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The active nature of vorticity is investigated in order to understand its difference with a passive
scalar. The direct cascade down to small scales is examined through both classical and new
diagnostics(based on tracer gradient properiiea numerical simulations of freely decaying
two-dimensional2D) turbulence. During the transient evolution of turbulence, the passive scalar
possesses a stronger cascade due to different alignment properties with the equilibrium orientations
obtained in the adiabatic approximation by Lapegteal. [Phys. Fluidsl1, 3729(1999] and Klein

et al. [Physica D146, 246 (2000]. In strain-dominated regions, the passive scalar gradient aligns
better with the equilibrium orientation than the vorticity gradient does, while the opposite is true in
effective-rotation-dominated regions. A study of the kinematic alignment properties shows that this
is due to structures with closed streamlines in the latter regions. However, in the final evolutionary
stage of turbulence, both active and passive tracer gradients have identical orielfi&tiotere is

a perfect alignmenbetween the two gradients, all the more so when they are striorfider effect

of diffusion on the cascade is also studied. 2001 American Institute of Physics.

[DOI: 10.1063/1.1324705

|. POSITION OF THE PROBLEM acterizations of the cascaddmit also original ones based on
vorticity and passive scalar gradients, in particular their ori-

For the two-dimensional Euler equations, vorticity obeysentation properties. Moreover, the effect of diffusion on the

the same equation as a passive scalar, in that it is conservedscade is also examined.

on Lagrangian trajectories. However, vorticity is linked in a  The first section of this paper is dedicated to a review of

kinematicsense to the velocity which advects it, since vor-the different argumentg&heoretical and observationalbout

ticity is the Laplacian of the stream function. The few studiesynat is known about vorticity and passive scalar cascades.

concerned with this problem in two-dimension&D)  Then, in Sec. II, we describe the numerical simulations used

_3 . . .. .
turbulencé™® have pointed out differences and similarities j, this paper and the properties of their initial conditions. The
between the two tracers. One striking similitude is that pasgirg section is devoted to usual diagnostics of the tracer

sive scalar and vorticity present similar shapes of filamentar{,cades. In Sec. IV. we examine the properties of the ori-
3 . 1V,

structures. - . . . . entations of both tracers. This section reveals novel aspects

Several papefs’ have investigated the vorticity gradient of the cascades. Finally, we draw more general conclusions

dynamics and rece_nt stud?éshavg hlghllghtgd the impor- .on the tracer cascades, summarizing the different aspects ex-
tance of the dynamics of orientation of passive scalar gradi-

ent, taking into account the effect of the velocity and accel-ammed In this paper.
eration gradient tensot&s the latter has been shown to be
essential for the dynamit4?). Our aim is to use the concepts
developed in these studies to revisit the problem of the na- There are several arguments for considering that vortic-
ture, passive or active, of vorticity. Our analysis is based oty should be dynamically active, i.e., should differ from a
the examination of the direct cascade of both tracers down tpassive scalar. The first one is due to the fact that vorticity is
small scales. The manifestation of this cascade is the produ&inematically related to the stream function and, thus, the
tion of small scales, i.e., the productionsifong tracer gra-  enstrophy flux for a particular wave number in Fourier space
dients Analyzing these gradients for the two tracers shouldhas no local contribution. This behavior will occur if vortic-
improve our knowledge of vorticity dynamics. ity is a function of stream functiona{=f()): vorticity re-

The present paper is an attempt to assess quantitativepains stationary, which is likely to occur for vortices. On the
the differences and similarities between the VOftiCity and Paspther hand, the passi\/e scalar variance flux in Spectra| space
sive scalar cascades using numerical simulations of 2D tuhas a contribution stemming from the interaction between

bulence in free decay. The study uses several diagnostigfe |ocal wave numbers of, respectively, passive scalar and
related to the tracer cascades through the evolution of thgyeam function.

turbulent field, both classical oné¢spatial and spectral char-

A. Vorticity as an active tracer

Another, more restrictive, aspect of that kinematic rela-
tionship is the relationship in spectral space between vortic-
dElectronic mail: glapeyre@ifremer.fr ity and strairt
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) R also observed that vorticity and passive scalar have much

os(k) +ion(k) =15 k), more similar spectra for structures containing a small amount
of vorticity than for the entire flow. Thus it is tempting to
state that the small-scale structures of vorticity outside the

V‘ihe_r8k:kx+'ky Is the wave number in complex space andy g rtices should be passive and possess a similar cascade to
k* its complex conjugatess, o,, and @ are the Fourier . passive scalar one.

components of, respectively, shear strain, normal strain, and
vorticit_y (see Sec. Ig: for _exact definitio}n§ . . C. Tracer dynamics

This phase relationship between vorticity and strain was ) )
also noted by Ohkitaht as he found that these quantities are ~ We need to know the properties of the tracer cascade in
related in physical space by a conjugation relationship in twcrder to compare vorticity and passive scalar cascades. This
and three dimensions: the same integral transfarmto a cascade is related to the production of small scales, i.e.,
minus sign links the symmetric and antisymmetric part of Strongtracer gradientsLapeyre‘_et al®and Kleinet_ al® have _
the velocity gradient tensor. This conjugation relationshiprecen“y addressed the dynamics of tracer gradient formation.
seems to prevent vorticity from cascading in threelet us summarize their basic results as they will be used in
dimensions?? the present paper.

One manifestation of these kinematic properties is that _Consider a traceq which is advected along Lagrangian
vorticity filaments are known to be unstalfihe so-called frajectories. Its gradient verifies the equation

Rayleigh? instability) and roll up in vortices. Thus vorticity DVq

structures have a feedback effect on the velocity field that i —[Vu]*Vaq,

advects them and can develop nontrivial behavior which dif-

fers from the passive scalar behavior. where[Vu]* is the transpose of the velocity gradient tensor.

