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Also at Laboratoire de Météorologie Dynamique, 24 Rue Lhomond, 75230 Paris Cedex 05; France

Abstract. Geophysical turbulent fluids are characterized by the presence
of organized energetic structures which control tracer transport and stirring,
while enabling a tracer cascade down to the smallest scales. In order to
understand the physical mechanisms involved in this turbulent tracer cascade,
we focus on the dynamics underlying the formation of tracer gradients which
are necessarily associated to this cascade. We show that the dynamics of
tracer gradients in physical space is mainly governed by their orientation
with respect to the compressional eigenvector of the strain tensor. This
relative angle results from the competition between strain and the ”effective
rotation” (due to both vorticity and rotation of strain axes). The implication
is that tracer gradients (be they passive or active) should align with specific
directions of the flow field, which depends only on the local velocity and
acceleration gradient tensors in physical space. Most of the tracer stirring is
thus occurring at specific locations that can be identified analytically. These
results have been confirmed by direct numerical simulations and enable a
better characterization of the cascade in physical space.

1. Introduction

The widely observed tracer cascade toward small spa-
tial scales in geophysical flows is known to result from
stirring by mesoscale eddies. It corresponds to the for-
mation of strong horizontal gradients, such as those
indicated by the chlorophyl concentration at the sea
surface as observed by satellite (Figure 1). Another
observed characteristic is that horizontal gradients of
different tracer fields are often found at the same lo-
cations in physical space. This is consistent with the
interpretation that such locations result from the com-
mon topology of the underlying flow that advects the
different tracer fields. This is observed for instance in
Figure 2, which presents airborne measurements of dif-
ferent mixing ratios in the southern stratosphere, show-
ing sharp horizontal gradients coinciding at several loca-
tions (Tuck et al., 1992). On the other hand, the differ-
ent strengths of the relative mixing ratios |∇c|/c (where
c is the mixing ratio) that are observed in Figure 2, are
the result of the differences in the past history of the
tracer fields, which may be caused by differences in their
sources, forcings and sinks. Figure 1. Chlorophyll concentration as observed by
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Figure 2. Different mixing ratios measured in the
southern stratosphere (from Tuck et al., (1992).

Figure 3. Vorticity field of an isolated vortex submit-
ted to a externally prescribed strain field (Mariotti et

al., 1994).

However, the existence of intense gradients in tracer
distribution does not always imply the occurrence of
strong mixing of the tracer field. Figure 3 presents the
vorticity distribution of an isolated vortex which is in-
fluenced by an externally prescribed strain field (Mari-

otti et al., 1994). This setup leads to a constant erosion
of the vortex structure, which is taking place through
the ejection of filaments which will eventually be de-
stroyed by small-scale mixing. However, as seen in the
insert of Figure 3, the distribution of vorticity observed
along a horizontal mid-section across the vortex shows
a significant reinforcement with time of the gradients
at the vortex boundary. Such a phenomenon is the op-
posite of mixing and corresponds to the formation of a
barrier to transport that inhibits exchanges across the
vortex boundary.

Our main purpose has been to attempt to character-
ize dynamically this tracer cascade in physical space.
The specific objectives are to study the equations gov-
erning the dynamics of tracer gradients in order to lo-
calize the barriers to mixing as well as the regions of
filament production. The chosen approach is to use
information from both the velocity �u and accel-

eration fields D�u
Dt

in order to go beyond the simple
kinematic approach of the chaotic advection literature,
which relies on the sole knowledge of the velocity field.

In what follows, we have moreover made the assump-
tion that as far as oceanic mesoscale eddies are con-
cerned, the classical framework of the quasigeostrophic
turbulence is a valid first step.

The paper is organized as follows. We first recall the
basic ingredients that influence the evolution of tracer
gradient by considering simple flows (section 2). The
equations governing the dynamics of tracer gradients
are then studied in section 3, leading to the prediction
of preferred alignment of tracer gradients with specific
orientations for different regions of the flow, which are
found to depend on the tensors of velocity gradient and
acceleration gradients ∇�u and ∇D�u

Dt
. Section 4 presents

results from numerical simulations of two-dimensional
turbulence in free-decay, providing evidence of statis-
tical validation of alignment properties of the tracer
cascade in physical space. Section 5 summarizes our
results and mentions possible applications of the tracer
gradient dynamics.

