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ABSTRACT

In this study, the relation between the interior and the surface dynamics for nonlinear baroclinically
unstable flows is examined using the concepts of potential vorticity. First, it is demonstrated that baroclinic
unstable flows present the property that the potential vorticity mesoscale and submesoscale anomalies in
the ocean interior are strongly correlated to the surface density anomalies. Then, using the invertibility of
potential vorticity, the dynamics are decomposed in terms of a solution forced by the three-dimensional
(3D) potential vorticity and a solution forced by the surface boundary condition in density. It is found that,
in the upper oceanic layers, the balanced flow induced only by potential vorticity is strongly anticorrelated
with that induced only by the surface density with a dominance of the latter. The major consequence is that
the 3D balanced motions can be determined from only the surface density and the characteristics of the
basin-scale stratification by solving an elliptic equation. These properties allow for the possibility to recon-
struct the 3D balanced velocity field of the upper layers from just the knowledge of the surface density by
using a simpler model, that is, an “effective” surface quasigeostrophic model. All these results are validated
through the examination of a primitive equation simulation reproducing the dynamics of the Antarctic
Circumpolar Current.

1. Introduction

Many studies in the last 10 years have been devoted
to the understanding of the dynamical properties of the
potential temperature anomalies on the tropopause
(see Hakim et al. 2002, and references therein). Moti-
vation is that much of the dynamics in the upper levels
of the troposphere is influenced by the movements of
the tropopause, and the latter are intimately correlated
with the temperature anomalies there (Juckes 1994).
Most of these studies rely on the well-known invertibil-
ity principle of potential vorticity (PV) detailed in the
seminal paper of Hoskins et al. (1985). This principle,
widely used in atmospheric studies but much less often
in oceanography, allows one to diagnose the 3D dy-
namics of a balanced flow [such as that studied by Gent
and McWilliams (1983), among others] from the knowl-
edge of PV at different levels and temperature at the
boundaries. Such an approach for the tropopause dy-
namics is all the more relevant for mesoscale and sub-
mesoscale structures at these levels as these structures

are mostly influenced by PV at the upper levels of the
troposphere near the tropopause layer. One outcome is
that the 3D dynamics of the upper troposphere can be
well described from only the potential temperature
anomalies on the tropopause (Juckes 1994) using sur-
face quasigeostrophy (SQG) theory (Held et al. 1995).

In this study we follow a similar approach within an
oceanographic context and examine the role of the sur-
face boundary condition in the dynamics of the upper
oceanic layers. The backbone of our approach is the
invertibility principle mentioned before. The full PV
inversion problem involving the 3D distribution of PV
and the surface density is posed and discussed in the
next section. We decompose the flow in two categories
associated with different PV sources: a first contribu-
tion comes from the inversion of the interior PV field
while a second contribution arises from the PV inver-
sion of the density field at the surface. Then in section
3 we highlight an important property of baroclinic flow
in that PV mesoscale and submesoscale anomalies are
correlated with surface density anomalies in space. As a
consequence, the interior PV and surface density con-
tributions to the 3D dynamics are strongly dependent
on each other. Last, in section 4 we propose a method
to reconstruct the mesoscale and submesoscale dynam-
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ics of the upper layers from just the knowledge of the
surface density.

2. Quasigeostrophic PV inversion

The PV inversion problem relies on two require-
ments. First, one needs to know the spatial distribution
of the 3D PV field with appropriate boundary condi-
tions. Second, a system of balanced equations has to be
chosen since this choice determines the inversion tech-
nique to be used (McIntyre and Norton 2000; Vallis
1996). Here we assume that the balanced flow is in
quasigeostrophic (QG) equilibrium with a small Rossby
number and a Burger number of order 1. This assump-
tion means that the PV inversion is used to get meso-
scale and submesoscale motions, that is, oceanic mo-
tions with time scales of 10–30 days and spatial scales of
10–200 km.

a. Decomposition into PV sources

The knowledge of PV and surface density allows one
to deduce the 3D circulation through the principle of
invertibility (Bishop and Thorpe 1994; Hoskins et al.
1985). In QG theory, PV is related to the streamfunc-
tion by an elliptic operator,

�2� �
�

�z � f 0
2

N2

��

�z� � Q , �1�

where � is the streamfunction, f0 is the Coriolis fre-
quency, and N is the Brunt–Väisälä frequency; � is the
horizontal gradient operator, and z is the vertical coor-
dinate. Here Q is defined as the anomaly from the large-
scale planetary PV. To invert the elliptic operator, one
also needs appropriate boundary conditions, in particu-
lar at the ocean surface:

�
�0 f0

g

��

�z�z�0
� �|z�0. �2�

Here � is the density anomaly. If we introduce a buoy-
ancy variable b � �g�/�0, we have

f0

��

�z�z�0
� b|z�0. �3�

For the lower boundary conditions, we use �z� � 0 at
the ocean bottom. We assume that through the PV in-
version process the dynamics of the upper layers is
mostly captured by the PV distribution in these layers;
that is, the low-level PV anomalies have little effect on
the upper-layer dynamics. For the lateral boundary
condition, we consider as a simplification that the do-
main is doubly periodic.

