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Dynamics of the orientation of active and passive scalars
in two-dimensional turbulence
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The active nature of vorticity is investigated in order to understand its difference with a passive
scalar. The direct cascade down to small scales is examined through both classical and new
diagnostics~based on tracer gradient properties! in numerical simulations of freely decaying
two-dimensional~2D! turbulence. During the transient evolution of turbulence, the passive scalar
possesses a stronger cascade due to different alignment properties with the equilibrium orientations
obtained in the adiabatic approximation by Lapeyreet al. @Phys. Fluids11, 3729~1999!# and Klein
et al. @Physica D146, 246 ~2000!#. In strain-dominated regions, the passive scalar gradient aligns
better with the equilibrium orientation than the vorticity gradient does, while the opposite is true in
effective-rotation-dominated regions. A study of the kinematic alignment properties shows that this
is due to structures with closed streamlines in the latter regions. However, in the final evolutionary
stage of turbulence, both active and passive tracer gradients have identical orientations~i.e., there is
a perfect alignmentbetween the two gradients, all the more so when they are stronger!. The effect
of diffusion on the cascade is also studied. ©2001 American Institute of Physics.
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I. POSITION OF THE PROBLEM

For the two-dimensional Euler equations, vorticity obe
the same equation as a passive scalar, in that it is conse
on Lagrangian trajectories. However, vorticity is linked in
kinematicsense to the velocity which advects it, since vo
ticity is the Laplacian of the stream function. The few stud
concerned with this problem in two-dimensional~2D!
turbulence1–3 have pointed out differences and similariti
between the two tracers. One striking similitude is that p
sive scalar and vorticity present similar shapes of filamen
structures.2,3

Several papers4–7 have investigated the vorticity gradien
dynamics and recent studies8,9 have highlighted the impor
tance of the dynamics of orientation of passive scalar gr
ent, taking into account the effect of the velocity and acc
eration gradient tensors~as the latter has been shown to
essential for the dynamics7,10!. Our aim is to use the concep
developed in these studies to revisit the problem of the
ture, passive or active, of vorticity. Our analysis is based
the examination of the direct cascade of both tracers dow
small scales. The manifestation of this cascade is the pro
tion of small scales, i.e., the production ofstrong tracer gra-
dients. Analyzing these gradients for the two tracers sho
improve our knowledge of vorticity dynamics.

The present paper is an attempt to assess quantitat
the differences and similarities between the vorticity and p
sive scalar cascades using numerical simulations of 2D
bulence in free decay. The study uses several diagno
related to the tracer cascades through the evolution of
turbulent field, both classical ones~spatial and spectral char

a!Electronic mail: glapeyre@ifremer.fr
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acterizations of the cascades! but also original ones based o
vorticity and passive scalar gradients, in particular their o
entation properties. Moreover, the effect of diffusion on t
cascade is also examined.

The first section of this paper is dedicated to a review
the different arguments~theoretical and observational! about
what is known about vorticity and passive scalar cascad
Then, in Sec. II, we describe the numerical simulations u
in this paper and the properties of their initial conditions. T
third section is devoted to usual diagnostics of the tra
cascades. In Sec. IV, we examine the properties of the
entations of both tracers. This section reveals novel asp
of the cascades. Finally, we draw more general conclus
on the tracer cascades, summarizing the different aspect
amined in this paper.

A. Vorticity as an active tracer

There are several arguments for considering that vor
ity should be dynamically active, i.e., should differ from
passive scalar. The first one is due to the fact that vorticit
kinematically related to the stream function and, thus,
enstrophy flux for a particular wave number in Fourier spa
has no local contribution. This behavior will occur if vortic
ity is a function of stream function (v5 f (c)): vorticity re-
mains stationary, which is likely to occur for vortices. On t
other hand, the passive scalar variance flux in spectral sp
has a contribution stemming from the interaction betwe
the local wave numbers of, respectively, passive scalar
stream function.

Another, more restrictive, aspect of that kinematic re
tionship is the relationship in spectral space between vor
ity and strain,5
© 2001 American Institute of Physics
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ŝs~k!1 i ŝn~k!5 i
k

k*
v̂~k!,

wherek5kx1 iky is the wave number in complex space a
k* its complex conjugate.ŝs , ŝn , and v̂ are the Fourier
components of, respectively, shear strain, normal strain,
vorticity ~see Sec. I C for exact definitions!.

This phase relationship between vorticity and strain w
also noted by Ohkitani11 as he found that these quantities a
related in physical space by a conjugation relationship in
and three dimensions: the same integral transform~up to a
minus sign! links the symmetric and antisymmetric part
the velocity gradient tensor. This conjugation relations
seems to prevent vorticity from cascading in thr
dimensions.12

One manifestation of these kinematic properties is t
vorticity filaments are known to be unstable~the so-called
Rayleigh13 instability! and roll up in vortices. Thus vorticity
structures have a feedback effect on the velocity field t
advects them and can develop nontrivial behavior which
fers from the passive scalar behavior.

Babianoet al.2 and Ohkitani3 have examined difference
between vorticity and passive scalar in numerical simulati
of forced turbulence in stationary state. They have obser
that the scalar variance flux is greater than the enstrophy
at the scales of vortices and this result should also hold
decaying turbulence. This difference was attributed to
role of vortices that tend to protect against the enstro
cascade as confirmed by Babianoet al.2 and McWilliams:14

the enstrophy cascade is faster when the vortices are filt
than when the vortices are present. Thus the straining fi
produced by vortices is more efficient to transfer pass
scalar variance than enstrophy to small scales.

B. Vorticity as a passive tracer

One could object to these arguments that if the ini
conditions of vorticity and passive scalar are identical, th
remain identical through time evolution. However, the wea
ness of this argument is that it is a very particular solutio

The active nature of vorticity filaments can be que
tioned by the results of Dritschelet al.,15 who showed that
vorticity filaments do not develop the classical roll-up ins
bility if they are exposed to external strain as small as 0.06
the filament vorticity. The vortices of 2D turbulence ca
have a stabilization effect on the vorticity filaments as co
firmed by Kevlahan and Farge.16

Concerning the conjugation relationship pointed out
Weiss5 and Ohkitani,11 its importance in two dimension
could be much more reduced than in three dimensions
two dimensions, the cascade to small scales implies the
duction of vorticitygradients. If these gradients are uncorre
lated with vorticity, it is not obvious that the conjugatio
relationship between strain and vorticity is able to impe
the vorticity cascade, i.e., the production of vorticity gra
ents by straining processes.