2. Simple flows

For a pure strain field, the streamfunction field ψ =
σ xy corresponds to the blue isolines of Figure 4, where
σ denotes the strain-rate magnitude. An initial tracer
blob (red continuous isoline) will be stretched with time
into an elongated pattern (the red dotted isoline) and
the tracer gradient ∇q (black vector) will tend to align
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Figure 4. Pure strain field

with time with the compressional principal axis of the
strain tensor (denoted by S− in Figure 4). This align-
ment is associated with an exponential growth of the
tracer gradient norm.

In the case of a pure vorticity field the streamfunc-
tion field is ψ = ω

2
(x2 + y2), where ω denotes the vor-

ticity. The initial tracer blob (red continuous isoline)
simply rotates with time (the red dotted isoline) and so
does the tracer gradient vector (Figure 5). There is no
growth of the tracer gradient norm. The above simple
limits can be obtained from the results of Okubo (1970)
and Weiss (1991). For a passive tracer q that obeys the
conservation equation

Dq

Dt
= 0,

its gradient will obey

D∇q

Dt
= −[∇�u]∗ ∇q. (1)

[∇�u]∗ denotes the transpose of the velocity gradient ten-
sor for which eigenvalues are ±λ1/2, where λ = σ2−ω2

depends on the competition between strain and vortic-
ity. Both authors made the assumption that [∇�u]∗ is
slowly varying along a Lagrangian trajectory ( D∇�u

Dt ∼ 0)
so that the tracer gradient equation can be integrated,
yielding

∇q = ∇q0 exp(±λ1/2 t).

Thus in regions where the strain rate dominates (λ > 0),
there is an exponential growth of the gradient norm,
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Figure 5. Pure vorticity field
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Figure 6. Finite size axisymmmetric vortex

while in regions where vorticity dominates (λ < 0), the
solution corresponds to a simple rotation of the gradient
vector.

It is easy to find simple counterexamples where the
Okubo-Weiss results do not hold (Pierrehumbert and
Yang, 1993). Consider the case of an axisymmetric
vortex of finite size, such that outside the vortex core,
the vorticity is ω = 0, while the strain rate is σ �= 0
and streamlines are still circular. In such a region,
λ = σ2 − ω2 = σ2 > 0 and the Okubo-Weiss crite-
rion predicts an exponential growth. However, such a
case can be integrated analytically (Lapeyre et al., 1999)
and the solution is found to correspond to a continuous
rotation of the tracer gradient with a linear growth of
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its norm with time. The Okubo-Weiss criterion fails
because the rotation of the principal axes of the strain-
rate tensor has not been taken into account, and this
implies D∇�u

Dt
�= 0. Along the circular Lagrangian tra-

jectories (Figure 6), the principal axes constantly ro-
tate so that the tracer gradient vector cannot align
with the compressional strain axis, and the initial tracer
blob (continuous red line) is mostly linearly distorted
with time. Other simple counterexamples can be con-
structed, involving a rotation of the strain-rate principal
axes, where the Okubo-Weiss criterion fails and can be
found for instance in Young (1999).

3. Dynamics of tracer gradient

The equation that governs the dynamics of tracer
gradient (1) can be explicit as

D∇q

Dt
= −1

2

(
σn σs + ω

σs − ω −σn

)
∇q, (2)

where the following quantities have been used

σn = ∂xu− ∂yv
σs = ∂xv + ∂yu
σ2 = σ2n + σ2s
ω = ∂xv − ∂yu.

It is important to note that equation (2) is a vector
equation and corresponds to two degrees of freedom
that can be chosen as the tracer gradient norm |∇q|
and its orientation θ,

∇q = |∇q|
(

cos θ
sin θ

)
.

An angle φ that characterizes the orientation of the
strain axes with respect to the coordinate axis (Figure
7) can be introduced

(
σn
σs

)
= σ

(
sin 2φ
cos 2φ

)
.

The two scalar equations for the norm |∇q| and the gra-
dient orientation θ are derived in Lapeyre et al. (1999).