In QG theory, PV and surface buoyancy are both

conserved by the advection along the geostrophic flow
u � (u, 	) � (��y�, �x�),

DQ

Dt
� 0 and �4a�

Dsbs

Dt
� 0, �4b�

where D/Dt � �t() � u · �() and the subscript s applies
to surface quantities (i.e., at z � 0).

The inversion consists in solving (1) and (3) to find
the streamfunction � and the buoyancy that satisfies the
QG hydrostatic equation

b � f0

��

�z
. �5�

Mathematically, one can split this inversion into two
different problems [this idea goes back to Bretherton
(1966)]. The first one (noted “int” for interior) is forced
by nonzero PV in the interior and involves zero surface
buoyancy:

�2�int �
�

�z � f 0
2

N2

��int

�z � � Q , �6a�

with

f0

��int

�z �z�0
� 0. �6b�

The second one (noted “sur” for surface) involves zero
PV in the interior and is forced by nonzero surface
buoyancy:

�2�sur �
�

�z � f 0
2

N2

��sur

�z � � 0, �7a�

with

f0

��sur

�z �z�0
� b|z�0. �7b�

Coming back to the full problem, the total stream-
function field is given by the sum of the two contribu-
tions,

� � �int � �sur, �8�

by the principle of superposition. One should take care
that the total streamfunction is needed to advect both
PV and surface buoyancy in (4a)–(4b).

b. Dynamical interpretation

The following dynamical interpretation of the two
problems, (4a) and (6a)–(6b) on one hand and (4b) and
(7a)–(7b) on the other hand, is proposed. The first one
resembles the classical QG model (e.g., such as the Phil-
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lips model) governed by the dynamics of interior PV
layers: when a large-scale PV forcing is included in (4a),
it is the change in sign on the vertical of the horizontal
gradient of PV that is responsible for the baroclinic
instability and the mesoscale structures that emerge.
The second problem is associated with frontogenesis
(although ageostrophic mechanisms such as outcrop-
ping are absent in the QG approximation) because the
advection of buoyancy (4b) (even when a surface buoy-
ancy forcing is included) leads to the stirring of buoy-
ancy contours and to the development of horizontal
fronts at the surface. When taking (7a)–(7b) and (4b) as
a single system (with � � �sur), we obtain the surface
quasigeostrophic (SQG) model (Blumen 1978; Hakim
et al. 2002; Held et al. 1995), which describes the evo-
lution of edge waves that decay exponentially from the
surface. The SQG model is a reduction of the Eady
model to the surface and therefore does not allow baro-
clinic instability.

The combination of the SQG model with the interior
PV model can be thought of in terms of the Charney
model [which involves nonzero PV interior and a non-
zero surface buoyancy (Pedlosky 1987)]. This suggests
that the two problems can strongly interact. Actually,
different studies (Davis 1993; Green 1987; Hakim et al.
1996; Holopainen and Kaurola 1991) have questioned
the independence between a flow generated by the sur-
face buoyancy and a flow generated by the interior PV.
As buoyancy is involved in the calculation of PV, the
two solutions may not be independent from each other.
Holopainen and Kaurola (1991) find at atmospheric
large scales that the geopotentials induced by the sur-
face buoyancy and interior PV tend to cancel each
other. Hakim et al. (1996) obtain a similar finding in
studying a cyclogenesis event. On the other hand, the
relationship between the two solutions might be asso-
ciated with a dynamical feature. Indeed two studies
have shown that cancellation is not always the general
case: Davis and Emanuel (1991) in a cyclogenesis event
do not observe a cancellation. Also Robinson (1989)
found that, in the Charney model of linear baroclinic
instability, the cancellation of PV fluxes due to the in-
terior PV with those due to the surface buoyancy de-
pends on the wavelength considered. In our study, to
understand the dynamical relationship between the sur-
face and interior solutions, we thus need to analyze the
properties of these solutions within the framework of
baroclinic instability since this mechanism is the major
source of mesoscale structures in the ocean.

