominated by
‘‘effective rotation,’’ we can use the orthogonality ofF1 and
G1 ~or F2 andG2! so thatzsg

6 should be equal top1zeq
6 ,

i.e.,

zsg
65H p6arccosr where ur u<1

arctanS s

r D1
p

2
~32sign~r !! where ur u.1.

This last equality uses the notion of biorthogonality of F
rell and Ionnaou.24

To examine these estimates in the numerical simulat
we computed the cosine of twice the relative angle of
forward singular vectorg1 with different orientations as a
function of the adimensional timetadim ~Fig. 4!. These ori-
entations are the compressional strain axisS2 ~correspond-
ing to z52p/2! and the adiabatic solutionszeq

2 andzsg
1 , all

of these computed at timet1 . Initially, we observe the sin-
gular vectorg1 to be in the direction ofS2. This is an exact
result since (D/Dt) (MTM )(t1 ,t1)52S, and in an expan-
sion at a first order in time,MTM5Id12tS1O(t2). The
alignment with the strain eigenvector decreases rapidly
time and after 10 adimensional time units, the average co
is only 0.3. During the same period, the average cosine of
adiabatic approximation of the singular vector increases
reach a maximum of 0.8 at about 2 time units and then
creases around 0.5. This demonstrates that our assumpti
stationarity for the quantityr ~i.e., the adiabatic approxima
tion! seems strictly valid for a few turn-over times but th
estimatedzsg

1 direction gives a good estimate of the true s
gular vector even for long times. Actually a direct compu
tion of the mean adimensional time of validity of the ad
batic assumption~not shown! shows that this time is large
than one turn-over time for 30% of particles and this is ev

FIG. 4. Average cosine between forward singular vectorg1 and adiabatic
approximationzsg

1 , compressional strain eigenvectorS2 and adiabatic equi-
librium solutionz2 as a function of adimensional timetadim.
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greater~40%! in regions dominated by strain~whereur u,1!.
Concerning the backward integration in time, an identi
evolution is observed~not shown! but the roles are changed
initially the backward singular vectorg2 is aligned withS1

~corresponding toz51p/2!, then it aligned with zsg
2

whereas the correlation withzeq
1 remains small.

SinceF1(t1) and G1(t1) are orthogonal and sincezeq
1

and zsg
1 are also orthogonal, the alignment between the f

ward vectorF1 andzeq
1(t1) is exactly equivalent to the align

ment betweenzsg
1 and the forward vectorG1. Thus, Fig. 4

shows thatzeq
1(t1) well approximates the forward Lyapuno

vector F1(t1). Similarly, zeq
2(t2) well approximates the

backward Lyapunov vectorF2(t2) ~not shown!, which is
consistent with our previous results.16,17

VI. DIFFERENCES BETWEEN LYAPUNOV VECTORS

A. Singular vectors versus bred modes

In the preceding discussion, two classes of Lyapun
vectors were introduced: the ‘‘bred modes’’ associated w
alignment of the tracer gradient after equilibration@f 2(t2)
and f 1(t1) for backward and forward integrations in time#
and the singular vectors associated with maximal tracer
dient growth over a finite time interval@g2(t2) andg1(t1)#.
We can use the adiabatic solutions to gain some insights
the differences between these vectors.

As was shown by the dynamical argument in Sec. V,
orientationszsg

6 are not at all related to an equilibrium: the
are associated with a kinematic effect in the sense
growth rate and orientation properties are out of phase
that the equilibrium orientationszeq

6 do not correspond to the
largest possible growth rate. This is observed in the num
cal simulation~Fig. 4! since the correlation ofzeq

2 with g1 is
very weak whereas it is stronger forzsg

6 . Moreover the cor-
relation of g1 with f 2 presents the same tendency as
correlation withzeq

2 ~not shown!. This behavior is related to
the non-normality of¹u ~expressed in the strain basis!, i.e.,
the fact that ¹u has nonorthogonal eigen
vectors.24 Two limiting cases can highlight these difference
In a pure strain field~for which r 50!, the orientationszsg

1

andzeq
2 are equal, which means that the tracer gradient c

verges toward the vector corresponding to the largest gro
rate ~the compressional strain axis here!. In this case, the
equation of the norm and of the orientation of the gradi
are in phase and the velocity gradient in the strain basis
orthogonal eigenvectors. For an axisymmetric vortex,
situation is quite different sincer equals61 ~see Lapeyre
et al.16! and the orientationszeq

2 andzsg
1 are now orthogonal.

