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Does the tracer gradient vector align with the strain eigenvectors
in 2D turbulence?

G. Lapeyre,a) P. Klein, and B. L. Hua
Laboratoire de Physique des Oce´ans, IFREMER, BP 70, 29280 Plouzane´, France

~Received 22 January 1999; accepted 20 August 1999!

This paper investigates the dynamics of tracer gradient for a two-dimensional flow. More precisely,
the alignment of the tracer gradient vector with the eigenvectors of the strain-rate tensor is studied
theoretically and numerically. We show that the basic mechanism of the gradient dynamics is the
competition between the effects due to strain and an effective rotation due to both the vorticity and
to the rotation of the principal axes of the strain-rate tensor. A nondimensional criterion is derived
to partition the flow into different regimes: In the strain dominated regions, the tracer gradient vector
aligns with a direction different from the strain axes and the gradient magnitude grows exponentially
in time. In the strain-effective rotation compensated regions, the tracer gradient vector aligns with
the bisector of the strain axes and its growth is only algebraic in time. In the effective rotation
dominated regions, the tracer gradient vector is rotating but is often close to the bisector of the strain
axes. A numerical simulation of 2D~two-dimensional! turbulence clearly confirms the theoretical
preferential directions in strain and effective rotation dominated regions. Effective rotation can be
dominated by the rotation rate of the strain axes, and moreover, proves to be larger than strain rate
on the periphery of vortices. Taking into account this term allows us to improve significantly the
Okubo–Weiss criterion. Our criterion gives the correct behavior of the growth of the tracer gradient
norm for the case of axisymmetric vortices for which the Okubo–Weiss criterion fails. ©1999
American Institute of Physics.@S1070-6631~99!01312-4#
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I. INTRODUCTION

The study of 2D turbulence is known to be pertinent
the understanding of large-scale geophysical flows of
extra-tropical atmosphere or ocean. These large-scale fl
are characterized by coherent vortices where most of the
strophy is concentrated. The process of filamentation cre
very sharp gradients of vorticity at the edge of the vortic
and produces small-scale filaments-like structures.1 These
filaments are stretched and folded by the velocity field
tween the large-scale vortices. This process is the manife
tion of the enstrophy cascade which knowledge in phys
space is important to better understand the internal organ
tion of the flow.

Within this context, the approach followed by man
studies2–5 has been to examine the dynamics of vorticity g
dient, or more generally, of the gradient of a tracer which
conserved along a Lagrangian trajectory; such tracer grad
obeys the same equation as vorticity gradient. The gradi
dynamics allow to partition the physical space into differe
regions: Production regions where tracer gradient no
grows exponentially and regions where the evolution of g
dient norm is slow and where gradient rotation is expect

Okubo2 and Weiss3 were the first to derive a criterion
based on the eigenvalues of the velocity gradient ten
which governs the equation of the first order time derivat
of the tracer gradient vector. They assumed that the velo
gradient tensor is slowly varying along a Lagrangian traj

a!Electronic mail: glapeyre@ifremer.fr
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tory. However counter-examples, such as the point-vor
flow, show that a criterion involving only these eigenvalu
is not sufficient. Subsequent studies4,6 have shown that the
acceleration gradient tensor~or the pressure Hessian!, which
governs the second-order time derivative of the tracer gr
ent vector is also an important quantity to consider, th
invalidating the assumptions of Okubo and Weiss.

An alternative approach in the study of the enstrop
cascade, noted by McWilliams,7 is to examine the exponen
tial growth rate of the vorticity gradient norm. This growt
rate depends on two quantities: The positive eigenvalue
the rate-of-strain tensor and the angle between its comp
sional eigenvector and the vorticity gradient. The knowled
of the eigenvalue cannot solely determine the growth ra
The determination of the orientation of the vorticity gradie
with respect to the compressional eigenvector is essentia
order to understand the enstrophy cascade.