Babianoet al? and Ohkitani have examined differences This tensor can be decomposed into three parts: vortigity
between vorticity and passive scalar in numerical simulationshear strairrg, and normal straiwr,, . It is more convenient
of forced turbulence in stationary state. They have observetb split the strain field into its norm and orientation and to
that the scalar variance flux is greater than the enstrophy fludecompose the passive scalar gradeqtin the same way,
at the scales of vortices and this result should also hold for
decaying turbulence. This difference was attributed to the
role of vortices that tend to protect against the enstrophy , — do+au,  (0g,0,)=0a(cos 2p,sin 2¢),
cascade as confirmed by Babiaebal? and McWilliams*
the enstrophy cascade is faster when the vortices are filtered @=dxw—dyu with p=0 ando=0.

than when the vo_rtices_ are preser_lt._ Thus the straining fi_quLhe key result pointed out by Lapeyeeal® is that the equa-
produced _by vortices is more efficient to transfer passivgi,, of the relative orientation of the tracer gradiéwthich
scalar variance than enstrophy to small scales. makes an angl® with the x-axis) with respect to the com-
pressional strain axiavhich makes an angle/4— ¢ with the
x-axis) characterizes the full tracer gradient dynamics,

on=du—dyw, Vqg=p(cosh,sing),

B. Vorticity as a passive tracer

One could object to these arguments that if the initial

conditions of vorticity and passive scalar are identical, they {=2(0+¢),
remain identical through time evolution. However, the weak- D¢ D¢ @
ness of this argument is that it is a very particular solution. Dt o+ ZE_ 0 COS{= o (r—cos{).

The active nature of vorticity filaments can be ques-
tioned by the results of Dritscheit al,'® who showed that Lapeyreet al® and Kleinet al?® studied this equation, which
vorticity filaments do not develop the classical roll-up insta-is not closed in the sense thatr, and{ are time dependent.
bility if they are exposed to external strain as small as 0.06 obnder the assumption thatis slowly varying(the so-called
the filament vorticity. The vortices of 2D turbulence can “adiabatic approximation), there are two dynamical re-
have a stabilization effect on the vorticity filaments as con-gimes for the orientatiorf, depending on the parameter
firmed by Kevlahan and Fardé. =(w+2(D¢/Dt))/o. This parameter defines the competi-

Concerning the conjugation relationship pointed out bytion between effective rotation effedtfie sum of vorticityw
Weiss and Ohkitanit* its importance in two dimensions and of the rotation of the strain axes2¢/Dt)] and strain-
could be much more reduced than in three dimensions. Iing effects. The first effect tends to rotate the gradient while
two dimensions, the cascade to small scales implies the prdhe second effect tends to align it with the strain axes.
duction of vorticitygradients If these gradients are uncorre- In regions of the flow where straining effects dominate
lated with vorticity, it is not obvious that the conjugation (|r|<1), the orientation should tend to a stable fixed point
relationship between strain and vorticity is able to impedeof Eq. (1), i.e.,
the vorticity cascade, i.e., the production of vorticity gradi-
ents by straining processes.

Babianoet al? noted in their numerical simulations the when making an adiabatic approximatidMoreover, the
similar shapes of the small-scale structures of the vorticitytracer gradient nornp should grow exponentially in time.
and the passive scalar outside the coherent vortices. Thékhis regime corresponds to an intense cascade of tracer.

{={_=—arccog,
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In the regime where effective rotation effects dominate  p2g v
(Ir[>1), the tracer gradient should rotate but the rotation 5~ =®— 0 COS{+ ?(VqXVAq)k
rate D{/Dt depends on time. Thus the orientation of mini-
mal rotation rate corresponds to the orientation along which
the gradient spends most of its time. This orientation de-
pends orr but also on the Lagrangian evolution of the rate of
strains= (1/0?)(Da/Dt). Thus, the orientatiog should be  with k the unit vector normal to the plane of motion.
statistically close to the orientation of minimal rotation rate, =~ These equations involve the classical diffusion terms
ie., (vAp and vA 9) whose effects are to suppress spatial inho-

§=azarctams/r)ﬂl—sigr(r))z, mogeneities. However, there are other terms with different

2 effects on the gradient properties.

Let us examine their effects assuming that the other
terms (classical diffusion, vorticity, and strginare negli-
gible. The equations reduce to

4v
=w—0CoS{+2vAf+ 7V0-Vp,

again when making an adiabatic approximatidvioreover,
the gradient nornp should evolve slowly, corresponding to a
weak cascade.

These results were obtained by examining the equilib- p

. . . . ; p 2

rium solutions of the orientation equation whemnds are DL vp|V 0|7, 2
slowly varying functions of time. They were validated for

the strongest gradients in numerical simulations of two- py o,

dimensional turbulené€ and confirm the important roles EZ?VH-Vp. 3

played by both the velocity gradient tenséhrough o and

) and the acceleration gradient tengtroughD ¢/Dt and o the one hand, from EqR), for large spatial variations of
Do/Dt) as previously noted by Basdevant and Philipovitch 6, there is an exponential decay of the gradient nprihus
and Hua and Klglﬁ:The erentatlon and gradient NOrM ap- regions of large spatial variations éfshould be regions of
proaches quantitatively improve the representation of thema| gradientd® On the other hand, the larger the gradient
tracer gradient dynamics with respect to previous stutffes. orm p is, the smaller the diffusion effect on the orientation
Thus, if the adiabatic approximation is valid, the tracergpoyid be. because the diffusive term in E8). should be
gradient orientation, should align with these equilibrium ;o5 Moéeover Constantiet al 8 showed that this diffu-
orientations related to the flow topology. This is confirmedg;jye term is responsible for the spatial alignment of the tracer

by numerical simulations, particularly for the largest gradi- 44 gients with the direction of the largest gradients present in
ents. This result is based only on the conservation of the,q field.