D log |∇q|2

Dt
= −σ sin(2(θ + φ))

2Dθ
Dt = ω − σ cos(2(θ + φ))

Both scalar equations depend only on the relative
angle

ζ = 2(θ + φ)

(Figure 7) between ∇q and the compressional axis S−.
We have seen in previous simple examples that it is
this relative angle that determines the growth rate with
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Figure 7. definition of angles φ, θ and ζ

time of the gradient norm. Introducing a nondimen-
sional Lagrangian time which is related to the strain-
rate magnitude

τ =

∫ t

0

σ(t′)dt′,

one can rewrite both scalar equations as

D log |∇q|2

Dτ
= − sin ζ

Dζ
Dτ

= r − cos ζ.

(3)

The orientation equation (3b) involves a nondimen-
sional parameter r which is defined as

r =
ω + 2Dφ/Dt

σ
=

effective rotation

strain rate

The dimensionless parameter r is the ratio between “ef-
fective rotation”1 in the strain basis (i.e. the rotation
effects due to both the vorticity and the rotation of the
principal axes of the strain-rate tensor) and the magni-
tude of the strain rate (which tends to align the gradient
with a strain eigenvector).

An important remark is that r remains invariant in
a change of coordinates involving solid body rotation,
while the Okubo-Weiss eigenvalues λ do not remain
invariant in such a change of coordinates. The new
physics that have been taken into account correspond
to the quantity Dφ

Dt
that takes into account the fact that

the principal axes of strain can vary along a Lagrangian
trajectory, also implying that D∇�u

Dt
�= 0.

Note that the dynamics of the orientation equation
(3b) is completely independent of the actual value of the
gradient norm |∇q|, and the solution to (3b) will depend
on the actual value of r, whether r > 1 or r < 1.

Strain-dominated regions

By definition, this corresponds to |r| < 1. Making
the weaker assumption that both r and the strain mag-

1We follow the terminology of Dresselhaus and Tabor (1991).
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nitude σ are slowly varying along a Lagrangian trajec-
tory, the equation for the orientation ζ has two fixed
points ζ± = ± arccos r, an unstable one ζ+, and a sta-
ble one ζ−. One expects a rapid alignment of the tracer
gradient with the stable orientation ζ−, leading to an
exponential growth rate of σ

√
1− r2 for the tracer gra-

dient norm (Lapeyre et al., 1999). Conversely, the un-
stable orientation ζ+ corresponds to a strong decay of
|∇q|. In the case where |r| = 1, there is an algebraic
growth of |∇q|2 with time.

“Effective rotation”-dominated regions

In regions where the effective rotation dominates,
|r| > 1. There is no fixed point solution to equa-
tion (3) and one has a nonuniform rotation of gradient.
Since Dζ

Dt is variable the gradient tends to spend most of
its time near the direction with minimal rotation rate
(D2ζ/Dt2 = 0). The most probable orientation of this
direction is α such that (Klein et al., 2000)

α = arctan
(s
r

)
+ (1− sign(r))

π

2
,

which depends on another nondimensional parameter s
which is defined as

s = −D(σ−1)

Dt
,

which measures how rapidly the stirring time scale σ−1

varies along a Lagrangian trajectory. In such a situa-
tion, the gradient norm presents only a weak growth or
decay rate of −σ s/√r2 + s2.

The two nondimensional parameters r and s suffice
to characterize the topology of stirring as well as the
time evolution of the tracer gradient magnitude (growth
or decay). For instance, a saddle point corresponds to
the values r = 0 and s = 0, the axisymmetric vortex
flow to the values |r| = 1 and s = 0 and the strong
rotation limit to |r| >> 1.

Finally, one can show that r and s depend on both
the velocity gradient tensor ∇�u and on the acceleration
gradient tensor ∇D�u

Dt .

4. Numerical simulations

In order to test the above analytical predictions for
alignment of the tracer gradient, numerical simulations
of freely decaying turbulence have been performed at a
resolution of (1024)2.

Figure 8 displays the vorticity field in a portion of
the domain where a strong vorticity filament is being
stretched between two cyclonic vortices. The color code
is such that red/brown corresponds to positive vortic-
ity and blue to negative values. The corresponding field

Figure 8. vortictiy ω

Figure 9. r = ω+2Dφ/Dt
σ

of the parametere r is given in Figure 9, where green
indicates regions where the strain dominates, blue and
red correspond to regions where effective rotation dom-
inates. In the latter regions, red corresponds to the
case when vorticity contributes the largest part of the
effective rotation while blue corresponds to the opposite
situation. Strips of yellow correspond to |r| = 1.