Babianoet al.2 noted in their numerical simulations th
similar shapes of the small-scale structures of the vorti
and the passive scalar outside the coherent vortices. T
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also observed that vorticity and passive scalar have m
more similar spectra for structures containing a small amo
of vorticity than for the entire flow. Thus it is tempting t
state that the small-scale structures of vorticity outside
vortices should be passive and possess a similar casca
the passive scalar one.

C. Tracer dynamics

We need to know the properties of the tracer cascad
order to compare vorticity and passive scalar cascades.
cascade is related to the production of small scales,
strongtracer gradients. Lapeyreet al.8 and Kleinet al.9 have
recently addressed the dynamics of tracer gradient format
Let us summarize their basic results as they will be used
the present paper.

Consider a tracerq which is advected along Lagrangia
trajectories. Its gradient verifies the equation

D“q

Dt
52@“u#*“q,

where@“u#* is the transpose of the velocity gradient tens
This tensor can be decomposed into three parts: vorticityv,
shear strainss , and normal strainsn . It is more convenient
to split the strain field into its norm and orientation and
decompose the passive scalar gradient“q in the same way,

sn5]xu2]yv, “q5r~cosu,sinu!,

ss5]xv1]yu, ~ss ,sn!5s~cos 2f,sin 2f!,

v5]xv2]yu with r>0 and s>0.

The key result pointed out by Lapeyreet al.8 is that the equa-
tion of the relative orientation of the tracer gradient~which
makes an angleu with the x-axis! with respect to the com-
pressional strain axis~which makes an anglep/42f with the
x-axis! characterizes the full tracer gradient dynamics,

z52~u1f!,
~1!

Dz

Dt
5v12

Df

Dt
2s cosz5s~r 2cosz!.

Lapeyreet al.8 and Kleinet al.9 studied this equation, which
is not closed in the sense thats, r, andz are time dependent
Under the assumption thatr is slowly varying~the so-called
‘‘adiabatic approximation’’!, there are two dynamical re
gimes for the orientationz, depending on the parameterr
5(v12(Df/Dt))/s. This parameter defines the compe
tion between effective rotation effects@the sum of vorticityv
and of the rotation of the strain axes 2(Df/Dt)] and strain-
ing effects. The first effect tends to rotate the gradient wh
the second effect tends to align it with the strain axes.

In regions of the flow where straining effects domina
(ur u,1), the orientation should tend to a stable fixed po
of Eq. ~1!, i.e.,

z5z2[2arccosr ,

when making an adiabatic approximation.8 Moreover, the
tracer gradient normr should grow exponentially in time
This regime corresponds to an intense cascade of tracer
 AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.
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In the regime where effective rotation effects domina
(ur u.1), the tracer gradient should rotate but the rotat
rate Dz/Dt depends on time. Thus the orientation of min
mal rotation rate corresponds to the orientation along wh
the gradient spends most of its time. This orientation
pends onr but also on the Lagrangian evolution of the rate
strains5(1/s2)(Ds/Dt). Thus, the orientationz should be
statistically close to the orientation of minimal rotation ra
i.e.,

z5a[arctan~s/r !1~12sign~r !!
p

2
,

again when making an adiabatic approximation.9 Moreover,
the gradient normr should evolve slowly, corresponding to
weak cascade.

These results were obtained by examining the equi
rium solutions of the orientation equation whenr and s are
slowly varying functions of time. They were validated fo
the strongest gradients in numerical simulations of tw
dimensional turbulence8,9 and confirm the important role
played by both the velocity gradient tensor~throughs and
v! and the acceleration gradient tensor~throughDf/Dt and
Ds/Dt! as previously noted by Basdevant and Philipovitc17

and Hua and Klein.7 The orientation and gradient norm a
proaches quantitatively improve the representation of
tracer gradient dynamics with respect to previous studies4,5

Thus, if the adiabatic approximation is valid, the trac
gradient orientationz should align with these equilibrium
orientations related to the flow topology. This is confirm
by numerical simulations, particularly for the largest gra
ents. This result is based only on the conservation of
tracer on Lagrangian trajectories, which is true for both v
ticity and passive scalar and thus there isa priori no reason
for a difference of their alignment properties.

D. Diffusion effects on tracer gradients

The effect of diffusion on the cascade properties is lit
documented. It is generally assumed that its role is to da
the norm of the tracer gradient. To our knowledge, only t
papers examine its effect on the orientation of the gradi
Protaset al.6 observed in their numerical simulations of 2
forced turbulence that when increasing the Reynolds num
~by using hyperviscosity instead of Newtonian viscosity!, the
vorticity gradients align better with the compressional str
axis. On the other hand, Constantinet al.18 develop qualita-
tive results on the effect of diffusion, neglecting the effect
the cascade dynamics. Starting from the equation
advection-diffusion

Dq

Dt
5nDq,

we obtain the equation for the normr and the orientationu
of the tracer gradient“q5r(cosu,sinu),

Dr

Dt
52

r

2
s sinz1

n

r
“q•“~Dq!

52
r

2
s sinz1nDr2nru“uu2,
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D2u

Dt
5v2s cosz1

n

r2 ~“q3“Dq!•k

5v2s cosz12nDu1
4n

r
“u•“r,

with k the unit vector normal to the plane of motion.
These equations involve the classical diffusion ter

~nDr and nDu! whose effects are to suppress spatial inh
mogeneities. However, there are other terms with differ
effects on the gradient properties.

Let us examine their effects assuming that the ot
terms ~classical diffusion, vorticity, and strain! are negli-
gible. The equations reduce to

Dr

Dt
52nru“uu2, ~2!