tracer on Lagrangian trajectories, which is true for both vor-
ticity and passive scalar and thus theraipriori no reason

for a difference of their alignment properties.
II. INITIAL CONDITIONS AND THEIR CASCADE

D. Diffusion effects on tracer gradients PROPERTIES

The effect of diffusion on the cascade properties is little- INitial conditions

documented. It is generally assumed that its role is to damp  In order to explore the differences of passive and active
the norm of the tracer gradient. To our knowledge, only twotracer cascades, we have used numerical simulations of
papers examine its effect on the orientation of the gradientreely decaying two-dimensional turbulence. Vorticity is
Protaset aI.6 observed in their numerical simulations of 2D then a true Lagrangian invariant like the passive scalar,
forced turbulence that when increasing the Reynolds numbeghich is not the case in forced simulations. The code used
(by using hyperviscosity instead of Newtonian viscositie  here is a pseudo-spectral code detailed in Hua and
vorticity gradients align better with the compressional strainHaidvoget® at a resolution of 10241024. The numerical
axis. On the other hand, Constanéihal.'® develop qualita- diffusion is a Laplacian for both vorticity and passive scalar
tive results on the effect of diffusion, neglecting the effect ofwith the same coefficient of diffusiorvE&1.5x 107°). The

the cascade dynamics. Starting from the equation ofotal kinetic energy is set to 1. This yields a Reynolds num-

advection-diffusion ber of the order ReUL/v~4.2x 10° (with L=2).
The initial conditions correspond to the same spectra for
Dq L . . .
—=vAq, vorticity and passive scalar but with random phases of their
Dt Fourier components. We have performed different simula-

tions with different initial spectral slopes, and only two types
of behavior, namely the dominance of either large or small
scales, seem to matter as previously noted by Santangelo
Dp _ v etal?®

Dt~ posingt ;Vq -V(Aq) The first set of simulations corresponds to large or inter-
mediate scales. The simulation studied here will be initially

we obtain the equation for the normand the orientatior®
of the tracer gradienV q=p(cosé,sinb),

P 2 =
= osin{+vAp—vp|VEl, Kaar =k&, &t =k expl — (k—10)2), @
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101 TABLE |. Quantities related to kinematic properties of initial conditions of
the two simulationsC is the correlation betweem and V. R is the align-
ment coefficient of the vorticity gradient with orientatianin effective-
rotation-dominated regions is the alignment coefficient with orientation
{_ in strain-dominated regions arid is the alignment coefficient witla

100 also in strain-dominated regions.

o c R S N
2
© LARGE —0.60 0.70 0.09 0.47
el SMALL 0.00 0.24 0.03 0.16
>10
@
Q
g
-2
104 (lu-Vol)
- 2 N
V(UK Vo[ )
107 . . Because of the random initial conditions, the spatial average
10° 10" 102 (u-Vw) vanishes, motivating the need for absolute valDe.
wavenumber =1 corresponds to a perfect correlation between the two

vectors whileC=—1 corresponds to a perfect anticorrela-
tion (i.e., a reduction of nonlinearitieslf the two vector
fields are decorrelated th&h=0.

The quantityC is displayed in Table | for the two initial
spectra. The initial condition LARGE has depleted nonlin-
whereX, corresponds to the Fourier componenkait wave  earities C= —0.6), while the initial condition SMALL does
numberk andX} corresponds to its complex conjugaieis  not possess such a depletion and vorticity seems decorrelated
the vorticity, andc the passive scalar. with stream function. The same quantity for passive scalar

This simulation corresponds to a peakkat 10 in tracer  (replacingVw by V¢ in C) yields 0 for all initial conditions.
spectra as displayed on Fig. 1. We call this simulation  The kinematic properties of the vorticity cascade can be
LARGE. It corresponds initially to structures with closed examined using a method similar to Shtilmenal.?* who
streamlinegsee Fig. 2a)] and it allows quasi-inviscid dy- investigate the existence of a kinematic origin for the align-
namics in the beginning of the simulatidbecause of the ment of the vorticity vector with the strain axes in three-
absence of small scalesThis point will be shown below. dimensional turbulent flows. In the same way, we can exam-

The second set corresponds to small-scale initial strucine the kinematic properties of alignment with the
tures. For instance, we take equilibrium directions derived in Lapeyret al® and Klein

A ak 1A Ak 15 6 et al® and explained in Sec. | C. The question which is ad-

Kawy =ke i =k (1+K). dressed is how the conjugation between vorticity and strain
We call this simulation SMALL. Its spectrum displayed on (8 explained in Sec. IAaffects the alignment properties
Fig. 1 has & ! slope at small scales, typical of 2D turbu- With the equilibrium orientations of the orientation dynam-
lence. In physical space, only very small-scale structures aréS- Actually this conjugation relationship is all the more able
initially present[see Fig. 8)] and diffusion is expected to t0 halt the cascade as it links quantitiestrain, vorticity

FIG. 1. Initial tracer spectra for simulations LARGE&olid curvg and
SMALL (bold curve.

act through the entire range of evolution. directly involved in the production of vorticity gradients.
A measure of the alignment properties is given by three
B. Kinematic properties of the initial conditions quantities that express the alignment for strong gradients, in

regions dominated by strainr(=|(w+ 2D ¢/Dt)/o|<1)

An analysis of the kinematic properties of the initial con- 5,4 regions dominated by effective rotatidn|&-1). These
ditions of the vorticity field can be done to knawpriori the quantities are

initial configuration of the enstrophy cascade. There are no
such initial cascade properties for the passive scalar as itis (|Vw|%coq{,— a))

decorrelated with the velocity field by the phase randomizaR= (Val? in effective rotation regions,
tion.
The first quantity that can be examined is the degree of ([Vow|?cog¢,— L)) . _ _
nonlinearities of our initial conditions. We know that vortic- S= Vol In strain regions,
ity is conserved on a Lagrangian trajectory, i.e.,
_ Vol|?coq{,—a
dw+u-Vo=0. = { |<|Vi|£2> ) in strain regions.