The parameter r presents sharp transitions and also
a smooth behaviour along the longitudinal direction of
the filamentary patterns. The vortex cores are regions
with r < −1 because of large ω. Their periphery is
composed of regions with r2 < 1 because of large σ
and regions with r > 1 because of large Dφ

Dt
. For each

vortex, we observe opposite signs of r between its core
and the part on its periphery where effective rotation
is strong. In these regions, ω + 2Dφ

Dt
is dominated by

2Dφ
Dt

which is of opposite sign of ω. This indicates that
a characterization of the stirring properties of vortices
must take into account this rotation rate.

The results for the alignment of the tracer gradient
in strain-dominated regions, where r < 1, are checked
against the analytical prediction ζ ≈ ζ− in Figure 10,
which presents the joint p.d.f. of ζ + π/2 and r, and
the bold curve is cos ζ. The relation cos ζ ∼ r is well
corroborated and this strongly validates the analytical
solution. On the other hand, a joint p.d.f. between
ζ +π/2 and ω/σ, which corresponds to the assumption
of Okubo-Weiss that implies Dφ

Dt
= 0, does not present

such a correlation, and no alignment occurs for Okubo-
Weiss criterion (Figure 11). This further emphasizes
the quantitative importance of the rotation of the strain
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Figure 10. PDF of ζ + π/2 and r =
ω+2

Dφ

Dt

σ

Figure 11. PDF of ζ + π/2 and ω/σ for Okubo-Weiss
results

axes.

The results for the alignment of the tracer gradient
for regions where effective rotation dominates, r > 1
are checked against the analytical prediction ζ ≈ α in
Figure 12, where the joint p.d.f. of ζ and α is plotted.
Again, the numerical simulations confirm that there ex-
ist preferred directions of alignment of the tracer gradi-
ent that depends on r and s.

5. Discussion

To summarize, the dynamics of tracer gradients as a
function of the flow topology can be captured by two
regimes. The first one is well characterized solely by

Figure 12. PDF of ζ and α

the parameter r

r =
ω + 2Dφ

Dt

σ
,

that measures the competition between the strain rate
and the effective rotation which takes into account both
the vorticity and the rotation rate of the principal axes
of the strain-rate tensor along a Lagrangian trajectory
(Lapeyre et al., 1999). Strong gradient growth occurs
when |r| < 1. The second regime needs another param-
eter s

s = −D(σ−1)

Dt

that measures the variation of the stirring time scale
(σ−1) along a Lagrangian trajectory (Klein et al., 2000),
and weaker growth/decay of the tracer gradient occurs
for |r| > 1.

In both regimes, the flow topology enforces preferred
orientations for the tracer gradient vector, which will
depend on both local properties of the velocity gra-
dient tensor ∇�u and also on the long-range spatial

influence of the acceleration gradient tensor ∇D�u
Dt

(Ohkitani and Kishiba, 1995; Hua and Klein, 1998).
Both ∇�u and ∇D�u

Dt
are entirely diagnostic for quasi-

geostrophic dynamics and their computation only in-
volves the resolution of Poisson problems in which right-
hand sides are nonlinear functions of the streamfunction
field at a given time (Hua et al., 1998).

These predictions based on tracer gradient dynamics
have been applied to two other problems which are also
related to the more general issue of stirring.

The first case corresponds to the detection of in-
variant manifolds (i.e. the attracting/repelling material
lines associated with local maxima of particle dispersion
or equivalently to local maxima of tracer gradients) by
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computing the persistence of hyperbolicity defined as

τr =

∫
|r|<1

σdt,

along a Lagrangian trajectory in regions where |r| < 1
for a finite time. This technique enables us to locate the
presence of such manifolds in the immediate vicinity of
coherent vortices, as well as in the “far field” (Lapeyre
et al., 2001). For the second case, we have applied the
analytical prediction of the time evolution of the tracer
gradient norm to the predictability problem with the
aim of identifying the regions of most rapid growth of
the dynamical structures (Riviére et al., 2001). The
underlying idea is that initial perturbations that are re-
sponsible for the rapid growth of the structures in a
given flow can be viewed as perturbations of the initial
potential vorticity field of the flow. As such, their dy-
namics are closely linked in physical space to the regions
which present the largest growth in potential vorticity
gradients. Potential vorticity being a tracer field, the
above analytical predictions can be used to identify the
”sensitive” regions of most rapid growth.
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