Du

Dt
5

2n

r
“u•“r. ~3!

On the one hand, from Eq.~2!, for large spatial variations o
u, there is an exponential decay of the gradient normr. Thus
regions of large spatial variations ofu should be regions of
small gradients.18 On the other hand, the larger the gradie
norm r is, the smaller the diffusion effect on the orientatio
should be, because the diffusive term in Eq.~3! should be
weak. Moreover, Constantinet al.18 showed that this diffu-
sive term is responsible for the spatial alignment of the tra
gradients with the direction of the largest gradients presen
the field.

II. INITIAL CONDITIONS AND THEIR CASCADE
PROPERTIES

A. Initial conditions

In order to explore the differences of passive and act
tracer cascades, we have used numerical simulations
freely decaying two-dimensional turbulence. Vorticity
then a true Lagrangian invariant like the passive sca
which is not the case in forced simulations. The code u
here is a pseudo-spectral code detailed in Hua
Haidvogel19 at a resolution of 102431024. The numerical
diffusion is a Laplacian for both vorticity and passive sca
with the same coefficient of diffusion (v51.531025). The
total kinetic energy is set to 1. This yields a Reynolds nu
ber of the order Re5UL/n'4.23105 ~with L52p!.

The initial conditions correspond to the same spectra
vorticity and passive scalar but with random phases of th
Fourier components. We have performed different simu
tions with different initial spectral slopes, and only two typ
of behavior, namely the dominance of either large or sm
scales, seem to matter as previously noted by Santan
et al.20

The first set of simulations corresponds to large or int
mediate scales. The simulation studied here will be initia

kv̂kv̂k* 5kĉkĉk* 5k exp~2~k210!2!, ~4!
 AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.
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wherex̂k corresponds to the Fourier component ofx at wave
numberk and x̂k* corresponds to its complex conjugate,v is
the vorticity, andc the passive scalar.

This simulation corresponds to a peak atk510 in tracer
spectra as displayed on Fig. 1. We call this simulat
LARGE. It corresponds initially to structures with close
streamlines@see Fig. 2~a!# and it allows quasi-inviscid dy-
namics in the beginning of the simulation~because of the
absence of small scales!. This point will be shown below.

The second set corresponds to small-scale initial st
tures. For instance, we take

kv̂kv̂k* 5kĉkĉk* 5k5/~11k6!.

We call this simulation SMALL. Its spectrum displayed o
Fig. 1 has ak21 slope at small scales, typical of 2D turbu
lence. In physical space, only very small-scale structures
initially present@see Fig. 3~a!# and diffusion is expected to
act through the entire range of evolution.

B. Kinematic properties of the initial conditions

An analysis of the kinematic properties of the initial co
ditions of the vorticity field can be done to knowa priori the
initial configuration of the enstrophy cascade. There are
such initial cascade properties for the passive scalar as
decorrelated with the velocity field by the phase randomi
tion.

The first quantity that can be examined is the degree
nonlinearities of our initial conditions. We know that vortic
ity is conserved on a Lagrangian trajectory, i.e.,

] tv1u•“v50.

There can be a substantial depletion of nonlinearities wh
ever the vorticity advecting termu•“v5J(c,v) is weak. A
nondimensional measure of this weakness is the pseudo
relation coefficient,

FIG. 1. Initial tracer spectra for simulations LARGE~solid curve! and
SMALL ~bold curve!.
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^uu•“vu&

A^u2&^u“vu2&
21.

Because of the random initial conditions, the spatial aver
^u•“v& vanishes, motivating the need for absolute valueC
51 corresponds to a perfect correlation between the
vectors whileC521 corresponds to a perfect anticorrel
tion ~i.e., a reduction of nonlinearities!. If the two vector
fields are decorrelated thenC50.

The quantityC is displayed in Table I for the two initia
spectra. The initial condition LARGE has depleted nonl
earities (C520.6), while the initial condition SMALL does
not possess such a depletion and vorticity seems decorre
with stream function. The same quantity for passive sca
~replacing“v by “c in C! yields 0 for all initial conditions.

The kinematic properties of the vorticity cascade can
examined using a method similar to Shtilmanet al.,21 who
investigate the existence of a kinematic origin for the alig
ment of the vorticity vector with the strain axes in thre
dimensional turbulent flows. In the same way, we can exa
ine the kinematic properties of alignment with th
equilibrium directions derived in Lapeyreet al.8 and Klein
et al.9 and explained in Sec. I C. The question which is a
dressed is how the conjugation between vorticity and str
~as explained in Sec. I A! affects the alignment propertie
with the equilibrium orientations of the orientation dynam
ics. Actually this conjugation relationship is all the more ab
to halt the cascade as it links quantities~strain, vorticity!
directly involved in the production of vorticity gradients.

A measure of the alignment properties is given by th
quantities that express the alignment for strong gradients
regions dominated by strain (ur u5u(v12Df/Dt)/su,1)
and regions dominated by effective rotation (ur u.1). These
quantities are

R5
^u“vu2cos~zv2a!&

^u“vu2&
in effective rotation regions,

S5
^u“vu2cos~zv2z2!&

^u“vu2&
in strain regions,

N5
^u“vu2cos~zv2a!&

^u“vu2&
in strain regions.

Here we define zv52(uv1f), where “v
5u“vu(cosuv ,sinuv) andzc is defined in the same way fo
the passive scalar field. The symbol^& denotes a spatial av

TABLE I. Quantities related to kinematic properties of initial conditions
the two simulations.C is the correlation betweenu and“v. R is the align-
ment coefficient of the vorticity gradient with orientationa in effective-
rotation-dominated regions.S is the alignment coefficient with orientation
z2 in strain-dominated regions andN is the alignment coefficient witha
also in strain-dominated regions.