3. Properties of the surface/interior decomposition

We first demonstrate that under appropriate assump-
tions common for the ocean, surface buoyancy and PV

in the interior are correlated spatially. Such a correla-
tion has been observed in the atmosphere (Holopainen
and Kaurola 1991), and one of the reasons invoked by
the authors was that the buoyancy field is used in the
definition of PV so that the surface buoyancy and the
PV near the surface are able to be correlated in the
presence of a forcing in buoyancy. Here we show that
the reason is more dynamical in nature. Then we de-
duce the impact of this correlation on the relation be-
tween the surface and interior solutions.

a. Relation between surface buoyancy and
interior PV

We start from the observation that eddy PV and
buoyancy anomalies are forced by the baroclinic insta-
bility of a large-scale flow. As the specific large-scale
forcings of the two quantities are similar, the anomalies
tend to correlate to each other because the two tracers
are stirred by the eddies in the same manner. This sce-
nario closely resembles the one described by Klein et
al. (1998), which explains the thermohaline anomalies
compensated in density by the stirring effects of the
eddies. To understand this correlation, we first split sur-
face buoyancy and PV into the zonal mean (i.e., large
scale) and a deviation (noted respectively by over-
barred quantities and primes). The equations for the
anomalies are

DQ��x, y�

Dt
� ��

�Q

�y
and �9a�

Dsb�s�x, y�

Dt
� ��s

�bs

�y
. �9b�

To derive these equations, we assumed the zonally
averaged PV and surface buoyancy to be slowly varying
in time. The large-scale meridional PV gradient can be
developed into three different terms:

�Q

�y
� � �

�2u

�y2 �
1
f0

�

�z � f 0
2

N2

�b

�y�. �10�

The first two terms correspond to the mean meridional
gradients of planetary and relative vorticities. The last
term is the mean meridional gradient of the vortex
stretching associated with the nonconstant stratification
on the vertical and the curvature of the mean shear. Let
us assume that the spatial distribution of b is separable,

b�y, z� 
 bs�y�F �z�, �11�

with F(z) � 1 at z � 0. This can be motivated by the fact
that, in the ocean, often the first baroclinic mode domi-
nates. The first two terms in (10) are usually small so
that the mean PV gradient can be written as propor-
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tional to the mean buoyancy gradient at the ocean sur-
face; that is,

�Q

�y



1
f0

��z�
�bs

�y
�12a�

with

��z� �
�

�z �f 0
2F �z�

N�z�2 � �12b�

related to the vertical structure of b. Potential vorticity
is advected only by the horizontal velocity field at all
depths in QG theory, while surface buoyancy is also
advected by the horizontal velocity field evaluated at
the surface. We assume that the horizontal velocity
field varies little on the vertical (at least for the first few
hundreds of meters) since most of the associated kinetic
energy is usually captured by the barotropic and first
baroclinic modes (Hua and Haidvogel 1986; Smith and
Vallis 2001). One can then assume that, at a first order,
potential vorticity at a depth z and surface buoyancy
are advected by the same velocity field. Then, by (12a)
and (9a)–(9b), an equation for conservation along the
geostrophic flow is obtained:

DT

Dt
� 0 �13a�

with

T = Q � �
1
f0

�b�s. �13b�

There is no source to create T, contrary to Q � and b�s,
which are forced by mean gradients. So, by the straining
action of eddies it will cascade to small scales where it
will be dissipated after some time. Stating T 
 0, we
thus obtain a direct relation between interior PV
anomalies and surface buoyancy anomalies,

Q ��x, y, z� 

1
f0

��z�b�s�x, y�. �14�

This important result indicates that, in baroclinic flow
forced by a large-scale mean gradient, potential vortic-
ity anomalies depend strongly on the properties of the
surface (or at least near-surface) buoyancy anomalies.

To assess the validity of (14), we examine the results
of a simulation of a nonlinear baroclinic unstable flow
in a zonal �-plane channel using a primitive equation
(PE) model (see Rivière et al. 2004). The parameter
settings correspond to the Antarctic Circumpolar Cur-
rent (ACC), one of the regions of the real ocean where
the idealized geometry and forcings that we use applies
well (Karsten et al. 2002). Characteristics are the same

as in Rivière et al. (2004) except that the numerical
resolution is 6 km  6 km in the horizontal and involves
35 levels in the vertical with a vertical grid spacing rang-
ing from 5 m near the surface to 250 m near the bottom.
We examine the dynamical fields after 50 days of simu-
lation. The results, described throughout the paper, are
qualitatively the same at a later or earlier time. The
vertical profile of the mean Brunt–Väisälä frequency
shows that the main thermocline is located at a depth
around 500 m (Fig. 1). The mean Rossby number is Ro
� ���2�/| f0| 
 0.064, where angle brackets are the
horizontal averaging operator and � is the eddy relative
vorticity. Relative vorticity reaches values as strong as
0.37|f0|. The Burger number is Bu � N2H2/f 2

0L2. Using
W/H � ��(� · u)2� and, using the omega equation and
thermal wind balance, it is easy to show that W/H �
V2f0 /HN2 � | f0 | Ro2Bu�1 so that Bu�Ro2 | f0 | /
��(� · u)2� 
 2.44. The simulation is thus close to the
quasigeostrophic assumptions that we used in our ana-
lytical development. Figure 2a shows classical patterns
associated with the evolution of a large-scale jet and
with the presence of frontogenesis. Eddies of 150-km
diameter have developed on each side of the jet and
have stirred filaments with high vorticities.

