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ABSTRACT: A new nonlinear technique is described to compute the sensitivity of synoptic perturbation growth to
environmental moisture. The perturbation growth is defined using a nonlinear generalization of singular vectors called
Nonlinear Singular Vectors (NLSV). For a given atmospheric state evolving in time, the nonlinear sensitivity method
consists in maximizing the growth rate of perturbations by seeking both the optimal NLSV perturbations and the most
favorable spatial distribution of the moisture field. This results in a new atmospheric state that differs initially only by the
water vapour field. The NLSV computed along this new state has the largest possible growth rate for all possible water
vapour fields. We apply this method to a simulation of the moist primitive equations. For the particular case we study, we
obtain a moistening of the lower troposphere and an amplification of energy of optimal perturbations three times larger
than the amplification of optimal perturbations computed without altering the water vapour field. The optimal perturbations
are similar to the perturbations of the unmodified water vapour case. A noteworthy property is that the complete saturation
of the atmosphere leads to a smaller increase in amplification rate, which means that the water vapour field is strongly
tied to the NLSV structure. Mechanisms explaining these results are discussed. This technique overcomes the limitations
(in particular the linearity assumption) of moist singular vector analysis using moist norms or adjoint sensitivity analysis.
It can be applied to diagnose sensitivity to other fields as well. Copyright c© 2009 Royal Meteorological Society
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1. Introduction

Mid-latitude atmospheric perturbations primary develop
through baroclinic instability. Although considerable
attention has been paid to the dry dynamics of baroclinic
instability, moist processes have long been thought to
play a secondary role. However, recent studies suggest
that diabatic effects may have played a predominant role
in violent cyclogenetic events such as the December
1999 European storms Lothar and Martin (Wernli et al.,
2002; Hoskins and Coutinho, 2005). In the case of the
storm Lothar (T1), a filament with high water vapour
content (of width 300 km and length 2000 km) was
observed in the region of development of the storm; an
analysis by singular vectors (SVs, initial perturbations
having a maximum growth rate over a given time period
under the assumption of linear evolution) including moist
physics, demonstrated that this filament was crucial for
the storm intensification (Hoskins and Coutinho, 2005).
Examining the sensitivity of singular vectors to the
moist physics, Coutinho et al. (2004) showed that in
most of the cases moist SVs resemble dry SVs but, on
some occasions, new structures could occur. In addition
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new mechanisms involving diabatic processes (such as
the diabatic Rossby waves; Parker and Thorpe, 1995)
as alternatives to the classical baroclinic mechanisms
have been proposed to explain rapid development of
synoptic systems. It was recognized both by theoretical
studies (Lapeyre and Held, 2004) and by studies of
individual cases (Hoskins and Coutinho, 2005) that the
spatial distribution of water vapour compared to the
distribution of potential vorticity is essential to promote
the intensification of storms. If water vapour is present
in the first phase of growth, it can efficiently intensify
the storm. This means that the horizontal transport of
water vapour plays a major role and needs to be further
investigated, not at the scale of the storm, but at the scale
of the storm track which creates a favourable background
for subsequent storm development. Moist processes have
been given some attention in predictability during the last
decade (Beare et al., 2003; Hohenegger and Schär, 2007;
Spyksma and Bartello, 2007). Moreover, latent heat
release may strongly modify nonlinearities of synoptic
systems. Actually, synoptic eddies have very different
properties for different water content in the atmosphere
(Pavan et al., 1999; Lapeyre and Held, 2004; Tan et al.,
2004; Moore and Montgomery, 2005). Increasing the
atmospheric moisture content can have a dramatic effect
on nonlinearities of the synoptic eddies, as one observes
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an abrupt transition from weakly nonlinear eddies for
low water vapour content to intense coherent structures
for higher water vapour content in quasi-geostrophic
(QG) baroclinic simulations (Lapeyre and Held, 2004).

To better understand the role of water vapour in
predictability, it is needed to quantify the sensitivity
of synoptic systems to water vapour. For this purpose,
we can rely on different methods that allow numerical
measurement of the sensitivity to a particular physical
process. A first method consists of performing inte-
grations of the model, modifying with each integration
specific parameters, or switching on or off specific
parametrizations, in order to quantify the effects of those
parameters or parametrizations on the dynamics. This
has been done for instance by Moore and Montgomery
(2004). This determines whether a particular process
(such as latent heat release) is crucial or not in the inten-
sification of extratropical cyclones. Following such an
approach, Hoskins and Coutinho (2005) have compared
dry and moist singular vectors. A drawback of comparing
different simulations with some parametrization switched
off or on is that this cannot precisely quantify the part
played by the physical process in the dynamics. A more
systematic method consists of computing the adjoint sen-
sitivity of a particular function (e.g. surface pressure of a
cyclone). Indeed, the adjoint model allows the computa-
tion of the gradient of any function of the forecast fields
with respect to all the input parameters of the model
and therefore provides a useful first-order approximation
of the sensitivity (Talagrand, 1991; Rabier et al., 1992,
1996; Errico, 1997). Using this technique, Langland
et al. (1996) studied in an idealized case the effect of
latent heat release on the development of a cyclone. They
found that the sensitivity to moisture is very similar to
the sensitivity to temperature, with a signal primarily in
the region of strong precipitation. Moisture was shown
to reinforce the dry baroclinic mechanism of growth.
However the adjoint approach (and the SV analysis)
relies on the linear assumption which may not be valid
for strongly developing synoptic systems.

One method to take nonlinearity into account in the
growth of perturbations has been proposed by Barkmeijer
(1996). It consists of iteratively determining the (linear)
SVs of model orbits emanating from a sequence of
perturbations meant to approximate the fastest-growing
perturbation. We take here a different approach, which
derives in part from the method of Nonlinear Singular
Vectors (NLSVs) introduced by Mu (2000). The NLSVs
are the perturbations of given initial amplitude which
grow most rapidly over a given period of time, in
the full nonlinear dynamics. Rivière et al. (2008) have
determined the NLSVs of the Phillips quasi-geostrophic
model of baroclinic instability. Those NLSVs turn out
to be very similar to linear SVs except that their spatial
structure is modified to adapt to wave–wave and wave–
mean flow interactions. They possess an initial shear
(absent for the SV) that increases the total shear of
the jet, in order to counteract the natural tendency of
nonlinear baroclinic flows that decreases the shear. Also
the spatial structure of NLSVs is more elongated than that

of SVs, which limits wave–wave interactions. Beare et al.
(2003) have proposed an alternative approach based on
a PV sensitivity map by computing numerous nonlinear
integrations changing each time the location of a PV
perturbation with a typical shape. However this method
cannot take into account the complex geometry of the
optimal perturbation since its shape is given a priori.