A remark of Babianoet al.8 indicates the possible exis
tence of some alignment properties in 2D flows: They no
that isolines of tracer and vorticity have similar orientation
These two tracers are likely to align with the same direct
which depends only on the flow topology. Other studies5,9,10

have revealed a tendency for vorticity gradient to align w
the compressional eigenvector. The issue of alignment w
the eigenvector of the strain-rate tensor has also been ex
sively studied in 3D~three-dimensional! turbulence. It has
been shown numerically11–14 that the tracer gradient~or the
vorticity vector15! tends to align with an eigenvector of th
rate-of-strain tensor. With an assumption similar to th
made by Okubo and Weiss, this result for the vorticity vec
9 © 1999 American Institute of Physics

 AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.
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can be demonstrated,16 thus stressing the importance of th
invariants of the velocity gradient tensor. In 2D turbulence
single invariant remains: The determinant of the tens
which is the opposite of the Okubo–Weiss quantity. Rec
3D results have revealed that the assumption is not alw
valid and that the pressure Hessian plays an impor
role.17,18 These results show many similarities between
and 3D turbulence.

This paper revisits the question of the alignment of v
ticity or tracer gradient with the eigenvectors of the rate-
strain tensor, and more generally, the existence of a pre
ential direction for the gradient vector. In Sec. II, th
equation for the orientation of tracer gradient in the str
basis is derived, following the approach of Dresselhaus
Tabor19 ~which was also used by Dritschelet al.20 to exam-
ine the stability of vorticity filaments!. This basis allows to
take into account explicitly the part of the acceleration g
dient tensor that corresponds to the rotation of the st
axes. In Sec. III, the orientation equation is solved assum
a stationarity property for the velocity field which is muc
less restrictive than the Okubo–Weiss assumption. We
pose a new criterion to partition the physical space into st
dominated regions and effective rotation dominated regio
where effective rotation is defined as the sum of the vortic
and the rotation rate of the strain axes. Furthermore, we
vide an estimation for both the direction of the gradient v
tor and the exponential growth rate of its norm. These res
allow to characterize the tracer cascade in physical spac
Sec. IV, the accuracy of our results is assessed through
examination of a numerical simulation of freely decayi
turbulence and through analytical examples. It is shown
our criterion yields an exact solution of the growth rate
gradient norm for axisymmetric vortices~which the point-
vortex belongs to! and an improved approximation of th
growth rates in 2D turbulence.

II. EQUATIONS FOR THE EVOLUTION OF TRACER
GRADIENT

A. Magnitude and orientation

Let us consider a tracerq which is conserved along
Lagrangian trajectory in a two-dimensional flow field

Dq

Dt
[] tq1u•“q50, ~1!

whereu5(u,v) and“•u50.
In a more general situation, there should be a diffus

term (n¹2q) on the right hand side of Eq.~1!. Its main effect
is to weaken the gradient magnitude. We assume in
study that the dynamics of tracer gradient orientation is
sensitive to this diffusive term.

The equation for the tracer gradient is

D“q

Dt
52@“u#*“q, ~2!

where@“u#* is the transpose of the velocity gradient tens
For what follows, some definitions have to be given:
Downloaded 03 Dec 2000  to 140.208.6.31.  Redistribution subject to
a
r,
t

ys
nt

-
-
r-

n
d

-
in
g

o-
in
s,
y
o-
-
ts
In
he

at
f

e

is
-

.

sn5]xu2]yv, “q5r~cosu,sinu!,

ss5]xv1]yu, ~ss ,sn!5s~cos 2f,sin 2f!,

v5]xv2]yu, with r>0 and s>0.

The eigenvectors of the rate-of-strain matrix~the symmetric
part of @“u#* ! are called the compressional and extensio
strain axes. The compressional axis corresponds to the m
mum growth rate of gradient norm, whereas the extensio
axis corresponds to the maximum decay rate. The angle
tween thex axis and the compressional axis is2p/42f.