The strong resemblance between the PV field at 220
m and the surface buoyancy field (cf. Figs. 2a and 2b)
gives a first indication of the relevance of relation (14).
To quantify this further, we can examine the correla-
tion in space between horizontal fields of eddy PV and
its prediction (14). In view of (12a), � is computed from
the regression of the horizontal field f0�yQ with that of
�ybs at different levels, that is,

��z� �
� f0�yQ�ybs�

���ybs�
2�

. �15�

FIG. 1. Vertical profile of N/|f0|.
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The prediction of the eddy PV using (15) (see Fig. 3a)
works remarkably well for the whole water column with
a correlation close to 1 at 500 m. It decreases where �
vanishes, that is, around 700 and 1700 m. The sign of �
determines the sign of the correlation between the eddy
PV and the surface buoyancy (note that f0 � 0 in our
parameter settings of the ACC). Such a correlation is
negative in the upper layers and positive below. In our
simulation, although the vertical scale of N2 (Fig. 1) is
larger than that of b below 100 m, it is smaller in the
first hundred meters. So one may be tempted to ap-
proximate � with only the vertical profile of N2 [taking
F(z) � 1], that is,

��z� 

�

�z � f 0
2

N2�. �16�

Using (16) for � limits the validity of the prediction to
the first three hundred meters and between 800 and
1700 m (see Fig. 3a).

The validity of (14) can also be evaluated by com-
paring �(z) given by (15) or (16) with the value ob-
tained by regressing the eddy PV anomaly with surface
buoyancy, that is,

� f0Q�b�s�

�b�s
2�

. �17�

Each regression is actually an independent estimation
of �(z) and should be close to each other if (14) is valid.
This test allows one to determine the accuracy of the
prediction of the amplitude of the PV anomalies. As
expected, (15) and (17) agree with each other at all
depths (Fig. 3b). However (16) gives, on the contrary, a

FIG. 3. (a) Spatial correlation as a function of depth of eddy PV and prediction by (14) using � from (15) (dashed
curve) and using � from (16) (continuous curve). (b) Continuous curve: � computed from regression of PV with
surface buoyancy, i.e., (17) as a function of depth; dashed curve: � computed from regression of large-scale
gradients of PV and surface buoyancy, i.e., (15); dashed–dotted curve: �( f 2

0/N2)/�z, i.e., (16).

FIG. 2. (a) Potential vorticity field (s�1) at 220-m depth. (b) Surface buoyancy field (anomaly from mean �0 �
1000 kg m�3). Horizontal scales are in kilometers.

FEBRUARY 2006 L A P E Y R E A N D K L E I N 169

Fig 2 live 4/C



crude approximation: it disagrees with the other two
below 100 m because it overestimates the amplitude of
the PV field (Fig. 3b). Therefore the vertical structure
of the buoyancy forcing needs to be taken into account
to determine the right amplitude of the PV anomalies.

The initial setup of our experiment satisfies (11).
However during the course of the simulation, one can
expect that interaction between the large scales and the
mesoscales will modify strongly relation (11) so that it
may not hold exactly at a later time. Nevertheless, the
different comparisons shown above indicate that rela-
tion (14) holds in our PE simulation of the nonlinear
evolution of a baroclinic unstable jet. This demon-
strates that PV anomalies are correlated with surface
buoyancy anomalies and the explanation relies on the
similar forcings by a mean gradient of the surface buoy-
ancy and interior PV and on the action of the eddy field
that stirs these tracers in the same manner.

b. Cancellation of flows induced by the surface and
by the interior

The strong relation between eddy surface buoyancy
and eddy interior PV has an impact on the decompo-
sition into surface and interior solutions. This can be
understood if we use the mathematical device intro-
duced by Bretherton (1966), which shows that the sur-
face buoyancy plays an equivalent role to the interior
PV but with opposite sign. This opposite sign is respon-
sible for the cancellation between the surface and inte-
rior solutions when adding the two solutions together.

From Bretherton’s argument, one can formally intro-
duce a thin layer (of height �h � 0) on top of the ocean
surface. At the top of this surface, one forces the buoy-
ancy to vanish; that is, b(z � �h) � 0. Then the asso-
ciated potential vorticity is just

Q bndry � � 1
f0
� �

�z � f 0
2

N2 b�
� � 1

f0

f 0
2

N0
2� b�z � 	h� � b�z � 0�

	h

� �� 1
f0

f 0
2

N0
2� bs

	h
�18�

since b(z � 0) � bs by definition and N0 � N(z � 0).
Taking the limit �h → 0, the PV analog to the surface
buoyancy is

Q bndry � �� 1
f0

f 0
2

N0
2�bs	�z�, �19�

where �(z) is the Dirac function. This shows that if a
positive correlation exists between PV in the upper lay-
ers and surface buoyancy, the PV sheet at the surface

(induced by the surface buoyancy) will be in opposite
phase with the nearby interior PV [cf. (14) with (19) for
positive �]. Therefore, when inverting PV, the interior
solution �int and the surface solution �sur will tend to
cancel each other because of this opposition.