In this case, the tracer gradient at equilibrium is orthorad
whereas the largest growth over a finite time can be obtai
when the gradient is oriented in the radial direction. It
interesting to note that these two orientations correspon
no instantaneous growth of the tracer gradient. This beha
indicates the importance of the rotation due to the vorticity
the strain basis~what we call the ‘‘effective rotation’’! in
driving the non-normality of the operator. The competitio
between effective rotation and strain is the main mechan
that drives the difference betweenzeq

2 andzsg
1 and seems also

to explain the difference betweenF2 andG1 in the numeri-
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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cal simulation. The orientationsg6 ~and G6! are therefore
not instructiveper seto understand the dynamics associa
with Lyapunov theory. They correspond to the ‘‘extrem
behavior for the tracer gradient whereas the Lyapunov v
torsF6 correspond to the equilibrated~or ‘‘mean’’! behavior.

B. Backward versus forward vectors

There also exists a distinction between forward a
backward Lyapunov vectors. The Osseledec theorem sh
that these vectors are associated with different properties
forward and backward integration in time but these prop
ties are not directly comparable.

Again we can use the adiabatic approximation to emp
size the differences. In the case of a pure strain fieldr
50), the backward orientationzeq

2 and the forward orienta
tion zeq

1 are orthogonal corresponding to the compressio
and extensional strain axes. In this situation, they corresp
to orientations of growth for the tracer gradient, either
backward or forward integration in time. For the more ge
eral caseur u,1, the equilibrium orientationszeq

6 are different
and also correspond to growth of the tracer gradient in
grated forward or backward in time. On the other hand,
an axisymmetric vortex, the two orientationszeq

6 are equal.
For the more general case ofur u.1, zeq

6 are also equal bu
the forward growth rate (D/Dt) logu¹qu52s sinzeq

2

52s s/Ar 21s2 is strictly opposite to the backward growt
rate 2 (D/Dt) logu¹qu5s sinzeq

15s s/Ar 21s2 ~as time is
reversed!. This is because a growth in a forward integrati
corresponds to a decay in a backward integration in this
tation regime.

The difference betweenzeq
2 andzeq

1 relates to the revers
ibility or irreversibility of the tracer gradient dynamics. S
we can interpret the difference between the Lyapunov v
torsF2 andF1 to be a consequence of local reversibility
irreversibility of the flow ~of course, if a trajectory passe
from a region with chaotic behavior to a region with reve
ible behavior, it is globally chaotic!. To diagnose such a be
havior we can compare the instantaneous growth rate of
tracer gradient at timet when integrated from the past~i.e.,
from time t1 such thatt2t1.0 is large! with the growth rate
at time t when integrated from the future~i.e., from timet2

such that t22t is large!. This corresponds to comparin
(D/Dt) logu¹qu for an orientation along F2(t) and
2 (D/Dt) logu¹qu for an orientation alongF1(t) @Eckhardt
and Yao35 introduced the growth rate alongF2(t) to measure
a local Lyapunov exponent for a different purpose#. Figure 5
presents the joint probability density function of these t
quantities computed after a time integration such t
* t1

t s rmsdt5* t
t2s rmsdt520. As expected, we observe tw

different regimes: a regime along the anti-bisector cor
sponding to opposite growth rates. This means that in th
regions, the dynamics is instantaneously nonchaotic, and
behavior of the gradients is reversible. The second reg
corresponds to the large branch along the bisection in
positive quadrant corresponding to growths forward a
backward in time. These regions are associated with str
irreversibility of the system, since if we integrate forwa
Downloaded 26 Aug 2002 to 134.157.1.23. Redistribution subject to AIP
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and backward the tracer gradient equations along the s
trajectory, we will obtain a different solution than the initia
condition.

We tried to relate the two regimes to the quantityr and
found that the regions of irreversibility are well correlate
with ur u,1 whereas the regions more predictable are co
lated withur u.1 ~not shown!. The numerical simulation thus
confirms the prediction of the adiabatic approximation a
shows that forward and backward Lyapunov vectors tend
have same sign or opposite sign growth rates but with
same amplitude. This could explain why stable and unsta
invariant manifolds often display the same orientation~as
should be the case in regions dominated by ‘‘effective ro
tion’’ ! whereas they intersect near hyperbolic points~as they
correspond to different or even orthogonal orientations
should be the case in regions dominated by strain!.

VII. SPATIAL DISTRIBUTION OF FTLEs

There have been numerous studies of finite ti
Lyapunov exponents in two dimensions but most of th
concentrated on the statistics of the Lyapunov exponent
relation to the tracer field.31,36–38Some of them examined th
spatial distribution of the Lyapunov exponents in a tw
dimensional chaotic flow.8,25To our knowledge, we give here
the first description of the spatial distribution of FTLE
freely decaying turbulence. Only Babianoet al.39 examined
some particular trajectories for this type of flow.