As Eq. ~2! is dependent on the coordinates system, i
more convenient to separate the magnitude of the tracer
dient from its orientation

1

r2

Dr2

Dt
52s sin~2~u1f!!, ~3!

2
Du

Dt
5v2s cos~2~u1f!!. ~4!

The right-hand-side of Eq.~3! indicates that the evolu
tion of the magnituder strongly depends on the angle b
tween the tracer gradient and the eigenvectors of the rate
strain matrix. This emphasizes the importance of
orientation dynamics. By contrast, Eq.~4! for the orientation
u does not depend on the gradient magnituder.

The same equations have also been derived by Dres
haus and Tabor19 and Dritschelet al.20 Dritschelet al.20 in-
vestigate the stability of a vorticity filament submitted
strain. They show that if the stretching rateg exceeds 25% of
the vorticity anomalydv ~the typical vorticity contrast acros
the filament!, the instability is completely suppressed. A
other possibility to inhibit roll-up instability is the presenc
of adverse shearL/dv,0 whereL is the twisting rate. In our
notations, these quantities are simply:

g[
1

r

Dr

Dt
52

s

2
sin„2~u1f!…

L52
Du

Dt
2v52s cos„2~u1f!….

Dritschel21 uses these diagnostics in a simulation of 2D t
bulence where he shows that most of the vorticity filame
behave passively. A prediction of the orientation of the v
ticity gradient would lead to a better identification of th
regions where vorticity filaments should remain passive. T
important role played by the rotation of the strain-rate ax
relatively to vorticity, was not stressed by Dritschelet al.20,21

In contrast, in the present paper, we provide evidence th
allows to better characterize the stirring properties in phy
cal space.

B. Orientation in strain coordinates

In order to simplify Eq.~4!, we define

z52~u1f! and t5E
0

t

s~s!ds. ~5!

We expect the orientationz to be a continuous function
of time, so its values are to be taken in@2`,`# and not in
 AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.



en

ed

rs
ke

r-
te

L
th

, a

r

th
th

lve

b
e

le

r-

ion

s
nt.

to
ec-
m

city
en-
di-

are
the
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@0,2p#. It is related to the angle between the tracer gradi
and the strain axes: A value ofp/2 ~respectively,2p/2!
stands for an alignment with the compressional~resp. exten-
sional! axis.t is related to the strain-rate history experienc
by a fluid particle~t is here the Lagrangian time!. The typical
time for the process of alignment is thus given by the inve
of the rate-of-strain and is much shorter than the time ta
for the diffusion to act if it were present. Equation~4! be-
comes a simple first-order O.D.E.~ordinary differential equa-
tion!

Dz

Dt
5r 2cosz, ~6!

with

r 5
v

s
12

Df

Dt
5

v12~Df/Dt !

s
.

The dimensionless parameterr is the ratio between effective
rotation ~in the terminology of Dresselhaus and Tabor19! in
the strain basis~i.e., the rotation effects due to both the vo
ticity and the rotation of the principal axes of the strain-ra
tensor! and the magnitude of the strain rate~which tends to
align the gradient with a strain eigenvector!.

The Lagrangian time derivative off is simply related to
the Lagrangian time derivatives ofsn andss

2
Df

Dt
5

ss~Dsn /Dt !2sn~Dss /Dt !

sn
21ss

2 .

These quantities can be expressed as functions of the
grangian acceleration gradient tensor. In two dimensions,
Lagrangian acceleration is equal to the pressure gradient
the quantities to examine are given by

Dsn

Dt
52~]xx2]yy!p, ~7a!

Dss

Dt
522]xyp, ~7b!

wherep is the pressure.
Basdevant and Philipovitch6 and Hua and Klein4 have

shown that (1/s)(Ds/Dt) andDf/Dt are of the same orde
of magnitude ass and v ~involved in the Okubo–Weiss
criterion!. Thus their effects need to be included to obtain
exact gradient dynamics. Here our main assumptions are
~i! the parameterr and ~ii ! the rate of strains are slowly
varying along a Lagrangian trajectory. This allows to so
Eq. ~6! and to recovert from t. Thus we focus our attention
on the competition between strain and effective rotation
taking into account the role of the rotation of the strain ax
(Df/Dt) but we neglect (1/s)(Ds/Dt).