There can be a substantial depletion of nonlinearities when-

ever the vorticity advecting term- Vo=J(¢,w) isweak. A Here we define ¢(,=2(0,+¢), where Vo
nondimensional measure of this weakness is the pseudocor|V w|(cosé,,sing,) and{. is defined in the same way for
relation coefficient, the passive scalar field. The symHipldenotes a spatial av-

Downloaded 15 Dec 2000 to 140.208.6.31. Redistribution subject to AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.



Phys. Fluids, Vol. 13, No. 1, January 2001 Dynamics of the orientation of active and passive scalars 255

FIG. 2. (a), (c), (e) Vorticity field at
time t=0, 1.02, 10.02 for simulation
LARGE. (b), (d), (e) Passive scalar
field at the same times.

erage in regions ofr|<1 for SandN and in regions ofr| is no alignment of passive scalar gradient with these equilib-
>1 for R A value of 1 corresponds to perfect alignment"ium orientations(not shown. N _
with the orientationz_ or . If the orientation is equiparti- From Table I, we note that initial conditions of simula-

tioned, we obtain @but the reverse is not triléVe have not  tion LARGE present a tendency to align with(R~0.70) in
examined the alignment with strain eigenvectors as in Protagffective rotation regioné.e., when|r|>1), whereas such a
et al® because it is twice as weak as in our c38e. tendency is much more reduced for simulation SMALR (
For the passive scalar field, we find that these quantities=0.24). This has been confirmed by the alignment pdfs
yield 0. The probability density functiongdfs) of {.—Z_  which exhibit a stronger peak for simulation LARGE than
and {.— «a are almost equipartitioned, confirming that therefor simulation SMALL (not shown. Thus the effect of the
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(a) (b)

FIG. 3. (a), (c), (e) Vorticity field at
time t=0, 1.14, 4.89 for simulation
SMALL. (b), (d), (e) Passive scalar
field at the same times.

conjugation relationship between strain and vorticity de-linked to closed stream lindse., vorticity patchesfavors a
pends on the types of structures present in the flow. If therveak cascade as previously observed by Babetral? and
are closed stream lingas in simulation LARGE the con-  McWilliams.!* On the contrary, if there are no such struc-
jugation relationship aligns kinematically vorticity gradients tures present in the field, the conjugation relationship be-
with the equilibrium orientation of effective-rotation- tween strain and vorticity has no effect on the alignment.
dominated regions. We have checked that this result depends In regions where strain dominatef |<1), we obtain
only on the geometry of the structures and not on their scalesmall values ofS for both initial conditions; thus there is no
[i.e., taking a spectrum peak kt=100 in Eq.(4) leads to  kinematic alignment with _ [also confirmed by the almost
similar values ofR]. Actually this alignment is associated equipartitioned shape of the alignment p.drfot shownl].
with a weak cascade, i.e., a weak production of traceHowever, the kinematic alignment witta seems to hold in
gradients. As a consequence, this kinematic alignmentregions dominated by strain but with a weaker amplitude
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TABLE II. Different time scales related to the tracer cascade for the twol||. PHYSICAL AND SPECTRAL CHARACTERIZATION
simulations: 7,4, is the time scale of the nondiffusive cascatased on  OF THE CASCADES
enstrophy. 74 is the time scale dfliffusivecascade as defined in Sec. Il C.

A. Evolution in physical space

Tad Tdiff Taift / Tad L . . . .

= : S It is interesting to examine the time evolution of the
LARGE 0.100 0.441 4.65 vorticity and passive scalar fields to assess their differences.
SMALL 0.110 0.097 0.88

The evolution of the vorticity field is well described in the
literature?®:22:23
Let us consider first simulation LARGE. Initially, the
vorticity field and the passive scalar field are decorrelated in
than in effective rotation r_egions, &= 0.47 for simulation space but present the same types of struciifiies. 2a) and
LARGE andN=0.16 for simulation SMALL. 2(b)]. In the very early stage of evolutiont437,q), the

These kinematic results demonstrate that the conjugatiopyices do distort the passive scalar field but remain quasis-
relationship between vorticity and strain can only occur if thetationary themselves, a result also present in Holloway and

vorticity field possesses specific geometrical properties, SUCRjstmannssort. Later on, the vortices begin to interact with
as the presence of closed streamlifies, vorticity patches  o4ch other, a process which creates filaments of vorticity

Because of these structures, there is a kinematic alignmewh”e shearing the weakest vorticEBig. 2(c)]. During the
with the orientationa, which is associated with a weak cas- same time, the passive scalar reaches the diffusive length

cade. scale and becomes homogenized very rapidly both outside
and inside vorticefFig. 2(d)]. In the final evolutionary stage
of turbulence, the vorticity field displays the presence of co-
We can define two time scales associated with the tracenerent vortices and vorticity filamenf&ig. 2(e)]. The pas-
cascades. The first time scale is related to the process of tlwve scalar field displays the same kind of geoméfrig.
nondiffusive cascade by stretching and folding of the scalap(f)]: homogenized regions inside vortices and filaments out-
isolines. This time scale is side. As vortices are present from the start, the vorticity field
is more homogenized inside the vortices than the scalar field
which often forms spirals. This simulation shows that the