C R S N

LARGE 20.60 0.70 0.09 0.47
SMALL 0.00 0.24 0.03 0.16
 AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.
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FIG. 2. ~a!, ~c!, ~e! Vorticity field at
time t50, 1.02, 10.02 for simulation
LARGE. ~b!, ~d!, ~e! Passive scalar
field at the same times.
n

ot

tie

re

ilib-

-

dfs
n

erage in regions ofur u,1 for S andN and in regions ofur u
.1 for R. A value of 1 corresponds to perfect alignme
with the orientationz2 or a. If the orientation is equiparti-
tioned, we obtain 0~but the reverse is not true!. We have not
examined the alignment with strain eigenvectors as in Pr
et al.6 because it is twice as weak as in our case.8,9

For the passive scalar field, we find that these quanti
yield 0. The probability density functions~pdfs! of zc2z2

and zc2a are almost equipartitioned, confirming that the
Downloaded 15 Dec 2000  to 140.208.6.31.  Redistribution subject to
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is no alignment of passive scalar gradient with these equ
rium orientations~not shown!.

From Table I, we note that initial conditions of simula
tion LARGE present a tendency to align witha (R'0.70) in
effective rotation regions~i.e., whenur u.1!, whereas such a
tendency is much more reduced for simulation SMALL (R
'0.24). This has been confirmed by the alignment p
which exhibit a stronger peak for simulation LARGE tha
for simulation SMALL ~not shown!. Thus the effect of the
 AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.
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FIG. 3. ~a!, ~c!, ~e! Vorticity field at
time t50, 1.14, 4.89 for simulation
SMALL. ~b!, ~d!, ~e! Passive scalar
field at the same times.
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conjugation relationship between strain and vorticity d
pends on the types of structures present in the flow. If th
are closed stream lines~as in simulation LARGE!, the con-
jugation relationship aligns kinematically vorticity gradien
with the equilibrium orientation of effective-rotation
dominated regions. We have checked that this result dep
only on the geometry of the structures and not on their sc
@i.e., taking a spectrum peak atk5100 in Eq. ~4! leads to
similar values ofR#. Actually this alignment is associate
with a weak cascade, i.e., a weak production of tra
gradients.9 As a consequence, this kinematic alignme
Downloaded 15 Dec 2000  to 140.208.6.31.  Redistribution subject to
-
re

ds
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linked to closed stream lines~i.e., vorticity patches! favors a
weak cascade as previously observed by Babianoet al.2 and
McWilliams.14 On the contrary, if there are no such stru
tures present in the field, the conjugation relationship
tween strain and vorticity has no effect on the alignment

In regions where strain dominates (ur u,1), we obtain
small values ofS for both initial conditions; thus there is n
kinematic alignment withz2 @also confirmed by the almos
equipartitioned shape of the alignment p.d.f.~not shown!#.
However, the kinematic alignment witha seems to hold in
regions dominated by strain but with a weaker amplitu
 AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.



tio
he
u

e
s-

c
f
la

s

u
he
f

ity

i
a

ble
o
ti

e
ces.
e

e
in

sis-
and
h
city

ngth
side

o-

ut-
eld
eld

he
alar
e
all

ive

ause
zed

ctra

at
s,

mall

its

be-
spec-
r
e

tw

.

257Phys. Fluids, Vol. 13, No. 1, January 2001 Dynamics of the orientation of active and passive scalars
than in effective rotation regions, asN50.47 for simulation
LARGE andN50.16 for simulation SMALL.

These kinematic results demonstrate that the conjuga
relationship between vorticity and strain can only occur if t
vorticity field possesses specific geometrical properties, s
as the presence of closed streamlines~i.e., vorticity patches!.
Because of these structures, there is a kinematic alignm
with the orientationa, which is associated with a weak ca
cade.

C. Inviscid and diffusive cascade time scales

We can define two time scales associated with the tra
cascades. The first time scale is related to the process o
nondiffusive cascade by stretching and folding of the sca
isolines. This time scale is

tadv5
1

A^s2&
,

wheres is the rate of strain and̂& is the spatial average. Thi
is the usual enstrophy time scale as^s2&5^v2& for 2D tur-
bulence.

A second time scale intervenes if one takes into acco
the role of diffusion. Diffusion acts against strain on t
spatial scaleLdiff5~ntadv)

1/2. Consider a line element o
width L0 . By stretching, its width decays in time asL(t)
5L0 exp(2t/tadv). Thus diffusion will be important at a time
tdiff whenL reaches the diffusive length scaleLdiff ,

tdiff5tadvlogA L0
2

ntadv
.

HereL0 can be set by the typical wavelength of the vortic
gradient, for instance,

L0
225

^u“Dvu&
^u“vu&

.

These time scales, as well as the ratiotdiff /tadv, can be
computed for the initial conditions~Table II!. Simulation
LARGE has a typical inviscid cascade time scale which
much shorter than the diffusive cascade time sc
(tdiff54.65tadv) while these two time scales are compara
for simulation SMALL. This means that diffusion is likely t
be negligible in the tracer cascade processes for simula
LARGE for a time t,tdiff . For simulation SMALL, diffu-
sion will be importantab initio.

TABLE II. Different time scales related to the tracer cascade for the
simulations:tadv is the time scale of the nondiffusive cascade~based on
enstrophy!. tdiff is the time scale ofdiffusivecascade as defined in Sec. II C

tadv tdiff tdiff /tadv

LARGE 0.100 0.441 4.65
SMALL 0.110 0.097 0.88
Downloaded 15 Dec 2000  to 140.208.6.31.  Redistribution subject to
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III. PHYSICAL AND SPECTRAL CHARACTERIZATION
OF THE CASCADES

A. Evolution in physical space

It is interesting to examine the time evolution of th
vorticity and passive scalar fields to assess their differen
The evolution of the vorticity field is well described in th
literature.20,22,23

Let us consider first simulation LARGE. Initially, th
vorticity field and the passive scalar field are decorrelated
space but present the same types of structures@Figs. 2~a! and
2~b!#. In the very early stage of evolution (t'3tadv), the
vortices do distort the passive scalar field but remain qua
tationary themselves, a result also present in Holloway
Kristmannsson.1 Later on, the vortices begin to interact wit
each other, a process which creates filaments of vorti
while shearing the weakest vortices@Fig. 2~c!#. During the
same time, the passive scalar reaches the diffusive le
scale and becomes homogenized very rapidly both out
and inside vortices@Fig. 2~d!#. In the final evolutionary stage
of turbulence, the vorticity field displays the presence of c
herent vortices and vorticity filaments@Fig. 2~e!#. The pas-
sive scalar field displays the same kind of geometry@Fig.
2~f!#: homogenized regions inside vortices and filaments o
side. As vortices are present from the start, the vorticity fi
is more homogenized inside the vortices than the scalar fi
which often forms spirals. This simulation shows that t
process of production of small scales is faster for the sc
field than for the vorticity field. The initial presence of th
vortices seems to inhibit the cascade of vorticity to sm
scales.