III. DYNAMICS OF THE GRADIENT ORIENTATION

A. Different regimes of evolution

A first examination of Eq.~6! ~Fig. 1! shows that
• if r 2,1, there are two fixed points, one stablez2 and

one unstablez1 . Moreoverz should converge to the stab
fixed pointz2 ,
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• if r 2.1, Dz/Dt5r 2cosz;r and z should grow
quasi-linearly in time.

We recognize a partition of the flow similar to the pa
tition of Okubo2 and Weiss3 into hyperbolic~or ‘‘straining’’ !
regions (r 2,1) and elliptic ~or ‘‘eddy’’ ! regions (r 2.1).
The main difference is that we take into account the rotat
of the strain axes.

The general solutions of Eqs.~3! and ~6! for the three
regimesr 2,1, r 251 andr 2.1 are now presented.

1. Strain dominated regions: r 2<1

The general solution is

z~t!522 arctanSA12r

11r
tanhS A1

tA12r 2

2 D D , ~8!

r2~t!5r0
2 r 1cosh~2A1tA12r 2!

r 1cosh~2A!
. ~9!

Here the constantA is the same for the two equation
and depends on the initial orientation of the tracer gradie

The gradient orientation converges to the direction22

z252arccosr , ~10!

exponentially fast. This preferential direction corresponds
a stable fixed point and does not depend on the initial dir
tion of the gradient vector. This direction is different fro
the strain eigenvectors except forr 50. However, the two
fixed directions are related to the eigenvectors of the velo
gradient tensor seen in the strain basis as proven in App
dix. This alignment is associated with an exponential gra
ent growth with a dimensional rateAs22(v12(Df/Dt))2.
This regime should correspond to regions where particles
expelled very rapidly, for instance in the saddle points of
flow.

2. Strain-effective rotation compensated regions:
r 251

The general solution is

z~t!5
p

2
~11r !12 arctan~A1r t!, ~11!

FIG. 1. Diagram of the behavior ofz for r 2,1.
 AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.
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r2~t!5r0
2 11~A1r t!2

11A2 . ~12!

The gradient orientation converges to the direction

z25
12r

2
p, ~13!

which makes an angle ofp/4 with the strain axes. The con
vergence is slower than for the preceding regime. It is as
ciated with an algebraic growth of the gradient magnitu
This process of slow growth could maintain sharp gradie
of tracer as in the case of axisymmetric vortices and sh
flows ~these cases are studied in Sec. IV B!.

3. Effective rotation dominated regions: r 2>1

The general solution is

z~t!52 arctanSAr 21

r 11
tanS A1sign~r !

Ar 221

2
t D D ,

~14!

r2~t!5r0
2 r 1cos~2A1sign~r !tAr 221!

r 1cos~2A!
. ~15!

Actually Eq. ~14! is quasi linear in time~remember that
z is a continuous function of time!: z;sign(r )tAr 221. This
means that the gradient vector is rotating in the strain b
because of either the rotation of the strain axes or the ef
of vorticity. In the coordinates (x,y), the dimensional rota-
tion rate is: (v12(Df/Dt))A12r 2222(Df/Dt). Thus,
for large values ofr, the gradient rotates at the angular v
locity v.

However, there is a preferential direction

zprob5
12sign~r !

2
p. ~16!

The reason for the existence of this direction is that wh
z5zprob, u(Dz/Dt)u is minimum. So the tracer gradien
spends more time near this direction than near other di
tions and, on time average, the gradient direction will
near zprob. Moreover, according to Eq.~15!, the gradient
magnitude remains bounded. This situation should co
spond to the cores of vortices or regions of rapid strain a
rotation.