In the present paper, we combine the NLSV method
and the sensitivity approach. Our technique is quite
general but we choose to apply it here to the problem
of the predictability of moist synoptic systems. It is
described in section 2 together with its numerical
implementation. We examine in section 3 the impact of
moisture on the growth rate of baroclinic perturbations
(for a given reference state). In section 4, we examine
the results of our nonlinear sensitivity method on this
reference state and propose some interpretation of it.
In this paper, we choose to examine only one case
of predictability because the focus of the paper is the
description of the nonlinear technique. However we
think that the moist processes we reveal might help to
understand the interplay between baroclinic cyclogenesis
and moisture. Conclusions are drawn in section 5.

2. Description of the nonlinear sensitivity for moist
predictability

A classical way to quantify predictability is to compute
SVs (Lacarra and Talagrand, 1988; Farrel, 1989; Buizza,
1994) which are perturbations of a given atmospheric
state that amplify the most rapidly in the tangent linear
regime. Based on this ingredient and adjoint sensitivity
(which both use the adjoint of the model), it is possible
to develop a new method to quantify the sensitivity of
growth of optimal perturbations to a particular field.

Consider a reference model trajectory noted with initial
condition X(t = 0) = X0 with X the state vector in
phase space. The time evolution of this trajectory will
be noted X(t) = M(X0). (We omit the time dependence
in M for simplification.) The nonlinear evolution of an
initial perturbation δx(t = 0) = δx0 is δx(t) = M(X0 +
δx0) − M(X0) (Figure 1(a)). The amplification of such a
perturbation over a period τ is given by

σ 2(δx0) = E(δx(τ ))

E(δx0)
, (1)

with E(δx) the energy of the perturbation (to be defined
below). The classical SVs are the perturbations that
maximize the amplification function σ 2 when M is the
tangent linear model. Based on this idea, Mu (2000)
proposed to introduce the nonlinear singular vector (NSV
in his terminology) that maximizes σ 2(δx0) over all
possible δx0. However, this method does not take into
account the fact that nonlinearities tend to decrease
the growth rate, with the consequence that the largest
growth rates will be obtained for infinitesimally small
perturbations (which will be then identical with the SVs
built on the tangent linear system). Mu et al. (2003)
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time

(a)

reference trajectory

reference trajectory+perturbation

time

(b)

reference trajectory

modified trajectory+perturbation

modified trajectory

δu(t = 0)
δT(t = 0)
δπ(t = 0)

X0 +

X0 + ∆X0 + 

δu(t)

δq(t)

δT(t)
δπ(t)

X (t) +

δu(t)

δq(t)

δT(t)
δπ(t)

X ′ (t) +

U(t)

Q(t)

T(t)
π(t)

X (t) =
U ′(t)

Q ′(t)

T ′(t)
π ′(t)X ′ (t) =

U(t = 0)

Q(t = 0)
π(t = 0)
T(t = 0)X (t = 0) = X0 = 

0

∆Q0

0
0X ′ (t = 0) = X0 + ∆X0 =X0 + 

δu(t = 0)
δT(t = 0)
δπ(t = 0)

0

Figure 1. (a) Nonlinear optimal perturbation technique. The initial basic state X0 defines a reference trajectory when evolving nonlinearly
in the model and perturbations δx (vertical arrows) are computed as the difference between the nonlinear runs represented by the
two curves. (b) Nonlinear sensitivity of optimal perturbations to environmental moisture. �X0 modifies the basic state (to the lower
continuous curve) and the perturbation δx is computed as in (a) from the modified trajectory. This figure is available in colour online at

www.interscience.wiley.com/journal/qj

proposed to determine the perturbations that maximise the
amplitude E(δx(τ )) under the constraint E(δx(0)) ≤ E0.
(Mu et al. (2003) noted that other possibilities for the
constraint could exist.) Those perturbations are called
Conditional Nonlinear Optimal Perturbations (CNOPs).
After the CNOP method was proposed, Duan et al. (2004)
first applied it in searching for the optimal precursor
for ENSO events using a simple ENSO model, then
Duan and Mu (2006) extended the CNOP method to
investigate the decadal change of ENSO amplitude. Also,
Mu and Zhang (2006) extended the CNOP method to an
equivalent barotropic quasi-geostrophic model. Rivière
et al. (2008) introduced NLSV, i.e. perturbations that
maximize σ 2(δx0) under the constraint E(δx(0)) = E0.
One question is then whether the maximum of E(δx(0))

can be reached in the interior of the sphere E(δx(0)) <

E0, so that the CNOPs will be different from the NLSVs.
The CNOPs and the NLSVs can be shown to be identical
if the mapping X(0) → M(X(0)) is continuous and one-
to-one. In the present case, two different initial states
X(0) can lead, through condensation, to the same final
state. The mapping is not necessarily one-to-one, and the
CNOPs and NLSVs may be different for our problem.

Now, we modify the trajectory itself such that X0 +
�X0 is the reference trajectory along which we compute
the NLSV. For such a trajectory, the equation for the
perturbation reads

δx(t) = M(X0 + �X0 + δx0) − M(X0 + �X0) (2)

(Figure 1(b)). For the given reference state X0, the ampli-
fication of this perturbation depends on two quantities,
namely �X0 and δx0,

J (�X0, δx0) = E(δx(t = τ))

E(δx0)
(3)

since δx(t) depends on �X0 through (2). Our choice
for E() is to use the total dry energy, defined

by

E(δx) = 1

2g

∫∫∫ p0

0{
(δu)2+R Tref(δπ)2+ cp(δT )2

Tref

}
dxdydp,

(4)

where δu = (δu, δv), δT and δπ are respectively the per-
turbations of horizontal wind, temperature and logarithm
of the surface pressure fields. Tref is a reference tem-
perature equal to 270 K and p0 = 1000 hPa. Through the
choice of the dry energy norm, moisture fields in the
perturbations are set to zero at initial and final times.
The use of moist norms for large-scale extratropical SV
computations did not prove to lead to results that are sig-
nificantly different from the dry ones even with moist
physics (Mahfouf and Buizza, 1996; Ehrendorfer et al.,
1999). Because of the choice of a dry norm, the per-
turbations δx that will develop are initially dry but will
carry moisture through their time evolution. They can
be considered as a nonlinear counterpart of moist SV.
The reason of relaxing the linear assumption is that it is
not valid for moist processes since precipitation can be
triggered as soon as water vapour reaches saturation.