To confirm this argument, we can examine the de-
composition into surface and interior solution assuming
that (14) holds. We can then rewrite solutions of (6a)–
(6b) and (7a)–(7b), defining � by

�̂ �
1
f0


b̂s, �20�

where �̂ and b̂s are the two-dimensional (2D) Fourier
transforms of � and bs. When decomposing � into in-
terior and surface solutions, we introduce �sur and �int

for the surface and interior solutions, which satisfy

�k2
int �
�

�z � f 0
2

N2

�
int

�z � � ��z� �21a�

with

�
int

�z �z�0
� 0 �21b�

and

�k2
sur �
�

�z � f 0
2

N2

�
sur

�z � � 0, �22a�

with

�
sur

�z �z�0
� 1. �22b�

These variables depend only on z and the spectral
wavenumber k � (k2

x � k2
y)1/2. Therefore, by (20), �̂sur

and �̂int have the same phase given by that of b̂s, but the
distribution on the vertical of their amplitude is given
by �sur and �int.

To exhibit these solutions, we choose to compute
�(z) from (15). The numerical technique to solve (21a)
through (22b) is standard (see Dritschel and Saravanan
1994, and references therein) and consists of adding a
finite layer of PV equal to b/�z at the top. Figure 4a
shows the contributions of the surface and the interior
solutions to �tot � �sur � �int. Near the surface, that is,
in the first 500 m, �sur and �int have opposite signs and
tend to cancel each other. This confirms the fact that
the equivalence of the surface buoyancy to a Dirac
function in PV with opposite sign gives rise to an anti-
correlation between the surface and the interior solu-
tions �sur and �int after the inversion. Also �int repre-
sents 30% of �sur and cannot be neglected in the upper
layers. Because of the opposite sign between the inte-
rior and the surface solutions and the nonsmallness of
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the interior solution near the surface, the total solution
decreases much faster than the surface solution. Below
1000 m it is the interior solution that dominates; that is,
the surface PV sheet does not affect the dynamics un-
derneath the thermocline.

The relative magnitude of the surface and the inte-
rior solutions in the upper layers can be explained by
comparing the interior PV with that from the surface
buoyancy [using (19)]. The total PV in the upper layers
can be decomposed as (e.g., Juckes 1994)

�
z0

0

Q �tot dz � �
z0

0

Q �int dz � �
z0

0

Q bndry dz, �23�

with z0 � 0. The first term represents the contribution
of the interior PV and the second term represents the
contribution of the surface buoyancy. If we vertically
integrate the first term using (14) and (12b), we have

�
z0

0

Q �int dz 

1
f0

bs�
z0

0

� dz


 f0Nz�0
�2 �1 � Fz�z0

Nz�0
2

Nz�z0

2 �bs, �24�

whereas the second term gives

�
z0

0

Q bndry dz � �
1
f0
�

z0

0 f 0
2

N2 bs	�z� dz � �f0Nz�0
�2 bs.

�25�

The integral in the first term uses the definition (12b)
with F(z � 0) � 1. The term 1 � Fz�z0

N2
z�0 /N2

z�z0
is

positive and smaller than 1 since N2(z) � N2
z�0 and 0 �

F(z) � 1 in this region. This has two consequences: first,
the surface solution will dominate down to the main
thermocline (i.e., in the upper 500 m). However, the
interior solution may still be important (as observed)

because of the smallness of Fz�z0
N2

z�0 /N2
z�z0

, so that the
surface and the interior contributions to the PV integral
may have comparable amplitude.

We thus see that there are two ingredients that pro-
mote the strong relation between the surface and inte-
rior solutions. The first one is linked to the structure of
the large-scale baroclinically unstable flow: the strong
correspondence between the large-scale surface buoy-
ancy and PV in the interior leads to a strong correlation
between the eddy surface buoyancy and eddy PV
within the upper layers. The second one, based on
Bretherton’s (1966) argument, is the dynamical equiva-
lence of the eddy surface buoyancy to a PV sheet with
sign opposite to that of the eddy PV in the interior. The
two ingredients lead to the anticorrelation between the
interior and surface solutions in the upper layers. An-
other remarkable consequence [as shown by (20),
(21a)–(21b), and (22a)–(22b)] is that both solutions,
and therefore the total solution, can be determined
only from the surface buoyancy and the basin-scale
characteristics of the vertical stratification captured by
N2(z) and �(z).