B. Criterion to partition the flow

According to the preceding results, the criterionr allows
to partition the fluid in three regimes with different prope
ties concerning the tracer gradient evolution:

1. if r 2,1, the effects of strain dominate. The gradie
orientationz converges to the directionz252arccosr; the
gradient magnitude grows exponentially in time at the n
dimensional rateA12r 2.

2. if r 251, the effects of strain and effective rotatio
balance each other. The direction tends toz25(12r )p/2
which is the bisector of the strain axes. The magnitude of
gradient grows only algebraically in time.

3. if r 2.1, effective rotation dominates. The directio
rotates in the reference frame of the strain axes becaus
Downloaded 03 Dec 2000  to 140.208.6.31.  Redistribution subject to
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the rotation due to vorticity and of the rotation of the stra
axes. However the most probable direction
zprob5@12sign(r )]p/2 which makes an angle ofp/4 with the
strain axes. The nondimensional rotation rate isAr 221 in
the strain coordinates. The magnitude of the gradient d
not grow nor decay.

Figure 2 summarizes the different regimes of the gra
ent dynamics and the preferential directions as a function
r. An approach based on the eigenvalues of the velocity g
dient tensor expressed in the strain basis gives the sam
sults ~see Appendix!.

IV. NUMERICAL AND ANALYTICAL RESULTS

A. Freely decaying turbulence

We diagnose a numerical simulation of freely decayi
turbulence at a resolution of 102431024 using a pseudo
spectral code~see Hua and Klein4 for more details!. There is
a Newtonian viscosity such that the Reynolds number
3.53104. It should not affect the gradient orientation d
namics as the following results seem to indicate. The fl
exhibits the emergence of coherent structures together w
strong filamentation in the vorticity field~Fig. 3!.

The probability density function forr ~Fig. 4, curve A!
presents a slight asymmetry between positive and nega
values ofr with a plateau between21 and 1. Strong vorticity
gradients~which represent 2% in area as indicated in t
figure caption! seem to prefer regions wherer 251 ~curve
B!, a result which stresses the dominance of this regime.
fraction of hyperbolic regions~defined asr 2,1! represents
59% of the total field. The asymmetry between the area
elliptic and hyperbolic regions was also noted by Pro
et al.5 but based on the Okubo–Weiss definition~i.e., with-
out the rotation of the strain axes!.

The key result of this study is displayed on Figs. 5~a!
and 5~b! which compare the alignments of the vorticity gr
dient vector with the compressional strain axis and with
direction given by the preferential directionsz2 @Eq. ~10!#
andzprob @Eq. ~16!#. We concentrate on regions with stron

FIG. 2. Preferential directionz and nature of the dynamics of gradient as
function of r.
 AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.
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gradients because pdfs are sharper there but the results
hold for the entire field~not shown!. The alignment with the
compressional axis in the regimer 2<1 is represented by
curve A on Fig. 5~a!. A value of 0~respectively,6p! corre-
sponds to the case where the vorticity gradient is alig
with the compressional~resp. extensional! axis. There is a
weak tendency for alignment with the compressional a
However experimental results reveal a much better ali
ment of the vorticity gradients with the direction correspon
ing to the stable solutionz2 of Eq. ~10! ~curve B!. In the

FIG. 3. Vorticity v. Dark regions represent vorticity extrema.
Downloaded 03 Dec 2000  to 140.208.6.31.  Redistribution subject to
lso

d
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regimer 2.1 @Fig. 5~b!#, the gradient orientation~curve A!
exhibits a weak preference for no exponential grow
~sinz;0!. On contrast, curve B shows that gradients a
close to the most probable directionzprob @Eq. ~16!#. The
comparison of the curves B of Figs. 5~a! and 5~b! reveals a
narrow peak forr 2<1 and a broader one forr 2.1. This
could point out the existence of a mechanism of alignmen
regime r 2<1 and the absence of such a mechanism in
gime r 2.1. Figures 5~a! and 5~b! confirm that our analytical
solution reproduces rather well the basic features of vortic
gradient dynamics.