The modification of the basic state flow will be
only on the water vapour field, i.e. �X0 = �Q0 where
Q is the moisture variable. We can thus measure the
sensitivity of the perturbation growth to the moisture of
the basic state. As we will see, this method is different
from moist SV using moist norms (i.e. including water
vapour in the norm (4)). The moisture perturbation of
SV with moist norm does not add useful information
as it is strongly linked to the temperature field. This
is due to the linearization of the precipitation scheme
(Ehrendorfer et al., 1999): when water vapour condenses
on the reference trajectory, the perturbation of water
vapour is automatically forced to be proportional to
the perturbation of its saturated value (i.e. δQ = δQsat).
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Since Qsat depends on temperature and pressure only (by
the Clausius–Clapeyron relationship), the perturbation in
saturated water vapour is proportional to the temperature
perturbation, such that δQsat = (∂Qsat/∂T ) δT (for a
model with pressure, or sigma, as vertical coordinate).
This means that, when condensation occurs on the
reference trajectory, water vapour perturbation is no
longer an independent variable but is proportional to the
temperature perturbation. This is the main disadvantage
of using moist norms in singular vectors. By modifying
the reference trajectory itself (through �Q0), we are able
to circumvent this limitation.

The problem we want to solve is to find the optimal
perturbation δx∗

0 and the optimal moisture field �Q∗
0

that satisfy

J (�Q∗
0, δx∗

0) = max
�Q0, δx0

J (�Q0, δx0)

under the constraints
E(δx0) = E0 and 0 ≤ Q0 + �Q0 ≤ Qsat(T0) ,

(5)

where Q0 + �Q0 is the initial water vapour field of the
modified trajectory and Qsat(T0) is the saturated water
vapour. If initially Q0 + �Q0 were larger than saturation,
the excess of water vapour would precipitate immediately
and there would be an arbitrarily large source of potential
energy by diabatic heating; this explains the last con-
straint in (5). Also we add a constraint on δx0, because
the growth rate of perturbations will depend on their ini-
tial energy E0 when evolving in the nonlinear model. For
small initial energy, the perturbation will behave quasi-
linearly (as an SV). For larger initial energy, the evolution
can be quite different from the SV because of the develop-
ment of nonlinearities, as shown by Rivière et al. (2008).

Equation (5) defines a standard problem in large-
dimension constrained nonlinear optimization. It is not
straightforward that an optimal solution of such a prob-
lem exists and is unique. However for a model with a
finite number of degrees of freedom such as a general
circulation model (GCM), one solution should exist at
least. Only its physical meaning needs to be assessed.
We solve problem (5) with a quasi-Newton BFGS
(Broyden–Fletcher–Goldfarb–Shanno) algorithm called
IPOPT (Interior Point Optimizer; Wächter and Biegler,
2006) already used in Rivière et al. (2008). The algorithm
proceeds in minimizing the inverse of the cost function,
i.e. 1/J (�Q0, δx0). It needs to evaluate the gradients of
the function J (�Q0, δx0) and of the constraint E(δx0).
These gradients are computed using the adjoint equations
of the model. (The Appendix gives a detailed derivation.)
The gradient of J (�Q0, δx0) is given by

∂J

∂(δx0)
= 2

E0
M∗

|X0+�X0+δx0
Aδx(t = τ)

− 2Ef

E2
0

Aδx0 ,

(6)

∂J

∂(�X0)
= 2

E0
N∗

|X0+�X0+δx0
Aδx(t = τ)

− 2

E0
N∗

|X0+�X0
Aδx(t = τ) ,

(7)

where X0 + �X0 is the total reference state (taking into
account �Q0), E0 = E(δx0) and Ef = E(δx(t = τ)).
A is the matrix of the scalar product associated with
the norm defined by (4). M∗

|X is the projection on the
dry variables of the adjoint model about the trajectory
corresponding to the initial basic state X. N∗

|X is the
projection on the moisture variable only. The algorithm
also approximates the Hessian of J by the BFGS method.
Further details can be found in Wächter and Biegler
(2006). The algorithm stops when the optimality error

εopt = max

{
‖ ∇

(
1

J (�Q0, δx0)

)
+ µ∇c(δx0) ‖∞ ,

α ‖ c(δx0) ‖∞
}

becomes less than a specified error tolerance ε. The
constraint c is defined by c(δx0) = E(δx0) − E0. α is
a scaling factor and µ the Lagrange multiplier for
the constraints. The parameters α and µ are implicitly
computed by the numerical algorithm and are of order
unity. In practice, there is another constraint due to
0 ≤ Q0 + �Q0 ≤ Qsat(T0) that is taken into account in
εopt (Wächter and Biegler, 2006). We have found that
the rate of convergence of the optimization depends on
the spectral resolution and of the degree of nonlinearity
of the problem. For the problem we solve here, around
150 iterations were needed to reach convergence. An
important difference with linear SVs is that there is no
guarantee to obtain a global maximum rather than a
local one. Several minimizations have been performed
here with different starting points in order to ensure that
the final result does not depend on the initial condition.
Furthermore with �Q0 set to zero, we have checked that
the optimal perturbation converges towards the leading
SV as E0 goes to zero (not shown).

Due to the inclusion of moist physics and precipitation
in the nonlinear model, the gradient of the cost function
is discontinuous and may not approximate the variation
of the cost function when perturbing it around a given
value. Indeed, large-scale precipitation and the associated
latent heat release are triggered when moisture reaches
the saturation threshold. The BFGS algorithm used for
the optimization process is a gradient-based technique
associated with a line-search method that gives the size of
the step the algorithm will perform in the direction given
by the Newton method (Wächter and Biegler, 2006) and
theoretically requires the gradient of the cost function to
be continuous. Similar difficulties have been encountered
by the assimilation community when including physical
processes of large-scale precipitation and convection
in a 4D-Var assimilation algorithm. For instance, the
study of Zou (1993) shows a slower convergence rate
of the BFGS method when discontinuous processes
were included without, however, hindering convergence
towards the solution. This may be explained by the fact
that the gradient of the cost function provides erroneous
information to the optimization algorithm, because of
the discontinuity. We performed 4D-Var experiments to
see if we were able to retrieve water vapour through
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a variational technique. From an initial known state
considered as the real state of the atmosphere, we chose
as the starting point for the 4D-Var a guess where the
atmosphere was artificially saturated in a given target
area. Using the energy of the difference of the true final
state and the estimated one as a cost function, we found
that the algorithm was able to reproduce the initial state,
provided that the step size in the line-search procedure is
not initially too small (Rivière, 2007).