The time evolution of the spatial distribution o
Lyapunov exponents is very similar in our turbulent simu
tions to that found by Pierrehumbert and Yang8 in their cal-
culation for the troposphere: for small time integration, lar
FTLEs ~Fig. 5! concentrate in patches with shapes identi
to the distribution of the strain rate~not shown!. This is
because the strain rate controls the short-term behavior o
singular value as explained in Sec. V. Then, these patc
become thinner and thinner and transform into filaments
large FTLEs~see Fig. 6!. As time proceeds, these filamen
become narrower and fill the background flow but th

FIG. 5. Joint PDF of the forward and backward growth rates compu
respectively, with an orientation alongF2 andF1.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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FIG. 6. Finite time Lyapunov expo-
nent fortadim56, plotted at initial po-
sitions.
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Lyapunov exponents decrease and tend to the spatial m
value as particles are experiencing different straining regi
~not shown!. This process shows that spatial homogenizat
of the Lyapunov exponent proceeds rapidly as particles h
time to wander through the flow. Then, the Lyapunov exp
nent of the particles will slowly decay as the turbulence
also decaying. Finally, the FTLE field will tend to the valu
l`50. Figure 6 displays the FTLE after a timetadim56 ~the
most interesting stage in our opinion! corresponding to the
presence of filaments with large values of the Lyapunov
ponents~compared with the spatial mean exponent^l&'1!.
For reference, the pdf of FTLEs corresponds to the bold
dashed curve in Fig. 2. The filaments present in the fig
could be the signature of the invariant manifolds in the t
bulent flow field.

Concerning the spatial distribution of the FTLEs, thr
different categories of structures can be described. There
large scale filaments that correspond to the largest expon
These filaments start from the neighborhood of one vor
and end close to the vicinity of another vortex~see, for in-
stance, the long and horizontal filament in the center of F
6!. They are associated with theinteraction of vorticeswhich
leads to a large straining. This can be demonstrated by
amining the Lyapunov exponent at thefinal positions of par-
ticles att2 ~Fig. 7! ~actually this figure represents the norm
the gradient of a real tracer during the stage where diffus
does not play any role!. The very long filament starting from
the top of Fig. 7 and ending at the bottom near the asymm
ric dipole corresponds to the horizontal filament with lar
FTLE on Fig. 6. As trajectories indicate~not shown!, the
formation of the dipole of the bottom center of Fig. 7 leads
the ejection of material and to this very long filament. T
Downloaded 26 Aug 2002 to 134.157.1.23. Redistribution subject to AIP
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same process occurs with the two vortices at the bot
right- and left-hand corners of Fig. 6, which are responsi
for the filament at the top right-hand corner of Fig. 6 a
which lead to the dipole at the bottom right- and left-ha
corners of Fig. 7~remember that the domain is doubly pe
odic!. A last example corresponds to the vortex at the
center of Fig. 6: a filament starts from this vortex and en
up near the two smaller vortices close to the center of
figure. In Fig. 7, we see that these three vortices at the
center of the figure are very close at this time, leading t
very strong straining. These FTLEs that start from the vic
ity of one vortex and terminate at the vicinity of another o
are due to the future interactions of these vortices that p
vide the straining and nonlocal transport associated with

Another kind of structure corresponds to the filame
that wind up around the vortices in spirals. This is genera
the case for vortices that are close to axisymmetric shape~for
instance the vortex at the center of Fig. 6!. These filaments
are associated with ejection of material from inside the v
tex to its surroundings, thus they materialize the transporin
the vicinity of the vortex. They are densely packed aroun
vortices and the vortex core is characterized by low value
Lyapunov exponents, consistent with Babianoet al.39 Par-
ticles seeded uniformly in a box around the vortex~Fig. 8!
tend to stay in the vicinity of the vortex even if the
Lyapunov exponent is high. Some particles even enter
vicinity by the interplay of the large scale filament. The vo
tex core is well defined as particles do not generally leave
core and have low FTLEs~see the particles in gray in Fig. 8!.
We therefore speculate that the layered structure of FT
around the circular vortices is just the ‘‘circulating cell’’ de
scribed by Elhmadiet al.2 or the ‘‘stochastic layer’’ dis-
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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FIG. 7. Finite time Lyapunov expo-
nent fortadim56, plotted at final posi-
tions.
-
:
ng
is
la-

a

d
es
o

be
ica
th

e
. I
rre
tu
.
f

ie
n

th
to
tu

o
nu
s-

e
or-
cer
tion
po-
ori-
ov
r
’’
o
so-
lib-
f-
lar
as

en-
tion
xi-
of
er-
-

e
he
nds

d
the
r-
la-
e of
cussed by Joseph and Legras.14 This region controls the ex
change between the far field and the interior of the vortex
particle that exits a vortex core is trapped for a very lo
time in that region before it is expelled to the far field. It
interesting to note that elliptical vortices have a few fi
ments that wind up around them, and their edges~i.e., their
circulating cell! seem thinner. These elliptical vortices have
geometrical structure very similar to the Kida vortex15,40

with two long filaments surrounding the vortex and exten
ing to the far field. This circulating cell around the vortic
could act as a dynamical barrier: a circular shape is ass
ated with a thick stochastic layer that prevents mixing
tween the vortex core and the far field whereas an ellipt
shape is associated with a thinner layer and the interior of
vortex can be mixed more easily with the far field.