Figure 6 presents the joint p.d.f. ofz1p/2 and r, the
bold curve is cosz. The relation cosz;r is well corroborated
and this strongly validates the analytical solution. A joi
p.d.f. betweenz andv/s ~not shown! does not present such
correlation, thus further emphasizing the quantitative imp
tance of the rotation of the strain axes.

For r 2,1, the area of regions of gradient norm dec
represents only 36% of the total area. These regions are
erally associated with the alignment with the unstable dir
tion z151arccosr ~not shown!. This alignment is not as
strong as withz2 in regions of growth.

Now we can examine the distributions of vorticityv, the
parameter r and the exponential gradient growth ra
2s sinz in physical space@Figs. 7~a!–7~c!# to understand
their importance. We focus our attention on a single vor
as all vortices display a similar behavior. Figure 7~a! presents
the vorticity contours of the anticyclonic vortex close to t
center of Fig. 3. The core of the vortex is surrounded
filaments peeled out as described by Mariottiet al.1 Some
are expelled far away from the vortex.

Figure 7~b! represents the field ofr. At first glance, we
FIG. 4. p.d.f. of r, A: Total field, B: For u“qu.600
~2%!.
 AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.
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FIG. 5. ~a! Alignment p.d.f. foru“qu.200 andr 2<1 ~17%!, A: Of z1p/2, B: Of z2z2 , C: Equi-partitioned p.d.f.~b! alignment foru“qu.200 andr 2

.1 ~10%!, A: p.d.f. of z1p/2, B: p.d.f. ofz2zprob, C: Equi-partitioned p.d.f.
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see thatr is a good index for the characterization of th
topology of vortices since the different dynamical regim
~corresponding to different values ofr! are well separated in
physical space. The vortex core is a region withr ,21 be-
cause of largev. The vortex periphery is composed of r
gions with r 2,1 because of larges and regions withr .1
because of large (Df/Dt). For each vortex, we observe op
posite signs ofr between its core and the part on its perip
ery where effective rotation is strong. In these regions,v
12(Df/Dt), is dominated by 2(Df/Dt) which is of oppo-
Downloaded 03 Dec 2000  to 140.208.6.31.  Redistribution subject to
s
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site sign ofv. This indicates that a characterization of th
stirring properties of vortices must take into account t
rotation rate.

A comparison with the exponential gradient growth ra
2s sinz @Fig. 7~c!# reveals that the regions of maximum
exponential growth or decay rate are characterized byr 2

,1. Regions of gradient norm growth are contiguous to
gions of decay, and these two types of regions are well se
rated by sharp fronts. The small growth rates on the vor
edge are associated with strong values of the parametr.
FIG. 6. Joint p.d.f. ofz1p/2 andr ~total field!; the bold
curve is cosz.
 AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.
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FIG. 7. ~a! Vorticity v. ~b! Criterion. r 5(v
12(Df/Dt))/s. ~c! Exponential gradient growth rate
2s sinz.
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Finally, the core of the vortex presents strong growth of g
dient, and other mechanisms like diffusion may play a r
there.

B. Analytic examples

To stress the physical importance of the regimer 251,
we examine two analytical examples which are solutions
the Euler equations.

1. Axisymmetric vortices

Consider an axisymmetric vortex, that is a flow with
streamfunctionc(R) whereR25x21y2. Particles are rotat-
ing at the angular velocityV52(1/R)(dc/dR). The rate of
strain iss5u(1/R)(dc/dR)2(d2c/dR2)u while the vortic-
ity is v5(1/R)(dc/dR)1(d2c/dR2). Analytical solutions
for tracer gradient are

r5r0A11~A1rst !2

11A2 , ~17!

z5
p

2
~11r !12 arctan~A1rst !, ~18!

with

r 5signS d2c

dR22
1

R

dc

dRD561. ~19!

The orientationz tends to (12r )p/2 so gradients be
come more and more radial: They rotate in physical spac
follow the rotation of the strain axes. Moreover their mag
tude is linearly increasing with time.