3. Predictability analysis of a moist baroclinic
situation

3.1. Short description of the numerical model

To obtain our basic state, we first run the PLanet SIMula-
tor (PLASIM) developed by the University of Hamburg
(Fraedrich et al., 2005, provide a complete description)
for 700 days at a spectral resolution of T63 with 15 verti-
cal levels. The model is a GCM coupled with vegetation,
ocean and sea-ice. Its atmospheric part is the PUMA2
model based on the primitive equations and is written
in sigma coordinates. After the 700-day spin-up, we run
for 2 days a modified version of PUMA2 that includes
water vapour and simplified vertical diffusion, surface
drag and large-scale precipitation. The two extra days
of spin-up with the reduced physics package allow the

model to dissipate fast unbalanced motions due to the
change in physics. Included parametrizations are present
in a linearised form in the tangent linear and the adjoint
model which has specifically been developed and vali-
dated (Rivière, 2007). No parametrisation for convective
precipitation is included in our physics package, since,
according to Coutinho et al. (2004), it has a weak impact
on the development of synoptic perturbations when com-
pared to the impact of large-scale precipitation, at least
for an optimization period of 24 hours.

We first compare the leading SV and NLSV in order to
assess the influence of nonlinear processes in the growth
of perturbations. NLSV has to our knowledge never been
computed in a primitive-equation model.

We focus our attention on an extratropical baroclinic
situation associated with the interaction of an upper-level
structure and a surface system. Figure 2 shows the time
evolution of the surface absolute vorticity and of the
σ = 0.73 temperature. During this event, the anomalies
seem to mutually amplify leading to the separation of
an upper-level cyclone from the large-scale front over
the United States. Associated with it, a tongue with a
high moisture content is transported from the tropical
regions and reaches the western coast of the United
States (Figure 3). We will call this reference basic state
the CONTROL experiment.
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Figure 2. Surface absolute vorticity (s−1; grey shading) for the basic state of the CONTROL experiment at time (a) t = 0, (b) t = 12 hours and
(c) t = 24 hours. Temperature contours at σ = 0.73 are superimposed.
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Figure 3. Specific humidity (kg kg−1; grey shading) for the basic state of the CONTROL experiment at level σ = 1 at time (a) t = 0 and (b)
t = 24 hours. Temperature contours at σ = 0.73 are superimposed.
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3.2. Comparison of SV and NLSV for the CONTROL
experiment

First of all, the NLSV (δx†
0) is computed. It satisfies

J (δx†
0) = max

δx0
J (δx0)

with E(δx0) = E0 .

(8)

Equation (8) is a particular case of (5) with �Q0 set to
zero. Optimal perturbations are computed over a 24-hour
period for regions above 30◦N. In the NLSV computation
the initial energy E0 is set such as to correspond to a
maximal temperature amplitude of about 3 K at initial
time and a maximum wind vector component of 4 m s−1.
NLSVs and SVs are computed with the model at full
resolution (T63 and 15 vertical levels).

The detailed study of the properties of NLSV in a
primitive-equation model is beyond the scope of this
paper and will be the topic of a forthcoming paper. Here
only main differences are presented but no interpretation
is discussed. The NLSV exhibits features typical of SVs,
such as a westward vertical tilt decreasing with time as
shown in Figures 4(a, b, c). Also temperature perturba-
tions propagate upward and downward. The NLSV per-
turbations are centred on the large-scale front in the baro-
clinic region and propagate eastward (Figures 4(d, e, f)).
There is a spatial extension of the structure, as can
be observed by comparing Figures 4(d, f). Although the
NLSV evolves in the nonlinear model and the SV in the
tangent linear model, both structures tend to be similar
through the whole time integration (compare Figure 5
related to the dominant SV to Figure 4). However, small
significant differences can be detected. For instance, the
negative temperature NLSV perturbations tend to be
located at higher altitudes and positive perturbations at
lower altitudes than the SV (Figures 4(a) and 5(a)).

Energy amplification rates (σ 2) over 24 hours for the
NLSV and for the leading SV evolving in the nonlinear
and linear models are given in the first line of Table I.
The NLSV δx†

0 has an amplification rate of σ 2 = 88.3 in
terms of total dry energy. In comparison, the leading SV
has a linear growth rate of 98 which reduces to 70.4 when
integrated through the nonlinear model. This shows that
nonlinearities tend to limit the amplification, a known
result in predictability (Snyder and Joly, 1998; Rivière
et al., 2008). The growth of the NLSV is larger than
the growth of the leading SV in the nonlinear model, as
expected from the definition of the NLSV. One advantage
of nonlinear optimisation is that we obtain an optimal
structure with a given sign (whereas SVs and −SVs have
the same growth rate when integrated in the tangent linear
model). The influence of nonlinearities can be assessed
by comparing the amplification of the NLSV and its
opposite (i.e. when changing the signs of all the variables
of the perturbation). SV and its opposite have a similar
amplification (with a difference of growth of the order of
13%). This is in agreement with Gilmour et al. (2001)
who showed that the evolution of SV over 24 hours is
linear for amplitude of perturbation of the order of the

analysis uncertainty estimates. However the NLSV and
its opposite display a difference of the order of 41%
for the same initial energy as the linear SV. This means
that the nonlinear optimal perturbation is able to take
into account nonlinearities in its growth mechanism, as
already observed by Rivière et al. (2008).

To evaluate the impact of moist processes on the
growth, we computed the leading SV with latent heat
release by large-scale precipitation being turned off. We
observe a reduced amplification (dry SV in Table I), con-
sistent with results of Coutinho et al. (2004). This could
be expected since strong precipitation can be observed in
the spatial region spanned by the SV (Figures 4(d, e)). We
conclude that latent heat release plays a role in the pertur-
bation growth although the basic mechanism for growth
is baroclinic, as confirmed by the tilt against the shear in
Figure 4(a). The atmospheric situation under study is thus
typical of a baroclinic instability coupled with diabatic
heating by moist processes.

3.3. Mechanisms for moist amplification of optimal
perturbations

In agreement with previous studies on moist SVs
(Coutinho et al., 2004), the results from Table I show
an increase of around 50% in the SV amplification when
moist processes are turned on. To explain this increase,
we can examine how moist processes trigger the ampli-
fication rate of perturbation. To this end, we use the lin-
earized evolution equations for the perturbations. Indeed,
the NLSV perturbations have dynamics close to the lin-
ear SV, in the sense that the spatial structure is very
similar and only the amplification rate is reduced. In
Rivière et al. (2008), the nonlinearities in the NLSV
were shown to essentially affect wave–mean flow inter-
actions. The NLSV differs from the SV by a large-scale
component which increases the baroclinic instability of
the flow. If we neglect this effect, the amplification due
to moist processes reads through the potential energy
equation,

1

2

∂(δT )2

∂t
= − δT (U0 · ∇δT + δu · ∇T0)

− δT

(
ω0

∂(δT )

∂p
+ δω

∂T0

∂p

)

+ κ

p
(ω0 δT + δω T0) δT + δJ δT ,

(9)

where δT , δu, δω, δJ are respectively the temperature,
horizontal velocity, vertical velocity and diabatic heating
of the NLSV and ∇ is the horizontal gradient (in pressure
coordinates). The basic flow components are T0, U0, ω0.
The first two terms of (9) define the quantity Ca