C. Inviscid and diffusive cascade time scales

1 : :
Tadv™ ) process of production of small scales is faster for the scalar
V(%) field than for the vorticity field. The initial presence of the
) ) ) ) ~vortices seems to inhibit the cascade of vorticity to small
wherea is the rate of strain an} is the spatial average. This g.gjes.

is the usual enstrophy time scale (as*) =(w?) for 2D tur- The evolution of simulation SMALL is different. Ini-
bulence. ) ) _ ) tially, there are very small scale structurddgs. 3a) and

A second time scale intervenes if one takes into accound ) These structures interact by straining and diffusive
the _role of diffusion. Diffusion aqts agalr_lst strain on the processes and vortices emerge sloffiig. 3c)]. The tracer
spatial scaleL giy=(v7a0) "% Consider a line element of field evolves in the same wdyFig. 3(d)]. In the final evolu-

width Lo. By stretching,. its .Width. decgys in time Mt.) tionary stage of turbulence, larger vortices deve|6igy.
=Lyexp(t/mgy)- Thus diffusion will be important at a time 3(e)] and shear the passive scalar fiéklg. 3f)] as also

Tqitt WhenL reaches the diffusive length scalgy, found in simulation LARGE

L§ B. Spectral evolution

Tdift = Tadv|0Y . .
VTady As the total tracer variance constantly decreases because

. ~of dissipation, the tracer spectra are nondimensionalized
HereL, can be set by the typical wavelength of the vorticity g,ch that a value of 1 is obtained floe= 20. This procedure
gradient, for instance, allows us to examine the evolution of the slope of the spectra
at large scales and at small scales.
_, (IVAw|) Simulation LARGE has initially a spectrum peaked at
0 —W- k=10 for both vorticity and passive scalar. As time evolves,
the enstrophy spectrum spreads more and more to small
These time scales, as well as the ratjg /7,4, can be scales as well as to large scalésy. 4@)]. When the enstro-
computed for the initial conditiongTable Il). Simulation phy spectrum fills the whole wave number space, it exhibits
LARGE has a typical inviscid cascade time scale which isa spectral slope steeper thail (around—1.4) at the inter-
much shorter than the diffusive cascade time scaleénediate scales Zk<<100 (curves E and F Moreover, we
(741 =4.657,4,) While these two time scales are comparableobserve the accumulation of enstrophy at large scales, be-
for simulation SMALL. This means that diffusion is likely to cause of the inverse energy cascade. The passive scalar spec-
be negligible in the tracer cascade processes for simulatiomum has a faster developmdiftig. 4(b)]. The passive scalar
LARGE for a timet< 74y . For simulation SMALL, diffu-  slope is shallowefaround—0.9) at intermediate scales in the
sion will be importantab initio. final evolutionary stage of turbulendsee also Fig. @)].
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FIG. 4. (a), (c) Enstrophy spectrdb),

(d) Passive scalar spectra. Simulation
LARGE (a), (b) at t=0, 0.06, 0.18,
0.46, 1.86, 4.74, 8.1A)—(G). Simula-
tion SMALL (c), (d) at t=0, 0.45,
5.79, 10.5(A)—(D). (e), (f): curve A,
vorticity spectrum; curve B, passive
scalar spectrum. (e) Simulation
LARGE at t=1.86. (f) Simulation
SMALL at t=4.89.
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But we observe a steepening of the slope at later ttneve  spectra completely, shows that vorticity and passive scalar

G), due to the dissipation that permanently removes enstrdiave identical spectra at small scdlEgys. 4e) and 4f)]. At

phy and scalar variance at small scales. intermediate scales, passive scalar spectra are shallower than
Initially, for simulation SMALL, the tracer spectra have vorticity spectra. At large scales, we obsefat later timeg

a power lawk ! at small and intermediate scalgggs. 4c)  the accumulation of enstrophy which is absent for passive

and 4d)]. This power law is modified by dissipation at small scalar. The overlap of the two tracer spectra at small scales

scales and the spectra become steeper and steeper. At laggild imply an identical nature of the cascade for both trac-

scales, we observe the accumulation of enstrophy while thers, even if there were differences during the transient devel-

passive scalar spectrum seems stationary. opment of the spectra. The major difference appears at large
A comparison of both tracers in the final evolutionary and intermediate scales where enstrophy seems to move to-

stage of turbulence, before dissipation begins to erode theard large scales: because of the inverse energy cascade and
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FIG. 5. Time evolution of the cascade efficiencks and3, . for simulations LARGE(a) and SMALL (b); the abscissa i 74 in the main figuret/ 7,q, in
the inset. Solid curves: vorticity efficiency, . Dashed curves: passive scalar efficiedgy.

the accumulation of vorticity into vortices, an amount of en-stronger kinematic properties. Moreover, in the final evolu-
strophy is cascading to large scales, which produces a steeg@nary stage of turbulence, the quantitesand?. , reach a

spectrum for vorticity than for passive scalar, since such anean plateau around 0.4.

behavior is absent for the latter. Initially, the efficiency parameter is much smaller in

simulation SMALL than in simulation LARGE. A possible

explanation is the important initial effect of diffusion in

A widely used diagnostic of the cascade is given by thesimulation SMALL, which could decrease the alignment

efficiency parametergor two-dimensional skewneSs S with the strain axes. This is confirmed by the local maximum

andX .. This quantity is related to the inviscid equation for of the efficiency parameter occurring at time g for both

the tracer gradient, for instance vorticity gradient simulations. This result could be consistent with the result of
' ’ Protaset al® which indicates a better alignment with the

compressional strain axis when the Reynolds number in-
creases.