A last category of structures corresponds to low valu
of Lyapunov exponents in the background turbulent field
is associated with low values of the strain rate and co
sponds to vortices of smaller and smaller scale and ampli
but with properties analogous to the large scale vortices

Finally, the distribution of FTLEs shows the intricacy o
chaotic mixing in two-dimensional turbulence: the propert
of mixing depend not only on the shape of the vortices a
their stochastic layer but also on the nonlocal interaction
allows mixing to spread from the vicinity of one vortex
another one. The FTLE with largest values are the signa
of the future interactions between coherent structures.

VIII. CONCLUSION

We have discussed the link between recent results
tracer gradient dynamics and Lyapunov theory using a
merical simulation of two-dimensional turbulence to illu
Downloaded 26 Aug 2002 to 134.157.1.23. Redistribution subject to AIP
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trate our points. Lyapunov theory predicts not only the tim
evolution of the norm of the tracer gradient but more imp
tantly the existence of orientations toward which the tra
gradient converges. The rapid convergence of the orienta
contrasts with the slow convergence of the Lyapunov ex
nent and justifies the importance of the dynamics of the
entation. Two types of structures emerge from Lyapun
theory: singular vectorsg6 associated with maximum trace
gradient growth over a finite time and ‘‘linear bred mode
vectorsF6 toward which tracer gradients align. These tw
types are intrinsically different because the first one is as
ciated with extreme behavior and the other one with equi
rium ~or ‘‘mean’’! behavior of the tracer gradient. This di
ference is due to the importance of strain for the singu
vectors and effective rotation for stable Lyapunov vectors
the numerical simulations confirms it. Moreover, these ori
tations can be estimated from local velocity and accelera
gradient tensors by the so-called ‘‘adiabatic appro
mation.’’ 16,17Another point is that the relative orientations
forward and backward Lyapunov vectors allow one to det
mine the local ‘‘irreversibility’’ of the tracer gradient dynam
ics.

We also examined the spatial distribution of finite tim
Lyapunov exponents in the two-dimensional flow field. T
FTLEs present an intricate structure which strongly depe
on the shape of the vortices for local transport~i.e., in the
vicinity of the vortex!: nearly circular vortices have a broa
circulating cell which seems to prevent mixing between
far field and the interior of the vortex whereas elliptical vo
tices have a narrow circulating cell. Some large scale fi
ments of large values of FTLE are also present becaus
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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FIG. 8. Initial ~left! and final~right! positions of particles seeded near the circular vortex of the center of Fig. 6.
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the interaction between vortices and govern the nonlo
transport properties.

Finally, this paper tried to clarify what Lyapunov theo
can teach us for the properties of chaotic advection by t
dimensional flows. The Lyapunov approach was used
many studies but with different points of view. Th
Okubo32–Weiss33 ~OW! criterion and the Hua and Klein
~HK!34 criterion were introduced to understand the instan
neous dynamics of the tracer gradient related tolocal growth
or rotation of the gradient. However, these criteria are
directly related to Lyapunov exponents as the Lyapunov
ponents correspond to a tracer gradient growth rate aver
along a Lagrangian trajectory, which isnonlocal by nature.
This explains why finite time Lyapunov exponents give ve
different results from OW and HK criteria as illustrated b
Boffetta et al.41 The Okubo–Weiss and Hua and Klein a
proaches were indeed relevant for the dynamics of the or
tation of the Lyapunov vectors as the dynamics is deco
posed by these criteria in terms of the competition of rotat
and strain. This competition drives the dynamics of the o
entation of the tracer gradient~see Lapeyreet al.,16 Klein
et al.,17 and Sec. V of the present paper!. To recover the
Lyapunov exponent, one then needs to integrate the infor
tion of the dynamics of the orientation along Lagrangi
trajectories through the tracer gradient growth rate. This
basically the approach followed by Lapeyreet al.15 This kind
of approach for studying transport barriers or invariant ma
folds is preferable than directly diagnosing finite tim
Lyapunov exponents because of the slow convergence o
FTLE as shown by Boffettaet al.41 for a nontrivial test case
Other alternative approaches exist, such as the metho
Haller13,42 to diagnose invariant manifolds, the finite siz
Downloaded 26 Aug 2002 to 134.157.1.23. Redistribution subject to AIP
al

-
in

-

t
-
ed

n-
-

n
i-

a-

is

i-

he

of

Lyapunov exponent technique,9,41 or effective diffusivity.43,44

These methods give good results because of their fast
vergence in time but their basic properties are not yet w
understood.
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