Ca =−δT

(
U0 ·∇δT + δu·∇T0+ ω0

∂(δT )

∂p
+ δω

∂T0

∂p

)
,

(10)

which is the generation of potential energy by baroclinic
processes. The third term Ce

Ce = κ

p
(ω0δT + δωT0) δT (11)
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Figure 4. NLSV for the CONTROL experiment. (a–c) are vertical cross-sections at latitude 59◦N showing temperature perturbations in bold
contours at (a) t = 0 hours (with interval 0.5 K), (b) t = 12 hours (1 K interval) and (c) t = 24 hours (with contour interal 1.5 K). Solid contours
are positive and dashed are negative. Grey shading is potential temperature (K). (d–f) are horizontal sections at σ = 0.73 at the same times,
showing temperature perturbations in contours with interval as in (a–c), but additionally with temperature (K) as grey shading. On (d–f), dark

shaded regions denote where vertical integrated precipitation occurs on the CONTROL basic state.

is the conversion of available potential energy (APE) into
kinetic energy. The last term Ge

Ge = δJ δT (12)

is the generation of APE by diabatic processes. It can be
seen that moist processes amplify the perturbation growth

only if δJ δT is positive, i.e. if the diabatic heating is in
phase with the temperature perturbation. This is what is
observed in our simulations (Figures 6(a–c)). Actually,
the generation of APE through diabatic heating represents
only 8% of the total generation of APE (Figure 7). It is
maximum at 5 hours and decays to 4% at the end of the
optimization time.
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Figure 5. Leading SV for the CONTROL experiment. As Figure 4, but for the dominant SV (evolving in the tangent linear model).

Table I. Amplification rates, σ 2, over 24 hours in terms of dry energy of the leading singular vector (SV1) and nonlinear optimal
perturbation (NLSV) in the tangent linear (TL) and nonlinear (NL) models for the CONTROL and OPTIM experiments.

Initial NLSV –NLSV SV1 SV1 –SV1 dry SV1
perturbation in NL in NL in TL in NL in NL in TL

CONTROL 88.3 52.4 98.0 70.4 61.3 61.0
OPTIM 245.8 60.7 214.6 174.4 85.6 83.0
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Figure 6. CONTROL experiment. δP (kg kg−1 h−1; grey shading) for the NLSV at (a) t = 0 hours, (b) t = 12 hours and (c) t = 24 hours. (d–f)
show the approximation of δP as computed from Equation (17) at the same times. NLSV temperature contours (bold solid lines for positive

and dashed lines for negative) are superimposed. All quantities are evaluated at level σ = 0.73.

To explain the origin of the correlation of δJ and
δT , we use arguments developed by Lapeyre and
Held (2004). The linearized equation for the moisture
perturbation δq reads

∂(δq)

∂t
=−δu·∇Q0−U0 ·∇δq− δω

∂Q0

∂p
− ω0

∂δQ

∂p
− δP,

(13)

where Q0 is the water vapour of the reference state
and δP is the perturbation precipitation. To obtain the
equation for δqsat, we use

δqsat = ∂Qsat

∂T

∣∣∣∣
T0,p

δT (14)

(since qsat is a function of T and p only, and p

is a coordinate) and the temperature equation to
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Figure 7. Conversion ratios Ce/Ca and Ge/Ca for the NLSV associated
with the CONTROL and OPTIM experiments. Each term (Ce, Ca, Ge)

is integrated over space.

obtain

∂(δqsat)

∂t
= − U0 · ∇δqsat − δu · ∇Qsat

− ω0
∂(δqsat)

∂p
− δω

∂Qsat

∂p

+ δT
∂2Qsat

∂T 2

(
κ

p
ω0T0 + J0

)

+ ∂Qsat

∂T
δJ + ω0

p

∂Qsat

∂T
δT (κ − 1)

− δω

p

(
Qsat − κT0

∂Qsat

∂T

)
,

(15)

where Qsat is the saturated water vapour of the basic
state. The equation for the perturbed moisture deficit
δd = δq − δqsat reads, using δJ = L δP/Cp,

∂(δd)

∂t
= − U0 ·∇δd − δu·∇D0 − ω0

∂(δd)

∂p
− δω

∂D0

∂p

− δT
∂2Qsat

∂T 2

(
κ

p
ω0T0 + J0

)

− δP
(

1 + L

Cp

∂Qsat

∂T

)
− ω0

p

∂Qsat

∂T
δT (κ − 1)

+ δω

p

(
Qsat − κ

∂Qsat

∂T
T0

)
,

(16)

where D0 = Q0 − Qsat. In regions where precipitation
occurs in the reference state (P0 > 0), moisture is at
saturation (i.e. Q0 − Q0sat is close to zero) and, because
of the linearization of the precipitation operator, the
perturbation δd is close to zero as well. The terms
proportional to δT ω0 are in general small compared
to the terms proportional to δωT0 (not shown). Hence,
the leading terms in (16) correspond respectively to the

effect of precipitation and of adiabatic expansion. The
perturbation precipitation can be approximated by

δP ≈
Qsat − κT0

∂Qsat

∂T

1 + L

Cp

∂Qsat

∂T

δω

p
. (17)

We can note that this kind of approximation is very
similar to the parametrization for diabatic heating
proposed by Emanuel et al. (1987). Figures 6(d–f) show
the right-hand side of (17) at different times for the
NLSV. This compares relatively well with perturbation
precipitation in Figures 6(a–c), even if here we did not
mask non-condensing regions. To see further if this
approximation is valid in regions of precipitation, we
computed the linear correlation coefficient between the
two sides of (17), masking the regions with no precipi-
tation. As can be seen in Figure 8(a), the correlation is
close to 0.9 between 3 and 15 hours, decreasing to 0.7 at
the end of the optimization period for the NLSV pertur-
bations. (Correlations between 0 and 3 hours should not
be trusted because initially there is some adjustment in
the perturbation fields.) As the NLSV is subject to non-
linearities, we computed the same correlation coefficient
for the SV in the tangent linear model (dashed curve on
the same figure). Here the correlation stays close to 0.9,
showing that in the linear approximation, (17) is valid .

Using δJ = L δP/Cp and (17), we obtain that the
diabatic heating term in (9) depends on the correlation
between the temperature δT and the vertical velocity δω.
For baroclinically unstable flows, we expect a conversion
from potential to kinetic energy which positively corre-
lates these two quantities. This is indeed observed in our
simulation, and was also documented by Gutowski et al.
(1992) on longer time-scales, and by Zhang et al. (2007)
for mesoscale flows. The idea underneath this result is
that diabatic heating is associated with a decrease in
the effective static stability of the flow (Emanuel et al.,
1987; Lapeyre and Held, 2004) which intensifies the baro-
clinic instability in condensating regions. This naturally
increases the growth rate of the perturbation, but affects
only weakly its spatial characteristics.