4. Application: Reconstructing 3D eddy dynamics

Besides their strong anticorrelation, the surface and
interior solutions display a rapid decay with depth,
whose characteristics are set up by N2(z) and �(z).
These properties and the dominance of the surface so-
lution (whose structure is that of a SQG solution)
strongly suggest the possibility to retrieve the 3D dy-
namics in these layers from the knowledge of the sur-
face buoyancy alone and through a model similar to the
SQG model (Blumen 1978; Hakim et al. 2002; Held et
al. 1995), which is much simpler than the system (21a)–
(21b) and (22a)–(22b). Let us first discuss the vertical

FIG. 4. (a) Vertical profiles of � (continuous curve), �int (dashed curve), and �sur (dashed–dotted curve) as a
function of depth for a wavelength of 30 km. The dotted curve represents ��(z)/k2. (b) Same quantities for the
analytical expression (27). The dotted curve represents an exponential decaying function with N/|f0| � 42.
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structure of the total solution through an analytical ex-
ample.

a. An analytical example

The sharp decrease with depth of the total solution in
the first 500 m, revealed by Fig. 4a, suggests that it can
be represented by a single exponential. This can be
understood from an analytical example that assumes
N/|f0| constant in these upper layers and that �(z) pro-
jects only on the barotropic and first baroclinic modes,

��z� 
 A � B cos
2�z

H
, �26�

where A and B are appropriate constants [with A � �5
 10�7 m�1, B � 2  10�6 m�1 using the profile given
by (15)] and H � 4000 m the depth of the domain. In
that case the total solution of the system (21a)–(21b)
and (22a)–(22b) simply writes


�k, z� 
 �
A

k2 �
B

k2 � Rd
�2 cos�2�z

H �
�

| f0|
kN

exp�kNz

| f0| �, �27�

with Rd being the deformation radius (Rd � 20 km).
The first two terms represent the interior solution and
the last one the surface solution. Comparison of Figs. 4a
and 4b shows that this analytical expression displays in
the upper layers the same characteristics as those ob-
tained using the real N2(z) and �(z). Then one may be
tempted to parameterize the z dependence of the total
solution as a single exponential, exp(kN0z/| f0|), with N0

having a constant value (i.e., independent of k and z)
because of its fast decay scale. To find the correct N0,
we use (27) and compute the vertical derivative of (| f0| /
k) log�(k, z) at z � 0. We then average the result over
a range of length scales between 30 and 150 km; that is,

N0 � � | f0|
k

� log
�k, z�

�z �
z�0

� �28�

�	
N

1 �
kN

| f0| �A

k2 �
B

k2 � Rd
�2�
 �29�

with angle brackets denoting the averaging operator
over k between 2�/(150  103) m�1 and 2�/(30  103)
m�1. This gives a value N0 /| f0| � 42, which scales well
with the total solution in the first 300 m (Fig. 4b). This
analytical development illustrates that the total solution
decreases much more rapidly than the surface solution
alone (for which N/| f0| � 30 in this example) because of
the partial cancellation between the interior and sur-
face solution.

The use of an approximated solution (involving an
exponential) instead of the total solution (i.e., �tot) is
motivated by the very rapid decay of the solution. It is
also based on the fact that different studies (Juckes
1994; Wirth et al. 1997) have shown that a model with
constant N0 is able to reproduce the dynamical features
with some realism.

b. An “effective” surface QG solution

One could in principle solve (21a)–(21b) and (22a)–
(22b) numerically and be able to reconstruct the 3D
velocity field using (20) and an omega equation (Hos-
kins et al. 1978). However such a method is numerically
expensive since it involves inverting a three-dimen-
sional elliptic operator to retrieve the vertical velocity
field. Instead we propose to approximate further the
problem, motivated by the good approximation ob-
tained for the analytical example. This leads us to re-
duce the full problem (21a)–(21b) and (22a)–(22b) to
an “effective” SQG model.

To show that the analytical example provides a good
template for the full problem, we can try to approxi-
mate �int. Assuming that �(z) mostly projects on the
first vertical modes, one can find a specific solution of
(21a)–(21b) and (22a)–(22b) for submesoscale motions
(for which k2 � R�2

d ). Then the interior solution �int,
using the same derivation as above, can be approxi-
mated by


int�k, z� � �
��z�

k2 . �30�

An inspection of Fig. 4a shows that the shape is correct
down to 700 m for a length scale of 30 km. This shows
that we can use the analytical example of section 4a to
derive our effective SQG model. We thus suggest that
a reduced model with an exponential decay can grasp
the essential property of (21a)–(21b) and (22a)–(22b).
In other words, an effective SQG model, using a con-
stant N0 to take into account both the interior and sur-
face solutions, should be able to reconstruct the 3D
balanced motions of the PE simulation in the upper
oceanic layers from just the knowledge of the surface
buoyancy. Such a model with constant N0 has been
thoroughly investigated in the past (Blumen 1978;
Hakim et al. 2002; Held et al. 1995; Juckes 1994) and
this is one of the reasons we propose to use it.