The evolution of simulation SMALL is different. Ini-
tially, there are very small scale structures@Figs. 3~a! and
3~b!#. These structures interact by straining and diffus
processes and vortices emerge slowly@Fig. 3~c!#. The tracer
field evolves in the same way@Fig. 3~d!#. In the final evolu-
tionary stage of turbulence, larger vortices develop@Fig.
3~e!# and shear the passive scalar field@Fig. 3~f!# as also
found in simulation LARGE.

B. Spectral evolution

As the total tracer variance constantly decreases bec
of dissipation, the tracer spectra are nondimensionali
such that a value of 1 is obtained fork520. This procedure
allows us to examine the evolution of the slope of the spe
at large scales and at small scales.

Simulation LARGE has initially a spectrum peaked
k510 for both vorticity and passive scalar. As time evolve
the enstrophy spectrum spreads more and more to s
scales as well as to large scales@Fig. 4~a!#. When the enstro-
phy spectrum fills the whole wave number space, it exhib
a spectral slope steeper than21 ~around21.4! at the inter-
mediate scales 7,k,100 ~curves E and F!. Moreover, we
observe the accumulation of enstrophy at large scales,
cause of the inverse energy cascade. The passive scalar
trum has a faster development@Fig. 4~b!#. The passive scala
slope is shallower~around20.9! at intermediate scales in th
final evolutionary stage of turbulence@see also Fig. 4~e!#.

o
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FIG. 4. ~a!, ~c! Enstrophy spectra.~b!,
~d! Passive scalar spectra. Simulatio
LARGE ~a!, ~b! at t50, 0.06, 0.18,
0.46, 1.86, 4.74, 8.1~A!–~G!. Simula-
tion SMALL ~c!, ~d! at t50, 0.45,
5.79, 10.5~A!–~D!. ~e!, ~f!: curve A,
vorticity spectrum; curve B, passive
scalar spectrum. ~e! Simulation
LARGE at t51.86. ~f! Simulation
SMALL at t54.89.
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But we observe a steepening of the slope at later time~curve
G!, due to the dissipation that permanently removes ens
phy and scalar variance at small scales.

Initially, for simulation SMALL, the tracer spectra hav
a power lawk21 at small and intermediate scales@Figs. 4~c!
and 4~d!#. This power law is modified by dissipation at sma
scales and the spectra become steeper and steeper. At
scales, we observe the accumulation of enstrophy while
passive scalar spectrum seems stationary.

A comparison of both tracers in the final evolutiona
stage of turbulence, before dissipation begins to erode
Downloaded 15 Dec 2000  to 140.208.6.31.  Redistribution subject to
o-

rge
e

he

spectra completely, shows that vorticity and passive sc
have identical spectra at small scales@Figs. 4~e! and 4~f!#. At
intermediate scales, passive scalar spectra are shallower
vorticity spectra. At large scales, we observe~at later times!
the accumulation of enstrophy which is absent for pass
scalar. The overlap of the two tracer spectra at small sc
could imply an identical nature of the cascade for both tr
ers, even if there were differences during the transient de
opment of the spectra. The major difference appears at la
and intermediate scales where enstrophy seems to mov
ward large scales: because of the inverse energy cascad
 AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.
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FIG. 5. Time evolution of the cascade efficienciesSv andSc for simulations LARGE~a! and SMALL ~b!; the abscissa ist/tdiff in the main figure,t/tadv in
the inset. Solid curves: vorticity efficiencySv . Dashed curves: passive scalar efficiencySc .
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the accumulation of vorticity into vortices, an amount of e
strophy is cascading to large scales, which produces a ste
spectrum for vorticity than for passive scalar, since suc
behavior is absent for the latter.

C. Cascade efficiency

A widely used diagnostic of the cascade is given by
efficiency parameters~or two-dimensional skewness23! Sv

andSc . This quantity is related to the inviscid equation f
the tracer gradient, for instance vorticity gradient,

Du“vu2

Dt
52u“vu2s sinzv .

The efficiency parameter allows us to quantify wheth
the cascade has reached its maximal gradient growth ra

Sv5
2^u“vu2s sinzv&

^u“vu2&^s2&1/2 5
1

^u“vu2& K Du“vu2

D~ t/tadv!
L .

We defineSc in the same way, but replacingu“vu by u“cu
andzv by zc . Note that sinzv521 corresponds to the align
ment of the vorticity gradient with the compressional stra
axis, i.e., the eigenvector of the strain rate tensor respons
for tracer gradient growth.

These efficiency parameters are displayed in Figs. 5~a!
and 5~b! for the two simulations. Because of the rando
phase initialization,S50 initially. From the start,S becomes
and remains positive, which corresponds to the productio
tracer gradients~note that its definition doesnot imply posi-
tiveness!.

For both simulations, we observe that the passive sc
efficiency increases more strongly than the vorticity e
ciency. An explanation could be the conjugation relations
between vorticity and strain. This seems confirmed by
larger ratioSc /Sv for simulation LARGE than for SMALL
~1.80 against 1.31! since simulation LARGE has initially
Downloaded 15 Dec 2000  to 140.208.6.31.  Redistribution subject to
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stronger kinematic properties. Moreover, in the final evo
tionary stage of turbulence, the quantitiesSc andSv reach a
mean plateau around 0.4.