4. Nonlinear sensitivity to the environmental
moisture

4.1. Description of the experiment

We now apply the complete technique described in
section 2; the optimization is carried on both δx0 and
�Q0, leading to a new trajectory and a new set of optimal
perturbations (with respect to the new trajectory). The
newly obtained trajectory X′(t) = M(X0 + �Q∗

0) will be
called OPTIM. Table I reveals an unexpected result:
the amplification of the optimal perturbation grows from
σ 2 = 88.3 (for CONTROL) to 245.8 (for OPTIM), i.e. a
strong increase, by almost a factor 3, of the amplification
rate of the NLSV. A similar increase is observed for the
moist leading SV for the OPTIM trajectory.
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Figure 8. Correlation coefficient of r.h.s. of Equation (17) with perturbation precipitation as a function of time for experiments (a) CONTROL
and (b) OPTIM. In each case, only regions with precipitation larger than a specific small threshold were taken into account. The continuous

curve is for the NLSV, the dashed curve is for the SV.

In spite of those very different amplification rates in
perturbation, the CONTROL and OPTIM integrations are
similar (cf. vertical cross-sections of potential tempera-
ture on Figures 4(b, c) and 9(b, c) and horizontal cross-
sections of temperature on Figures 4(e, f) and 9(e, f)).
The modification of moisture in OPTIM has only a weak
impact on the evolution of the system. The cyclone seems
to form more rapidly in OPTIM (cf. Figures 4(f) and
9(f)). Also the basic state of OPTIM seems more statically
unstable than the CONTROL trajectory (cf. Figures 9(b)
and 4(b) at 110◦W and 600 hPa). This is accompanied by
stronger precipitation. The difference of the two veloc-
ity fields in terms of mean kinetic energy is at most
2 m2s−2. The maximum velocity difference is 20 m s−1

and the maximum temperature difference is 6.5 K, both
near 400 hPa.

To see if the two trajectories are similar in terms
of dry dynamics, we computed the amplification of
dry SV for CONTROL and OPTIM. Here dry SVs
are computed by setting the latent heat release to zero
in the tangent linear model. The growth rate increases
from σ 2 = 61 to 83 (Table I) which shows a modest
change of the amplification. Also the dry SV structures
resemble each other (not shown). We hypothesize that
the larger amplification in OPTIM is due to a smaller
static stability: the precipitation induced by �Q∗

0 occurs
at the lowest levels of the model and not in the middle
troposphere as in the CONTROL experiment, which
results in a destabilization of the atmosphere through
heating. Indeed the spatially averaged static stability over
the region decreases by 7% between the two experiments.
If the growth rate is given by the Eady index f0∂zu/σ ,
then the amplification should become 611.07 ≈ 81, which
compares well with the observed value.

In the optimization process, we seek both the most
favourable moisture environment and the fastest growing
perturbations. These perturbations are a priori different
from the perturbations of the CONTROL experiment.

Indeed the numerical algorithm that computes the OPTIM
solution starts from a random initial condition. However,
as can be seen in Figure 9 (cf. Figure 4), the spatial
structure of the OPTIM NLSV δx∗

0 is very similar to
the CONTROL NLSV δx†

0. The similarity index defined
by Buizza (1994) is equal to 0.92 at the initial time.
The similarity index of δx† and δx∗ is computed here
as the projection coefficient of δx† on the subspace
spanned by δx∗ using the dry energy norm, which allows
us to compare the subspaces spanned by both NLSV.
This coefficient ranges between zero (for orthogonal
subspaces) and 1 (for identical subspaces). This means
that the CONTROL and OPTIM NLSVs initially share
92% of energy in common. At the final time, the
similarity index remains rather large, close to 0.88. For
further comparison, we perturbed the CONTROL basic
state with the OPTIM NLSV and vice versa. In the first
case, the perturbation amplifies by a factor σ 2 = 81.7,
and by a factor 208 in the second case. As there is only
10% difference between these amplifications rates and
the original ones (88.3 and 245.8), this means that the
perturbations are almost the same. This provides further
evidence that it is the rearrangement of the moisture field
that enhances the growth rate (through a larger release of
potential energy by diabatic heating) and not the change
in the basic structure of the perturbation.

Figure 10 shows the relative humidity at initial time
for the CONTROL and OPTIM experiments. We observe
that lower tropospheric layers tend to be saturated in
more regions in OPTIM than in CONTROL. On the
contrary, upper-tropospheric layers tend to be saturated
in less regions. This results in a larger precipitation area
in OPTIM than in CONTROL (cf. Figures 4(d–f) and
9(d–f)). Overall, the modification of the water vapour
obtained in the OPTIM experiment seems reasonable. The
optimization of both the environmental water vapour and
the nonlinear perturbations does not lead to unphysical
results, which gives some confidence on the relevance
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Figure 9. As Figure 4, but for the OPTIM experiment. NLSV are shown as bold temperature contours at intervals (a, d) 0.5 K, (b, e) 1.4 K, and
(c, f) 2.8 K.

of the method. An important point is that we cannot
claim uniqueness of the solution of the optimization
problem (nor that we reached a global extremum).
Nevertheless, the moisture modification �Q∗

0 of the
basic state dramatically increases the amplification of
perturbations. In the following section we propose some
physical mechanisms to explain our results.

4.2. The location of the optimal moisture

Figure 11 shows the optimized moisture environment
�Q∗ at different times. Initially �Q∗ is positive in
the lowest levels of the model mainly below 850 hPa.
It is then advected horizontally and vertically by the
basic flow. This perturbation remains to the south of the

Copyright c© 2009 Royal Meteorological Society Q. J. R. Meteorol. Soc. 135: 1520–1537 (2009)
DOI: 10.1002/qj



1532 O. RIVIÈRE ET AL.

Figure 10. Relative humidity at t = 0 hours. (a, b) are vertical cross-sections at latitude 59◦N, with contours of the NLSV temperature field
superimposed, and (c, d) are horizontal sections of relative humidity at σ = 1, with contours of the basic state temperature (at σ = 0.73)

superimposed. (a, c) are for the CONTROL experiment and (b, d) the OPTIM experiment.

NLSV structure. The OPTIM trajectory is saturated in
less regions in the upper atmosphere, as is shown by
relative humidity for CONTROL and OPTIM (Figure 10).
As expected, it is closer to saturation near the surface than
CONTROL.