C. Cascade efficiency

D|Vwl|?

Dt |Vol|?osing,,.

The efficiency parameter allows us to quantify whetherlV. ALIGNMENT PROPERTIES OF TRACER
the cascade has reached its maximal gradient growth rate, GRADIENTS

20

= T = > ment of tracer isolines with the flow topology and the align-
(IVo[5){o?) (Vo[ \D(t/7aq) ment of the two tracers with each other. Actually in the adia-

) . . batic approximation and in a nondiffusive situation, the flow

W% del?)nezc Kl] tthethsatmfe Wf)i 1bUt repIaC|d§a;| ?}' |VI(':| topology forces any tracer gradient to align with equilibrium

an é;‘" fﬁhgc' c:.e.t a S('jrg“’_t .tﬁoﬂr‘respon 1o e?'%n'. orientationg® Some qualitative resufts observe similar

mxein io tre1 voir 'C;“% g;arlefnthw ir ir?rc?mtprr(]ass:orna Sr:ai'gtracer isolinedi.e., a tendency for an alignment between the

?rst,r 'e"r r?deigr?t (racvx(/?[ho € strain rate tensor responsibig,, tracer gradienjs Our numerical simulations can be used

0 T?]Ceesege?ficieenc?/ ?aara.meters are displayed in Figal 5 to confirm quantitatively this fact and also to investigate the

. . role of diffusion on the orientation dynamics.

and §b) for the two simulations. Because of the random y

phase |n|t_|al|zat|o_r?E:0 |n_|t|ally. From the start} becomgs A. Diffusion effect on alignment

and remains positive, which corresponds to the production of _ _ - _

tracer gradientgnote that its definition doesot imply posi- First, let us examine the effect of diffusion on the orien-

tiveness. tation of tracer gradient in order to explain the time evolution
For both simulations, we observe that the passive scal&@f our diagnostics. The equation for the vorticity gradient

efficiency increases more strongly than the vorticity effi-orientation taking into account Newtonian diffusion is
ciency. An explanation could be the conjugation relationship

between vorticity and strain. This seems confirmed by the
larger ratioX /%, for simulation LARGE than for SMALL
(1.80 against 1.31since simulation LARGE has initially with D, the diffusive term,

B —(|Vol?osing,) 1 < D|V |2 > Another aspect of the tracer cascade concerns the align-

D—t=w—acosgw+Dw, (5)
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FIG. 6. Evolution of the ratio between contributions of diffusion and advective dynamics to the alignme(®) Bg.a function oft/ 74 for simulations
LARGE (a) and SMALL (b). Solid curvesD? (bold), D# (light). Dashed curvesd (bold), D? (light).

v explained by the more rapid cascade, i.e., production of
Dwzw(VwXV(Aw)) -k, small-scale inhomogeneities, for passive scalar than vorticity
as we have seen in previous section.
wherek is the unit vertical vector. The results of simulation SMALIFig. 6(b)] are similar

We can compute the ratio between diffusion effects ando simulation LARGE but diffusion is larger in this simula-
dynamical effects in E¢(5) with a tracer gradient weighting, tion since there are initially more spatial inhomogeneities.
— We have also examined the effect of diffusion on strain-
(|Vo|"D5) . : . . ; .
D" = R dominated and effective-rotation-dominated regions. Diffu-
(IVo| (0*+09)) sion has less influence in effective-rotation regions than in

is defined for vorticity. We define the same quanij for ~ Strain-dominated regions with a difference of 10ffot
passive scalar by replacir, by D, and Vo by Vc. The showr)._ln strain-dominated regions, a strqng cascade_, ie,a
exponenn is varied to assess the weight due to the strongediroduction of small scale@nd small-scale inhomogeneities
gradient values. Thus increasings similar to restricting the 1S expected and the effect of diffusion should be important
averaging to regions of stronger and stronger gradients. there.

Figures 6a) and Gb) display these quantities for the two
simulations. We have plotted only the cases1 andn  B. Dynamical alignment with flow topology
=4 as there is a monotone decrease of the ratios when As shown by Lapeyreet al® and Klein et al? in the
increasegnot shown. We can see that the effect of the dif- adiabatic approximation, there are two different regions for
fusion decreases when we consider larger gradien{as the dynamics of tracer gradient, namely when strain domi-
and D¢ decreases when increases, confirming the predic- pates [rI=](w+2D¢/Dt)/o|]<1) and when effective-
tion of Constantiret al'® stated in Sec. ID. For the largest (gtation dominates|f|>1). For the former regime, the ori-
gradients, the ratio between diffusion effects and dynamicagntation variable; should tend toz_, while for the latter
effects is less than 5%. This confirms that we can negleclegime, the orientation should rotate with time but remains
diffusion as was done in our previous theoretical stufiies. statistically close tax.
~ Now let us examine simulation LARGEFig. 6(a)]. Ini- We can examine if these alignments occur and how vor-
tially, the diffusion is negligible D, andDQ are of the order icity and passive scalar gradients differ. For this purpose, we
of 10°°). Aroundt~ 7, a sudden rise occurs, followed by gefine spatial averages of the cosine betwgand the equi-
a nslower increase and then by a slow decay. The growth qfyyrjym orientation ¢_ in strain regionsg in effective rota-
D, and D¢ can be interpreted as the production of smalltion regiong. We weight these spatial averages by the same
scales which enhances the diffusion terms. The decay Cou@xponent on both tracer gradient norms to compare regions

; ; .18
be explained by the mechanism of Constarginal.:™ as  hat should be similar for the two gradients. These diagnos-
diffusion tends to smooth the spatial field of the orientationjj.q gre