Initially, the efficiency parameter is much smaller
simulation SMALL than in simulation LARGE. A possible
explanation is the important initial effect of diffusion i
simulation SMALL, which could decrease the alignme
with the strain axes. This is confirmed by the local maximu
of the efficiency parameter occurring at timet'tdiff for both
simulations. This result could be consistent with the resul
Protaset al.6 which indicates a better alignment with th
compressional strain axis when the Reynolds number
creases.

IV. ALIGNMENT PROPERTIES OF TRACER
GRADIENTS

Another aspect of the tracer cascade concerns the a
ment of tracer isolines with the flow topology and the alig
ment of the two tracers with each other. Actually in the ad
batic approximation and in a nondiffusive situation, the flo
topology forces any tracer gradient to align with equilibriu
orientations.8,9 Some qualitative results2,3 observe similar
tracer isolines~i.e., a tendency for an alignment between t
two tracer gradients!. Our numerical simulations can be use
to confirm quantitatively this fact and also to investigate t
role of diffusion on the orientation dynamics.

A. Diffusion effect on alignment

First, let us examine the effect of diffusion on the orie
tation of tracer gradient in order to explain the time evoluti
of our diagnostics. The equation for the vorticity gradie
orientation taking into account Newtonian diffusion is

D2uv

Dt
5v2s coszv1Dv , ~5!

with Dv the diffusive term,
 AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.
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FIG. 6. Evolution of the ratio between contributions of diffusion and advective dynamics to the alignment Eq.~5! as a function oft/tdiff for simulations
LARGE ~a! and SMALL ~b!. Solid curves:Dv

1 ~bold!, Dv
4 ~light!. Dashed curves:Dc

1 ~bold!, Dc
4 ~light!.
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Dv5
n

u“vu2 ~“v3“~Dv!!•k,

wherek is the unit vertical vector.
We can compute the ratio between diffusion effects a

dynamical effects in Eq.~5! with a tracer gradient weighting

Dv
n 5A ^u“vunDv

2 &

^u“vun~v21s2!&

is defined for vorticity. We define the same quantityDc
n for

passive scalar by replacingDv by Dc and“v by “c. The
exponentn is varied to assess the weight due to the strong
gradient values. Thus increasingn is similar to restricting the
averaging to regions of stronger and stronger gradients.

Figures 6~a! and 6~b! display these quantities for the tw
simulations. We have plotted only the casesn51 and n
54 as there is a monotone decrease of the ratios when
increases~not shown!. We can see that the effect of the di
fusion decreases when we consider larger gradients asDv

n

and Dc
n decreases whenn increases, confirming the predic

tion of Constantinet al.18 stated in Sec. I D. For the large
gradients, the ratio between diffusion effects and dynam
effects is less than 5%. This confirms that we can neg
diffusion as was done in our previous theoretical studies8,9

Now let us examine simulation LARGE@Fig. 6~a!#. Ini-
tially, the diffusion is negligible (Dv

n andDc
n are of the order

of 1025!. Around t'tdiff , a sudden rise occurs, followed b
a slower increase and then by a slow decay. The growt
Dv

n and Dc
n can be interpreted as the production of sm

scales which enhances the diffusion terms. The decay c
be explained by the mechanism of Constantinet al.:18 as
diffusion tends to smooth the spatial field of the orientat
~by affecting both tracer gradient norm and orientation!, its
effect becomes smaller~there are less and less spatial inh
mogeneities!. Diffusion affects the passive scalar gradie
orientation before the vorticity gradient orientation but t
difference is reduced for the strongest gradients. This ca
Downloaded 15 Dec 2000  to 140.208.6.31.  Redistribution subject to
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explained by the more rapid cascade, i.e., production
small-scale inhomogeneities, for passive scalar than vorti
as we have seen in previous section.

The results of simulation SMALL@Fig. 6~b!# are similar
to simulation LARGE but diffusion is larger in this simula
tion since there are initially more spatial inhomogeneities

We have also examined the effect of diffusion on stra
dominated and effective-rotation-dominated regions. Dif
sion has less influence in effective-rotation regions than
strain-dominated regions with a difference of 10%~not
shown!. In strain-dominated regions, a strong cascade, i.e
production of small scales~and small-scale inhomogeneitie!
is expected and the effect of diffusion should be import
there.

B. Dynamical alignment with flow topology

As shown by Lapeyreet al.8 and Klein et al.9 in the
adiabatic approximation, there are two different regions
the dynamics of tracer gradient, namely when strain do
nates (ur u[u(v12Df/Dt)/su<1) and when effective-
rotation dominates (ur u.1). For the former regime, the ori
entation variablez should tend toz2 , while for the latter
regime, the orientation should rotate with time but rema
statistically close toa.

We can examine if these alignments occur and how v
ticity and passive scalar gradients differ. For this purpose,
define spatial averages of the cosine betweenz and the equi-
librium orientation (z2 in strain regions,a in effective rota-
tion regions!. We weight these spatial averages by the sa
exponent on both tracer gradient norms to compare reg
that should be similar for the two gradients. These diagn
tics are

Sv
n 5

^u“vunu“cuncos~zv2z2!&

^u“vunu“cun&
in strain regions,
 AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.



261Phys. Fluids, Vol. 13, No. 1, January 2001 Dynamics of the orientation of active and passive scalars
FIG. 7. Evolution of the dynamical alignment in strain-dominated regions as a function oft/tdiff for simulations LARGE~a! and SMALL ~b!. In inset, zoom
of initial evolution. Solid curves:Sv

0 ~bold!, Sv
2 ~light!. Dashed curves:Sc

0 ~bold!, Sc
2 ~light!.
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Rv
n 5

^u“vunu“cuncos~zv2a!&

^u“vunu“cun&

in effective rotation regions.

At each time, spatial averaginĝ& is performed in strain-
dominated regions (ur u,1) for Sv

n , and in effective-rotation-
dominated regions (ur u.1) for Rv

n . The statistics are thu
done for regions that change constantly in time. The di
nostics has been normalized: ifz2z2 ~respectivelyz2a! is
equipartitioned, thenSv

n 50 ~resp. Rv
n 50!. On the other

hand, a value of 1 corresponds to perfect alignment.
defineSc

n andRc
n in the same way for the passive scalar~i.e.,

we replacezv by zc in each formula!. S stands for strain-
dominated regions andR stands for effective-rotation
dominated regions.