The effect of the moisture distribution on perturbation
growth was also examined by Pavan et al. (1999) and
Tan et al. (2004). These authors showed that adding
moisture on the southern part of a baroclinic front led
to a larger perturbation growth, and we obtain here
a similar result. It is worthwhile examining whether
saturating the whole lower atmosphere would lead to the
same conclusion. To that end, we did two experiments
keeping the same dry initial basic state but saturating the
whole region between 140◦W and 60◦W and between
40◦N and 80◦N and levels either under 700 hPa or above
700 hPa. In these experiments, we examined the evolution
only of the NLSV δx∗

0 of the OPTIM trajectory, since
the NLSV structure does not seem to change much
between CONTROL and OPTIM. Amplification of the
NLSV was between σ 2 = 120 and 140 depending on
the experiments. Such low increase in the amplification
compared to the experiments using the optimal moisture

perturbation can be explained by the destruction of
the baroclinicity. We indeed observed a decrease of
the vertical shear of the wind induced by large latent
heat release in the middle troposphere (not shown).
Therefore, the distribution of water vapour that helps in
the growth rate of the perturbation strongly depends on
the characteristics of the flow field, in particular on the
position of the large-scale front.

The generation of the APE of the perturbations through
diabatic heating almost doubles between CONTROL and
OPTIM, as can be seen in Figure 7. To understand why,
we examine the efficiency of the mechanism described
in section 3.3 by computing the correlation of the two
terms of (17) for the NLSV in the OPTIM experiment.
Figure 8(b) shows that the correlation is even higher
than in the CONTROL experiment for both the SV and
the NLSV. For the NLSV the correlation is still as large
as 0.88 at the end of the optimization period. This result
indicates that diabatic APE generation is more efficient
in OPTIM. At the same time, the area of precipitation is
twice as large in OPTIM as in CONTROL after 10 hours
of integration (Figure 12). Both phenomena explain why
the diabatic mechanism is very efficient in fostering the
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Figure 11. �Q∗ (grey shading): vertical cross-sections at latitude 59◦N at (a) t = 0 hours, (b) t = 12 hours, and (c) t = 24 hours. (d–f) are
horizontal sections at σ = 1 at the same times. Superimposed are the NLSV temperature contours (bold) of the OPTIM basic state (at level

σ = 0.73 in (d–f)).

growth of the perturbations. The comparison of pertur-
bation energy growth in OPTIM and CONTROL shows
that the APE rates of growth first separate after 5 hours,
followed by the kinetic energy rate of growth after
10 hours (Figure 13). This is consistent with the precip-
itation area which shows that precipitation occurs more
frequently in OPTIM than in CONTROL after 5 hours.

4.3. Impact of the nonlinearities in the OPTIM
experiment

The consequence of the optimization of the water vapour
field is that the perturbations are strongly sensitive to
nonlinearities. Indeed, the opposite of NLSV (−NLSV)
has its growth rate diminished by 75% compared to

Copyright c© 2009 Royal Meteorological Society Q. J. R. Meteorol. Soc. 135: 1520–1537 (2009)
DOI: 10.1002/qj



1534 O. RIVIÈRE ET AL.
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Figure 12. Precipitation area (km2) inside the region 30–80◦N, 130–
54◦W for the CONTROL trajectory (solid curve) and OPTIM (dashed

curve) as a function of time.
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Figure 13. Energies for the CONTROL (black) and OPTIM (grey)
experiments as a function of time: Total energy of the NLSV (solid),
APE (dash-dotted), and kinetic energy (dashed). The total energy is

shifted by a factor of 10 for clarity.

the NLSV, whereas the decrease was only 40% in the
CONTROL experiment (Table I).

One possible explanation comes from the observation
that the precipitation P + �P of the OPTIM basic state
occurs mainly in regions where the temperature of the
optimal perturbation δx∗ is negative (cf. Figures 14(a) and
(b)). This has to do with nonlinearities in the precipitation
scheme. To explain that, we can consider the unperturbed
reference state X and the perturbed state vector X + δx
with the perturbation δx evolving in the nonlinear model.
The precipitations on both trajectories (P + δP and P )
must be positive by definition. Two cases are possible. If
δP is negative, it is bounded by the condition |δP | < P .
If δP is positive, there is no such constraint and the
dynamics are solely responsible for the value of δP .
Now, if we modify P by adding �P (assuming the
dynamics to remain unchanged) in regions with negative

δP , we have a new constraint |δP | < P + �P . As
explained in section 3.3, we know that the precipita-
tion perturbation δP is positively correlated with the
temperature perturbation δT . If we are able to modify
the precipitation of the trajectory by �P (keeping the
temperature perturbations the same), it is more efficient
to increase the precipitation P + �P in regions where
temperature perturbations are negative, so that δP can be
larger, leading to an increase of diabatic heating. This is
confirmed by Figure 14, which shows that for the OPTIM
trajectory, P + �P reaches high values in regions where
δT is negative. It allows δP to grow in the same time as
δT , thereby generating potential energy by diabatic heat-
ing. This effect is purely nonlinear since in the tangent
linear model perturbations are assumed to be infinites-
imal. This explains why changing the sign of NLSV
gives very different growth rates in the nonlinear model.

4.4. Differences between linear and nonlinear
sensitivity

To see how our nonlinear sensitivity method compares
with the standard technique of adjoint sensitivity, we
computed the adjoint sensitivity to moisture for the
CONTROL NLSV perturbation. Figure 15 shows that
the linear sensitivity of J to moisture at initial time
is larger in mid-atmosphere. The pattern of ∂J/∂Q0 is
similar to what Langland et al. (1996) observed in their
idealized extratropical cyclogenesis study. The signal in
the middle troposphere is very similar to the �Q∗

0 field
(cf. Figure 11(a)). However a strong difference is that
our method produces an increase of water vapour near
the surface that is completely absent from the adjoint
sensitivity field. This shows the usefulness of computing
an optimal water vapour field using the fully nonlinear
system since this increase in surface moisture is essential
for the development of perturbations.

It is important to stress that the nonlinear sensitivity
we discuss is different from classical adjoint sensitivity.
Using an adjoint method, we cannot determine even the
exact first-order sensitivity that we determine with our
nonlinear method, and therefore we cannot expect the
two methods to agree, even for small perturbations. The
NLSV δx∗ is indeed dependent on the modification of
the water vapour of the basic state �Q0. Using the chain
rule for the derivative of the optimal value of the cost
function J ∗(�Q0, δx∗), one can see that

∂J ∗

∂(�Q0)
= ∂J

∂(�Q0)
+ ∂J

∂(δx)

∣∣∣∣
δx∗,�Q0

∂(δx∗)
∂(�Q0)

. (18)

Because of the constraint on the initial energy, we do not
have ∂J/∂(δx) = 0 at the optimum. Actually ∂J/∂(δx)

is a function of the Lagrange multiplier for the problem.
This means that the gradient of the cost function along the
optimum perturbation (left-hand side of (18)) is different
from the gradient of the cost function at the optimum (first
term on the right-hand side). Furthermore, the expression
of ∂(δx∗)/∂(�Q0) requires the knowledge of the second-
order derivatives (Le Dimet et al., 1997).
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Figure 14. Vertical cross-sections at 59◦N of the precipitation field (grey shading) at 12 hours for (a) the CONTROL trajectory (i.e. P), and (b)
the OPTIM trajectory (i.e. P + �P). Also shown are total precipitation (i.e. P + δP and P + �P + δP; grey solid contours), and temperature

perturbation of the NLSV in thin contours (i.e. δT; black solid for positive, dashed for negative).