(by affecting both tracer gradient norm and orientaliats

effect becomes smalldthere are less and less spatial inho-

mogeneities Diffusion affects the passive scalar gradient

orientation before the vorticity gradient orientation but the n (IVo|"Vc|"cog¢,— )
difference is reduced for the strongest gradients. This can be ~© (|Vo|"Vc|™

in strain regions,
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FIG. 7. Evolution of the dynamical alignment in strain-dominated regions as a functidmngffor simulations LARGEa) and SMALL (b). In inset, zoom
of initial evolution. Solid curvesS? (bold), S, (light). Dashed curvess? (bold), S2 (light).
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(IVo["Vc|™)

in effective rotation regions.

n
w

At each time, spatial averaging is performed in strain-
dominated regions/|<1) for S, and in effective-rotation-
dominated regions|(|>1) for R] . The statistics are thus
done for regions that change constantly in time. The diag
nostics has been normalized:Zif- £ (respectivelyl—a) is
equipartitioned, therS)=0 (resp. R]=0). On the other
hand, a value of 1 corresponds to perfect alignment. W
defineS; andR{ in the same way for the passive scdlice.,
we replacef,, by . in each formula S stands for strain-
dominated regions andr stands for effective-rotation-
dominated regions.

1. Strain-dominated regions

teau. This is due to the weighting by the tracer gradient norm
which takes into account only a small part of the total field.

Now we can compare the evolution of the alignment of
the vorticity gradientsolid curve on the figujeand the pas-
sive scalar gradienidashed curjewith {_ . For early time
(t<7gi), the passive scalar gradient aligns better with the
equilibrium orientation _ than the vorticity gradient does.
This means that the direct cascade is more efficient for pas-
sive scalar than for vorticity. At timé~ 74, we observe
that S andS{ overlap forn=2. This is also true fon=3

énot shown and it indicates that tracer gradients align with

each othe(this will be examined further Because diffusion
is stronger for the passive scalar gradient orientalSSrde-
creases more strongly thzsﬁ,. Finally, the two curves over-
lap again at~7 7y .

For simulation SMALL[Fig. 7(b)], we observe similar
behaviors, except that the initial alignment increase is much
more reduced as diffusion acéd initio. The saturation of
alignment occurs also dt= 74 as for simulation LARGE

Let us consider first the strain-dominated regions. Inand we can be confident that the saturation is due to diffu-
these regions, the tracer gradient is expected to align with thgjgn.

orientation{ _, the stable fixed point of Eq1), if the adia-
batic approximation is valid.

For simulation LARGE[Fig. 7(a)], there is no initial
alignment of both tracer gradients with this orientati@s

2. Effective-rotation-dominated regions

We can consider the dynamical alignment properties in

shown in Sec. Il B S) =S{~0. As time evolves, both tracer effective-rotation-dominated regions. The tracer gradient is
gradients tend to align strongly with the equilibrium direc- expected to rotate at a nonconstant rotation rate and should

tion ¢_. Actually the alignment increases monotonously

lie statistically close to the equilibrium orientatien if the

with n (not shown, which means that the larger the tracer adiabatic approximation is valid.

gradients are, the better they align with while there is not
such a specific trend for the weakest gradients.

Figure 8a) displaysR! andR{ for n=0,2 for simulation
LARGE [actually we have checked that there is a monotone

At time t~ 745, we observe a decrease in alignment.increase ofR with n (not shown]. Initially vorticity gradi-
This decrease is related to diffusion which becomes imporents display a tendency to align with the orientation given by

tant at that time, as seen in Sec. IV A. HoweVg},and S{

a (R°=0.49 andR2=0.70 whereas there is no such an

increase once agaifat timet~6r4; for n=2) to reach a alignment for passive scalaR{~0). R{ strongly increases
mean plateau, different from perfect alignment. We can noteintil it reaches the same value B§ at t~0.5745. For n
that there are substantial oscillations around this mean pla=2, the two curves overlap during a timgy and thenR{
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FIG. 8. Evolution of the dynamical alignment in effective-rotation-dominated regions as a functibrypffor simulations LARGE@) and SMALL (b). In
inset, zoom of initial evolution. Solid curveR’ (bold), R? (light). Dashed curvesR? (bold), R? (light).

has a larger decrease thgf). Contrary to what is found for C. Alignment between passive and active scalar
strain-dominated regions, the alignment is always bdtter gradients

not equal for the vorticity gradients than for the passive Motivated by the overlap o8] andS! on the one hand
scalar g.radlents. After this transient phaRB,andR], over-  gnq R? and R" on the other hand, as well as the
lap again(at t~1374y for n=2) to reach a mean plateau ghservation® of similar tracer isolines, we can define a
with substantial oscillations as was also found preViOUSly irhuantityAn to examine the a"gnment between Vorticity gra-
strain-dominated regions. When comparing Fig&) @and  dients and passive scalar gradients,

8(a), the final overlap ofS] and S} occurs more rapidly in

strain-dominated regions than the final overlagRBfandR" _(IVo|"|Ve|"cod ¢, — &)

in effective-rotation-dominated regions. This can be ex- . (|Vo|"Vc|™

plained by the different dynamics of the two regions: in

n n ; R i
strain regions, the orientation should tend to the equiIibriurrfr‘;:fgrr Sr% ;ggtswvx'/htizﬁrglllswas iﬁﬂ?iﬁ'&alaﬁe?ehtioonns t\)/\?rgk;re
orientation{_ whereas in effective rotation regions, the ori- 9 P g

entation should be rotating and only statistically close to anp oth gradients are expected to have a similar cascade. More-