1. Strain-dominated regions

Let us consider first the strain-dominated regions.
these regions, the tracer gradient is expected to align with
orientationz2 , the stable fixed point of Eq.~1!, if the adia-
batic approximation is valid.

For simulation LARGE@Fig. 7~a!#, there is no initial
alignment of both tracer gradients with this orientation~as
shown in Sec. II B!: Sv

n 5Sc
n'0. As time evolves, both trace

gradients tend to align strongly with the equilibrium dire
tion z2 . Actually the alignment increases monotonous
with n ~not shown!, which means that the larger the trac
gradients are, the better they align withz2 while there is not
such a specific trend for the weakest gradients.

At time t'tdiff , we observe a decrease in alignme
This decrease is related to diffusion which becomes imp
tant at that time, as seen in Sec. IV A. However,Sv

n andSc
n

increase once again~at time t'6tdiff for n52! to reach a
mean plateau, different from perfect alignment. We can n
that there are substantial oscillations around this mean
Downloaded 15 Dec 2000  to 140.208.6.31.  Redistribution subject to
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teau. This is due to the weighting by the tracer gradient no
which takes into account only a small part of the total fie

Now we can compare the evolution of the alignment
the vorticity gradient~solid curve on the figure! and the pas-
sive scalar gradient~dashed curve! with z2 . For early time
(t,tdiff), the passive scalar gradient aligns better with
equilibrium orientationz2 than the vorticity gradient does
This means that the direct cascade is more efficient for p
sive scalar than for vorticity. At timet'tdiff , we observe
that Sv

n andSc
n overlap forn52. This is also true forn>3

~not shown! and it indicates that tracer gradients align wi
each other~this will be examined further!. Because diffusion
is stronger for the passive scalar gradient orientation,Sc

2 de-
creases more strongly thanSv

2 . Finally, the two curves over-
lap again att'7tdiff .

For simulation SMALL @Fig. 7~b!#, we observe similar
behaviors, except that the initial alignment increase is m
more reduced as diffusion actsab initio. The saturation of
alignment occurs also att'tdiff as for simulation LARGE
and we can be confident that the saturation is due to di
sion.

2. Effective-rotation-dominated regions

We can consider the dynamical alignment properties
effective-rotation-dominated regions. The tracer gradien
expected to rotate at a nonconstant rotation rate and sh
lie statistically close to the equilibrium orientationa, if the
adiabatic approximation is valid.

Figure 8~a! displaysRv
n andRc

n for n50,2 for simulation
LARGE @actually we have checked that there is a monoto
increase ofR with n ~not shown!#. Initially vorticity gradi-
ents display a tendency to align with the orientation given
a (Rv

0 50.49 andRv
2 50.70! whereas there is no such a

alignment for passive scalar (Rc
n'0). Rc

n strongly increases
until it reaches the same value asRv

n at t'0.5tdiff . For n
52, the two curves overlap during a timetdiff and thenRc

n
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FIG. 8. Evolution of the dynamical alignment in effective-rotation-dominated regions as a function oft/tdiff for simulations LARGE~a! and SMALL ~b!. In
inset, zoom of initial evolution. Solid curves:Rv

0 ~bold!, Rv
2 ~light!. Dashed curves:Rc

0 ~bold!, Rc
2 ~light!.
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has a larger decrease thanRv
n . Contrary to what is found for

strain-dominated regions, the alignment is always better~if
not equal! for the vorticity gradients than for the passiv
scalar gradients. After this transient phase,Rc

n andRv
n over-

lap again~at t'13tdiff for n52! to reach a mean platea
with substantial oscillations as was also found previously
strain-dominated regions. When comparing Figs. 7~a! and
8~a!, the final overlap ofSc

n and Sv
n occurs more rapidly in

strain-dominated regions than the final overlap ofRc
n andRv

n

in effective-rotation-dominated regions. This can be e
plained by the different dynamics of the two regions:
strain regions, the orientation should tend to the equilibri
orientationz2 whereas in effective rotation regions, the o
entation should be rotating and only statistically close to
other equilibrium orientationa. This implies a faster proces
of alignment with the equilibrium orientation in strain
dominated regions than in effective-rotation-dominated
gions.

For simulation SMALL @Fig. 8~b!#, the initial phase of
alignment increase is absent for bothRv

n and Rc
n because

diffusion is present initially. It can be compared with sim
lation LARGE after diffusion has become efficient@i.e., after
t.5tdiff on Fig. 8~a!#.

We can conclude that the alignment of the vorticity g
dient with the equilibrium orientationa has both a kinematic
origin ~the presence of spatial large-scale structures w
closed streamlines! and a dynamical origin~dynamics of the
vorticity gradient orientation!. In the transient phase of tur
bulence, the kinematics improve the alignment of vortic
gradient with the equilibrium orientation more so than t
alignment of passive scalar gradient. Despite this kinem
effect, passive scalar gradients and vorticity gradients h
similar alignment properties witha in the final evolutionary
stage of turbulence.
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C. Alignment between passive and active scalar
gradients

Motivated by the overlap ofSc
n andSv

n on the one hand
and Rc

n and Rv
n on the other hand, as well as th

observations2,3 of similar tracer isolines, we can define
quantityAn to examine the alignment between vorticity gr
dients and passive scalar gradients,

An5
^u“vunu“cuncos~zv2zc!&

^u“vunu“cun&
.

As for Sv
n and Rv

n , there is a symmetrical weight on bot
tracer gradients which allows us to compare regions wh
both gradients are expected to have a similar cascade. M
over, gradient weighting increases withn.