The Okubo–Weiss criterion is l05s22v2

522@(1/R)(dc/dR)(d2c/dR2)#. Thus the criterion is ei-
ther positive which indicates hyperbolic regions, or negat
which indicates elliptic regions, according to the definitio
given by Weiss. But the flow is neither elliptic nor hype
bolic since the gradient growth is only linear in time; th
behavior occurs because of the rotation of the strain a
(Df/Dt)52(1/R)(dc/dR), which is not taken into ac-
count by the Okubo–Weiss criterion and this criterion
therefore incorrect. On the contrary, the value of our cr
rion (r 561) predicts the alignment dynamics and the line
growth of tracer gradients.
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2. Shear flows

Consider a shear flow such that (u,v)5(u(y),0). The
rate of strain is s5u(du/dy)u and the vorticity v
52(du/dy). This flow is similar to the previous one be
cause the behavior of tracer gradient is

r5r0A11~A1rst !2

11A2 , ~20!

z5
p

2
~11r !12 arctan~A1rst !, ~21!

where

r 5signS 2
du

dyD561. ~22!

The gradients tend to be oriented perpendicularly to
flow. Here the strain axes are fixed: (Df/Dt)50. So both
the Okubo–Weiss criterion (l050) and our criterion (r 2

51) indicate a linear growth of gradient norm: The ma
difference between these criteria is thatr provides an estima-
tion of the orientation of the gradient vector and the grow
rate of its amplitude.

V. CONCLUSION

We can answer the question asked in the title of t
paper: Both the analytical and numerical results of this stu
show that the tracer gradient vector does not preferenti
align with strain eigenvectors. There exists a preferential
rection depending only on the flow topology which has be
estimated analytically.

The analytical solutions have revealed that the m
mechanism of the tracer gradient dynamics is a respons
the competition between strain and effective rotation~i.e.,
the rotation effects due to both the vorticity and the rotat
of the principal axes of the strain-rate tensor!. This competi-
tion leads to preferential directions that are different from
strain axes. We have derived a criterion based on the par
eterr to describe the flow topology in terms of tracer grad
ent evolution. This parameter measures the competition
tween strain and effective rotation. When strain dominate
is equal to effective rotation (r 2<1), the tracer gradien
aligns with an eigenvector of the velocity gradient tens
expressed in the strain basis. The gradient norm growt
 AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.



-
a

m
m

st

d
t-

w

gy
th
de
hi
ng
a

is
rm
ac
is
ce
ss
e

n
ph
ai
ci
in
ei
he

tio
se
p

th
si

t
ta
L
-

b

s
t i
s
is
n-

his

he

b-
o a

es

s

t in

-

ten-
re-
ics

or-
s to

3736 Phys. Fluids, Vol. 11, No. 12, December 1999 Lapeyre, Klein, and Hua
exponential when strain dominates (r 2,1), and linear when
there is compensationr 251. When effective rotation domi
nates (r 2.1), the gradient vector only rotates, but with
tendency to align with the directionzprob.

The numerical simulation clearly confirms that the co
petition mechanism is the main feature of alignment dyna
ics. The gradients are statistically well aligned with the e
mated preferential directions. The criterionr allows to
partition the flow into regions of exponential growth an
regions of slow or no growth. Moreover the different pa
terns of the flow are well diagnosed by this criterion.

The preferential directions found in each regime allo
us to estimate roughly the true stretching rate~i.e., the expo-
nential growth rate!, and thus to better precise the topolo
of the stirring. Moreover these results have revealed that
alignment properties of the tracer gradient vector do not
pend on either the gradient magnitude or the orientation
tory. This explains why different tracer fields display stro
gradients at the same locations and why their isolines
quite similar, as previously noted by Babianoet al.8 in their
experiments.