AR . . ST over, gradient weighting increases with
other equilibrium orientatiom. This implies a faster process :
. . S : o . As could be expected from the results on dynamical
of alignment with the equilibrium orientation in strain-

dominated . than in effecti tation-dominated alignment, simulation LARGE displays three stages of evo-
gic())r::lsna ed regions than in effective-rotation-dominated reéy ., [Fig. 9@)]. Initially, the two gradients are decorrelated

because of the random phase initialization Ase=0. There
For simulation SMALL[Fig. 8b)], the initial phase of P

i . i ab tor b 4R b is a rapid increase oA, reaching a value close to 1 for
alignment increase is absent for bd®j, and R; because  ~5 it~ . The alignment improves when increasing

diffusion is present initially. It can be compared with Simu- ris confirms that the direct cascade proceeds in the same
lation LARGE after diffusion has become efficidne., after way by aligning the two gradients, especially the strongest
t>574 on Fig. 8a)]. ones. Aftert~ 7y, diffusion becomes important arf, de-

We can conclude that the alignment of the vorticity gra-creases strongly. This lasts untit57q . After this time,
dient with the equilibrium orientatior has both a kinematic e gbserve an increase Af, which tends to 1(i.e., perfect
origin (the presence of spatial large-scale structures Witba“gnmentof the two gradientsfor n=2. Forn=0, the simu-
closed streamlingsand a dynamical origitidynamics of the  |ation was not carried long enough to examine the conver-
vorticity gradient orientation In the transient phase of tur- gence. Nevertheless, these results indicate tihetlargest
bulence, the kinematics improve the alignment of vorticity gradients of vorticity and passive scalar tend to align with
gradient with the equilibrium orientation more so than theeach otherWe can suspect that this is due to both advective
alignment of passive scalar gradient. Despite this kinematiclynamics and diffusion: on the one hand, the dynamics of
effect, passive scalar gradients and vorticity gradients havthe tracer gradient orientation tends to align tracer gradient
similar alignment properties witk in the final evolutionary — with equilibrium orientations related to the flow topology.
stage of turbulence. On the other hand, diffusion tends to reduce the gradients
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FIG. 9. Evolution of the orientation between the two gradigqgtss a function of/ 74 for simulation LARGE(a) and SMALL (b). Bold curve:n=0. Solid
curve:n=2. Dashed curven=3.

which are not aligned with these equilibrium orientations.dominated by effective rotatiofi.e., the sum of vorticity and
Another aspect of diffusion is to align spatially tracer gradi-strain axes rotation rateOn the other hand, for simulation
ents with the direction of the largest gradietftshus ampli- SMALL, diffusion effects are likely to be important
fying the alignment with the equilibrium orientatiofs this  ab initio, as indicated by an estimate of the inviscid and
latter mechanism is amplified for the strongest gradjents diffusive cascade time scales.
Thus, these effects contribute to a continuously growing  During the first transient phase of evolution, there is a
alignment between the two tracer gradients. However, Wetronger cascade for passive scalar than for vorticity. The
have to put @aveaton this argument. Why don’t we observe passive scalar develops small scales very rapidly, being
also a perfect alignment with the equilibrium orientatigns  gneared by vorticevhich remain quasistationary for simu-
anda? A tentative answer is thgt. anda are only estimates |5tion LARGE). This has been observed in both physical
of the real orientations given by the flow topology. Actually gnace and Fourier space. In strain-dominated regions, the
they are equilibrium estimates in the adiabatic approximation,,ssive scalar gradient aligns better than the vorticity gradi-
(r ands slowly varying in time of these orientations. ent with the equilibrium orientatio_ related to the flow
For simulation SMALL[Fig. 9b)], we observe only a topology. On the other hand, in effective-rotation-dominated

slow increase ofA, like the final phase of simulation ; . . . . .
S cer . regions, the vorticity gradient aligns better with the equilib-
LARGE. This is due to diffusion which acts through the rjum orientationa. A stronger cascade is observed in simu-

er'1tire evolution. But we can see.that t.here' Is also a p.erfe%tion LARGE than in simulation SMALL during this phase

alruézjgé?jie:t fgstehe strongest gradients in this case as in thBecause of the lesser influence of diffusion effects. We have

P g ' checked that the duration of this transient phase scales with
the diffusive cascade time scale for both simulations.

V. SUMMARY AND CONCLUSION Thereafter, in the final evolutionary stage of turbulence,

We have examined and compared the cascades of a pa{%gth tracer gradients tend to align with each other and this
sive scalar and vorticity in numerical simulations of freely €ff€ct is most pronounced for the strongest gradients. This

decaying 2D turbulence. The two tracer fields have been iniresult _implies that both tracer cascadgs are similar in the final
tialized with identical spectra but with different phases, for€volutionary stage of turbulence. This is corroborated both
two limiting (large- and small-scalecases. Dissipative ef- by the overlap of their spectra at small scales, and by iden-
fects are treated identically for both active and passive tracical alignments of their gradients with the equilibrium ori-
ers. The cascade dynamics is studied through the producticﬁ‘ﬂtations mentioned above. These observations could result
of tracer gradients, and, more specifically, the tendency foffom the combined effects of advective dynamistraining
alignment of those gradients with equilibrium directibhs process and diffusion effects which spatially align tracer
obtained in the adiabatic approximation. gradients with the direction of the largest gradié'ﬁtstt

The kinematic properties of the initial conditions reveal should be noted that the above results on the production of
that the conjugation relationship between vorticity and strairfracer gradients mostly concern small spatial scales, while
slows down the cascade dynamics whenever structures witpassive and active tracers behave quite differently at inter-
closed streamlines are present. This effect only operates faonediate and large scales of motion. Indeed, there is an accu-
simulation LARGE, where a substantial alignment of vortic- mulation of vorticity at large scales which is absent for the
ity gradients with the flow topology is observed in regions passive tracer case.
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