As could be expected from the results on dynami
alignment, simulation LARGE displays three stages of e
lution @Fig. 9~a!#. Initially, the two gradients are decorrelate
because of the random phase initialization, soAn50. There
is a rapid increase ofAn , reaching a value close to 1 forn
>2 at t'tdiff . The alignment improves when increasingn.
This confirms that the direct cascade proceeds in the s
way by aligning the two gradients, especially the strong
ones. Aftert'tdiff , diffusion becomes important andAn de-
creases strongly. This lasts untilt'5tdiff . After this time,
we observe an increase ofAn which tends to 1~i.e., perfect
alignmentof the two gradients! for n>2. Forn50, the simu-
lation was not carried long enough to examine the conv
gence. Nevertheless, these results indicate thatthe largest
gradients of vorticity and passive scalar tend to align w
each other. We can suspect that this is due to both advect
dynamics and diffusion: on the one hand, the dynamics
the tracer gradient orientation tends to align tracer grad
with equilibrium orientations related to the flow topolog
On the other hand, diffusion tends to reduce the gradie
 AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.
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FIG. 9. Evolution of the orientation between the two gradientsAn as a function oft/tdiff for simulation LARGE~a! and SMALL ~b!. Bold curve:n50. Solid
curve:n52. Dashed curve:n53.
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which are not aligned with these equilibrium orientation
Another aspect of diffusion is to align spatially tracer gra
ents with the direction of the largest gradients,18 thus ampli-
fying the alignment with the equilibrium orientations~as this
latter mechanism is amplified for the strongest gradien!.
Thus, these effects contribute to a continuously grow
alignment between the two tracer gradients. However,
have to put acaveaton this argument. Why don’t we observ
also a perfect alignment with the equilibrium orientationsz2

anda? A tentative answer is thatz2 anda are only estimates
of the real orientations given by the flow topology. Actua
they are equilibrium estimates in the adiabatic approxima
~r ands slowly varying in time! of these orientations.

For simulation SMALL @Fig. 9~b!#, we observe only a
slow increase ofAn like the final phase of simulation
LARGE. This is due to diffusion which acts through th
entire evolution. But we can see that there is also a per
alignment for the strongest gradients in this case as in
preceding case.

V. SUMMARY AND CONCLUSION

We have examined and compared the cascades of a
sive scalar and vorticity in numerical simulations of free
decaying 2D turbulence. The two tracer fields have been
tialized with identical spectra but with different phases,
two limiting ~large- and small-scale! cases. Dissipative ef
fects are treated identically for both active and passive t
ers. The cascade dynamics is studied through the produc
of tracer gradients, and, more specifically, the tendency
alignment of those gradients with equilibrium directions8,9

obtained in the adiabatic approximation.
The kinematic properties of the initial conditions reve

that the conjugation relationship between vorticity and str
slows down the cascade dynamics whenever structures
closed streamlines are present. This effect only operates
simulation LARGE, where a substantial alignment of vort
ity gradients with the flow topology is observed in regio
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dominated by effective rotation~i.e., the sum of vorticity and
strain axes rotation rate!. On the other hand, for simulatio
SMALL, diffusion effects are likely to be importan
ab initio, as indicated by an estimate of the inviscid a
diffusive cascade time scales.

During the first transient phase of evolution, there is
stronger cascade for passive scalar than for vorticity. T
passive scalar develops small scales very rapidly, be
sheared by vortices~which remain quasistationary for simu
lation LARGE!. This has been observed in both physic
space and Fourier space. In strain-dominated regions,
passive scalar gradient aligns better than the vorticity gra
ent with the equilibrium orientationz2 related to the flow
topology. On the other hand, in effective-rotation-domina
regions, the vorticity gradient aligns better with the equili
rium orientationa. A stronger cascade is observed in sim
lation LARGE than in simulation SMALL during this phas
because of the lesser influence of diffusion effects. We h
checked that the duration of this transient phase scales
the diffusive cascade time scale for both simulations.

Thereafter, in the final evolutionary stage of turbulen
both tracer gradients tend to align with each other and
effect is most pronounced for the strongest gradients. T
result implies that both tracer cascades are similar in the fi
evolutionary stage of turbulence. This is corroborated b
by the overlap of their spectra at small scales, and by id
tical alignments of their gradients with the equilibrium or
entations mentioned above. These observations could re
from the combined effects of advective dynamics~straining
process! and diffusion effects which spatially align trace
gradients with the direction of the largest gradients.18 It
should be noted that the above results on the productio
tracer gradients mostly concern small spatial scales, w
passive and active tracers behave quite differently at in
mediate and large scales of motion. Indeed, there is an a
mulation of vorticity at large scales which is absent for t
passive tracer case.
 AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.
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The effect of diffusion has been checked to play a p
ponderant role in the dynamics at timet;tdiff estimated in
the present paper. As predicted by Constantinet al.,18 diffu-
sion has been found to have two effects. The first is to ac
a classical diffusion term by suppressing spatial inhomo
neities. This reduces both the alignment of tracer gradie
with the equilibrium orientations predicted for inviscid flo
topology and the alignment of passive and active tracer
dients with each other. The second effect is to spatially a
the tracer gradients in the direction of the largest gradie
while its quantitative influence on the latter is negligible.

A large part of this study has concerned the charac
ization of alignment properties, and we have distinguish
the alignment of passive and active tracers with flow top
ogy from their relative orientation. It should be emphasiz
that the latter is the most pronounced quantitatively and
holds for both short times~when t;tadv!tdiff! and for long
times (t@tdiff). So a common nature of the dynamics
passive and active scalars can be expected and the eq
rium orientations determined by Lapeyreet al.8 and Klein
et al.9 are only equilibrium estimates of the orientations d
termined by the flow topology. The differences and simila
ties of alignment between vorticity and passive scalar gra
ents can be explained by the structures present in the fiel
physical space, the efficiency of the direct enstrophy casc
depends on the geometrical structures of the flow field:
direct cascade produces strong gradients which have a
mentary structure~with many strong vorticity gradients!
while the inverse cascade produces closed streamlines~with
relatively few vorticity gradients!. The conjugation relation-
ship between strain and vorticity creates differences betw
the tracer gradient dynamics and halts the direct casc
whenever structures with closed streamlines are present
the other hand, at the spatial scales for which the enstro
cascade is the most effective, the conjugation relationsh
not efficient and both tracer gradients have identical dyna
ics. This explains why the differences between both tra
gradients vanish for the strongest gradients.
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