To evaluate the value of N0 (independent of k and z),
we have chosen the following general procedure that
requires only the knowledge of N2(z) and �(z): we com-
pute solutions �tot � �int � �sur given N2(z), �(z) from
(15) and using relations (21a)–(21b) and (22a)–(22b).
We only consider length scales between 30 and 150 km,
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which correspond to a range of submeso- to mesoscales
for which the SQG theory should be relevant. Then we
do a linear regression between | f0| log [�tot(k, z)/�tot(k,
z0)]/k and z for z varying between z � �110 m and z �
�343 m, corresponding to a range where the exponen-
tial fit should work. The reason for not using depths
between the surface and 110 m is that we prefer not to
use data in the mixed layer. The final step is to average
the regression coefficient for the different length scales
considered. This gives a value, N0/| f0| 
 45. We follow
a similar approach to find the amplitude of the expo-
nential solution: we want to approximate �tot by


tot�k, z� 
 c
| f0|
N0k

�z
tot�k, z0� exp�N0k

| f0| �z � z0��
�31�

with c a constant (independent of k and z). To deter-
mine c we do a regression between (| f0|/N0k)�z�tot(k,
z0) exp [(N0k/| f0|)(z � z0)] and �tot(k, z) for length
scales between 30 and 150 km and depths between 110
and 343 m. We find c 
 1.12. Again, this general pro-
cedure to find the constant values of N0 and c requires
only the knowledge of N(z) and �(z).

As shown in Fig. 5, the fit using N0/| f0| � 45 and c 

1.12 works rather well in the first few hundred meters
for a range of length scales between 50 and 100 km.
Below (above) this range, the amplitude is underesti-
mated (overestimated) but the decay scale is correct
(not shown). While neither the surface solution nor the
interior solution alone, computed from the real N2(z)
and �(z), could simulate the total solution �tot, an ef-
fective surface QG solution with a proper constant N0

(i.e., independent of k and z) is thus able to predict the
correct shape of the solution �(k, z) in the first 500 m.

We can briefly review the general properties of the
resulting effective SQG model with constant N0 [for a
developed study, see Held et al. (1995) and Hakim et al.
(2002)]. In the case of a semi-infinite vertical plane,
solutions of (7a)–(7b) using (31) and (20) can be found
using spectral horizontal transforms. For each wave-
number k, the solution is

b̂s � b̂�k, z0� exp��
N0kz0

| f0| �, �32a�

b̂ � b̂s exp�N0kz

| f0| �, and �32b�

�̂ � sign�f0�
c

N0

b̂s

k
exp�N0kz

| f0| �, �32c�

where the caret again denotes the Fourier transform
and sign() is the sign function. Equation (31) was used

to derive (32c). From the buoyancy equation, one can
deduce the vertical velocity w at any depth, using spec-
tral transforms:

ŵ � �
c2

N0
2

Db̂

Dt
,

� �
c2

N0
2 ��t�b̂s exp�N0kz

| f0| ��� J��, b�ˆ �, and

� �
c2

N0
2 ��J��s, bs
ˆ exp�N0kz

| f0| � � J��, b�ˆ �. �33�

[The last step uses the fact that �tbs � J(�s, bs) � 0.]
Given that the amplitude of the streamfunction is pro-
portional to c/N0, this leads to a dependence on c2 for
the amplitude of the vertical velocity. This could be
consistent with the findings of Viudez and Dritschel
(2004) and others who find that the QG vertical veloc-
ity is, in general, in phase with the PE vertical velocity
but with smaller amplitude. In this framework, all dy-
namical quantities can be deduced from the surface
buoyancy field. The reason is that the zero PV con-
straint (7a) forces vertical scales to be dependent on
horizontal ones.

c. Comparison of the effective SQG solution with
the PE simulation

We can assess the pertinence of the effective SQG
model through the examination of different dynamical
quantities of the PE simulation and of their prediction
with the effective SQG model. We have made the do-
main doubly periodic by symmetry along the north
edge of the channel. We choose to take a reference
level at z � z0 � �220 m, underneath the mixed layer
present in our PE simulation. The reason stems from

FIG. 5. Vertical profiles of � (continuous curves) and of its
exponential fit using N/| f0| � 45 (dashed curves) for different
wavelengths (30, 50, 100, and 150 km).
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the fact that, in the mixed layer, buoyancy is homog-
enized vertically so that quasigeostrophic PV is infinite
(N 
 0). From the total surface buoyancy field (zonal
mean plus anomaly), we compute at different vertical
levels the predicted eddy buoyancy from (32b), relative
vertical vorticity � � �2� from (32c), and vertical ve-
locity from (33).

The spatial correlations between the different dy-
namical quantities from the PE simulation and their
prediction by the effective SQG model are quite good,
as shown in Fig. 6a. The prediction of the eddy density
in the interior is nearly perfect in the first 1000 m as the
correlation is larger than 0.95.