Another important factor in tracer gradient dynamics
the rotation of the strain axes. Taking into account this te
in the effective rotation effects allows a much better char
terization of the stirring properties. An illustration of th
point is that our criterion gives the correct behavior for tra
gradient for axisymmetric flows for which the Okubo–Wei
criterion is known to fail. The numerical simulation hav
also revealed that the rotation rate of the strain axes ca
the predominant term of the effective rotation on the peri
ery of vortices. The reason is that the rotation of the str
axis is a part of the acceleration gradient tensor. The cru
role played by the Lagrangian accelerations for the stirr
properties has been stressed by the work of Hua and Kl4

and Huaet al.23 Even though we neglect the other part of t
acceleration gradient tensor~that involves the Lagrangian
time derivative of the strain rate!, we obtain robust results
since they have been confirmed by the numerical simula
and the analytical examples. It should be interesting to as
the effect of this other part, which requires a different a
proach. Such work is under progress.24

The Lagrangian accelerations also play a key role for
stirring properties of more realistic flows as the qua
geostrophic~QG! ones.23 In such QG flows, not only the
ageostrophic pressure@as in the 2D flows of the presen
study, see Eq.~7!# but also additional terms such as the be
effect and the divergence potential are present in the
grangian accelerations.23 So future work should aim to ex
tend the results of the present study to more realistic flows
considering the effects of these additional terms.

Finally, the role of diffusion on the alignment propertie
needs to be examined. Preliminary results indicate tha
effect on alignment properties appears to be weak. Thi
also confirmed in this paper by the comparison of the inv
cid analytical results with a numerical simulation that i
volves a Newtonian viscosity.
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APPENDIX: EIGENVALUE PROBLEM

It is interesting to associate the O.D.E. approach of t
paper with the eigenvalue approach of Okubo,2 Weiss,3 and
Hua and Klein4 because this latter approach can give t
same kind of information. We start from the equation

D“q

Dt
52@“u#*“q. ~A1!

A change of basis allows to study more carefully this pro
lem. The transform of orthonormal basis corresponds t
rotation of the gradient

“q5R~w!Y. ~A2!

Here R(w) is the rotation matrix of anglew which will be
defined later

R~w!5S cosw 2sinw

sinw cosw
D . ~A3!

Now we decompose@“u#* in symmetric and antisymmetric
parts

@“u#5S1
v

2
RS p

2 D , ~A4!

where @S# is the rate-of-strain matrix. The problem reduc
into

DY

Dt
52S R~2w!SR~w!1S Dw

Dt
2

v

2 DRS p

2 D DY. ~A5!

We can diagonalize@S# with the appropriatew; it suffices to
write it as

S5
s

2 S sin 2f cos 2f

cos 2f 2sin 2f D . ~A6!

Takingw5p/42f, the tracer gradient in strain basis verifie

DY

Dt
5

s

2 S 21 2r

r 1 DY. ~A7!

The eigenvalues and eigenvectors of the matrix presen
this equation are

e15~2cosq,sinq! associated with

l152
s

2
A12r 2, ~A8!

e25~2sinq,cosq! associated with

l25
s

2
A12r 2. ~A9!

Hereq5p/42(arccosr)/2. If r 2 is greater that 1, the eigen
values are purely imaginary.

For r 2,1, it is straightforward to see thate1 corresponds
to z5arccosr5z1 and e2 to z52arccosr5z2 . So the
eigenvectors and the eigenvalues of the velocity gradient
sor in the strain basis give the same information as our
sults. However, they are only a mean to know the dynam
of tracer gradients: They do not explain why this is the c
rect behavior. The approach of solving the O.D.E. enable
 AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.



th
e

e
s A

of

ro

of

en

-

bu

nd
ch

y
ch

an

d
e,

s

nd
uids

of

tion
on-

he

in

ity
luid

rial

he
J.

,’’

in

in
’

3737Phys. Fluids, Vol. 11, No. 12, December 1999 Does the tracer gradient vector align with the strain . . .
shed more light on the tracer gradient dynamics while
eigenvalue problem is useful to identify the role of the tim
evolving quantities ass or r.
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