In the first 500 m, the vorticity correlation is larger
than 0.9, which is also excellent. A more difficult quan-
tity to predict is the vertical velocity, as it is a nonlinear
function of buoyancy by (33). We obtain a spatial cor-
relation greater than 0.85 in the first 500 m, which dem-
onstrates that the effective SQG model is able to re-
construct a 3D dynamical field consistent with the full
primitive equation simulation. Other diagnostics con-
firm the pertinence of this model, such as the horizontal
root mean square of vorticity and vertical velocity as a
function of depth (Figs. 6b,c). In the first 500 m, the
effective SQG model predicts the correct magnitude.
Below, the magnitude decreases too rapidly because
the model does not take into account the energy of the
interior flow. Its region of validity thus seems to be the
upper 500 m.

As final comparisons, one can examine the spatial
distributions of vorticity and vertical velocity and their
respective predictions (Fig. 7). From just the knowledge
of the surface buoyancy, the effective SQG model re-
markably reproduces all the features present in the vor-
ticity field (Fig. 7b). This confirms the relation between
vorticity (or the streamfunction) and buoyancy as ex-

pressed in (32c). Small differences can be observed at
small scales. They can be interpreted in the light of Fig.
5, which showed that, for a certain depth, the exponen-
tial fit fails first at small scales. The vertical velocity
field (Fig. 7c) displays strong vertical motions on the
edges of submesoscale fronts, which can reach up to 32
m day�1 at z � �430 m. We observe dipoles associated
with upward and downward motions on each side of
filaments, corresponding to cross-frontal circulations.
Such structures are well reproduced by the prediction
of the vertical velocity field (Fig. 7d). Most of the sub-
mesoscale features are present and only the very small
scales are not well predicted by the model.

This technique, using the effective SQG model, has a
strong advantage relative to the traditional technique
that solves the omega equation (Hoskins et al. 1978) or
other more elaborated methods (Viudez and Dritschel
2004). The omega equation relates by a three-dimen-
sional elliptic operator the vertical velocity to the hori-
zontal buoyancy gradient and velocity gradient. In ob-
servational studies, one needs a rather good three-
dimensional sampling in order to represent accurately
the strong buoyancy gradients at any depth. As com-
pared with the traditional technique, our technique de-
pends only on the sampling of the horizontal buoyancy
field at the surface and is much simpler to use.

5. Discussion

We have shown that large-scale unstable baroclinic
flows possess the property of having potential vorticity
mesoscale anomalies at depth correlated with surface
buoyancy—or density—anomalies. Indeed, it is the
structure of the large-scale forcing, in particular the
similarity between the large-scale PV and surface den-
sity forcings, that leads to this correlation. One impor-

FIG. 6. (a) Spatial correlations between observed quantities of the PE simulation and prediction by the effective SQG model, as a
function of depth. Continuous curve: eddy density (anomaly relative to the zonal mean); dashed curve: eddy vorticity; dashed–dotted
curve: eddy vertical velocity. (b) Rms of eddy vorticity (s�1) as a function of depth. Continuous curve: PE simulation; dashed curve:
effective SQG prediction. (c) Rms of eddy vertical velocity (m day�1) as a function of depth [curves with same definition as (b)].
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tant consequence, deduced from the PV invertibility
principle, is the strong anticorrelation between the up-
per-layer velocity field associated with the interior PV
field and that associated with the surface density field.
The other important consequence is that this 3D veloc-
ity field can be determined from just the surface density
and the basin-scale characteristics of the vertical strati-
fication by solving a 3D elliptic equation.

From these results, the possibility has been raised of
diagnosing the dynamics from only the surface density
using a simpler method based on the SQG theory. This
method has been tested using a PE simulation of a
baroclinic unstable current after its fully nonlinear evo-
lution. We have shown that this method allows one to
diagnose quite efficiently the 3D dynamics of mesoscale
and submesoscale motions in the oceanic upper layers
(the first 500 m) from the surface density field.

There are different limitations of the method to re-
construct the 3D circulation from the surface density.
First it only works in the upper layers (typically the first
500 m) and it cannot work in the lower layers (contrary

to standard PV inversion techniques). It also depends
quite strongly on the type of forcing that generates the
flow. We expect it to work when the instability is driven
by large-scale meridional gradients. Also the method
will not diagnose three-dimensional circulation associ-
ated with dynamical structures that do not possess a
signature at the ocean surface.

One application of this method would be to get the
dynamical field of the upper layers (in particular the
vertical velocity field) from satellite images, such as
infrared images, insofar as temperature is the main sur-
face density contribution. However the surface tem-
perature results not only from the influence of meso-
scale eddies but also from the dynamics of the surface
mixed layer driven by atmospheric forcings. This
method can work only when the mixed layer mesoscale
and submesoscale structures strongly resemble those
below the mixed layer. This should be the case for ex-
ample just after a strong wind pulse. Further work is
necessary to determine the situations where this
method can be applied with satellite images.

FIG. 7. (top) Vertical relative vorticity field at 430 m (10�5 s�1): (a) PE simulation and (b) SQG prediction.
(bottom) Vertical velocity field at 430 m (m day�1): (c) PE simulation and (d) effective SQG prediction. Super-
imposed are the surface density contours.
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