Figure 15. Adjoint sensitivity to moisture (∂J/∂Q0) at t = 0 hours
(grey shading) at 59◦N. Black contours are the NLSV temperature

perturbations as in Figure 10(a).

The technique we have introduced here has the advan-
tage that we can control the constraint on the water vapour
field. To see how the growth rate is dependent on the
amplitude of the perturbation, we replace the constraint
on water vapour in (5) by

Q0+�Q0 ≤ inf
{
Qsat(T0), α maxlevel(Q0+�Q0)

}
,

(19)

where α is a parameter varying between 0 and 1.
Figure 16 shows a rapid increase of amplification for
small α that becomes linear when α becomes larger.
This curve is of particular interest since it represents
the sensitivity of predictability with respect to the vari-
ation of moisture of the basic state. It should be
noted that, even for a modest value of α (around 0.2),
there is an increase of around 50% of amplification,
illustrating the important role played by moisture in
predictability.
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Figure 16. Amplification rate σ 2 as a function of α for the experiment
where the constraint on water vapour is varied following (19).

5. Conclusion

We have presented a nonlinear method for measuring sen-
sitivity to moisture, extending the concept of sensitivity
to a fully nonlinear framework. We stress that we do not
impose the linear assumption which may not be valid in
presence of moist physics. Using constrained nonlinear
optimization, we obtained the modification of the basic
state moisture field associated with the largest nonlinear
growth of perturbations (NLSVs). The results demon-
strate that a localized modification of the initial moisture
field allowed optimal growth of NLSV, larger than if
the whole atmosphere were saturated at initial time. The
growth rate of NLSV over 24 hours is then increased
by a factor of almost 3 in comparison with the reference
case. That enhancement of the amplification is mainly due
to diabatic effects, the modification of the moisture field
increasing only slightly the baroclinicity of the trajectory.
However in the two cases the shape and structure of the
optimal perturbations remain quite similar. This indicates
that, for the particular case we examined, the mechanism
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of perturbation growth remains basically unchanged and
that the role of diabatic effects is to reinforce the dry
baroclinic instability mechanism. This is possible because
diabatic tendencies due to precipitation and temperature
perturbations are in phase, allowing the largest growth
without modifying the structure of the perturbations. The
optimal moisture modification, located at initial time in
the lower troposphere (mainly below 700 hPa), is then
advected eastwards in the middle troposphere within the
warm conveyor belt of a developing cyclone.

Even if we only examined one case, we think that
the basic processes we have unveiled should be at play
in other situations as well. In the present simulation,
we did not find a moist perturbation in a different
location from the dry one. However we believe that
there may be instances where moist processes will be
sufficient to trigger a very strong growth rate, without
the help of baroclinic processes (as in the diabatic
Rossby wave scenario). Indeed other studies (Coutinho
et al., 2004; Hoskins and Coutinho, 2005) have identified
moist singular vectors in other locations than their dry
counterparts. This was also found in our model in a
preliminary work (Rivière, 2007).

If this nonlinear moist sensitivity technique is a rele-
vant tool for the study of sensitivity to moisture, it can
also be applied to the study of other processes where the
linear assumption may not hold.
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Appendix

Derivation of the gradient of the cost function (3)

The numerical nonlinear optimization code needs the
gradient of the cost function,

J (�X0, δx0) = E(δx(t = τ))

E(δx0)
(A.1)

with respect to both variables (�X0, δx0). We recall that
the perturbation at time t reads

δx(t) = M(X0+�X0+δx0)−M(X0+�X0). (A.2)

Taking the gradient of (A.1) in δx0 gives

∂J

∂(δx0)
= 1

E(δx0)

∂E(δx(t = τ))

∂(δx0)

− E(δx(t = τ))

E(δx0)
2

∂E(δx0)

∂(δx0)
.

(A.3)

Writing the norm E(Y) = 〈Y, Y〉 = YTAY where A is
the matrix of the scalar product associated with the norm

defined by (4),

E(δx(t = τ)) =
〈M(X0 + �X0 + δx0), M(X0 + �X0 + δx0)〉
+ 〈M(X0 + �X0), M(X0 + �X0)〉
− 2〈M(X0 + �X0 + δx0), M(X0 + �X0)〉.

(A.4)

Differentiating with respect to δx0 and using the adjoint
M∗

|X0+�X0+δx0
about the trajectory M(X0 + �X0 + δx0),

we obtain

∂E((δx)(t = τ))

∂(δx0)

= 2M∗
|X0+�X0+δx0

AM(X0 + �X0 + δx0)

− 2M∗
|X0+�X0+δx0

AM(X0 + �X0)

= 2M∗
|X0+�X0+δx0

A δx(t = τ).

(A.5)

In this expression, M∗
|X is the projection on the dry

variables of the adjoint model about the trajectory cor-
responding to the initial basic state X (this is not the full
adjoint because the initial perturbation δx0 is dry). Noting
E0 = E(δx0) and Ef = E(δx(t = τ)), we obtain

∂J

∂(δx0)
= 2

E0
M∗

|X0+�X0+δx0
A δx(t =τ)− 2Ef

E2
0

A δx0.

(A.6)

To obtain the gradient with respect to �X0, we follow
the same procedure. Taking the gradient of (A.1) in �X0
gives

∂J

∂(�X0)
= 1

E(δx0)

∂E(δx(t = τ))

∂(�X0)
, (A.7)

since E(δx0) depends only on δx0 and not on �X0.
Differentiating (A.4) with respect to �X0 gives

∂E(δx(t = τ))

∂(�X0)
=

2 N∗
|X0+�X0+δx0

AM(X0 + �X0 + δx0)

+ 2N∗
|X0+�X0

AM(X0 + �X0)

− 2N∗
|X0+�X0+δx0

AM(X0 + �X0)

− 2N∗
|X0+�X0

AM(X0 + �X0 + δx0) ,

(A.8)

where N∗
|X is the projection of the adjoint on the moisture

variable only (because �X0 is a perturbation in the
water vapour field only). Rearranging this expression
and using (2),

∂E(δx(t = τ))

∂(�X0)
= 2 N∗

|X0+�X0+δx0
A δx(t = τ)

− 2N∗
|X0+�X0

A δx(t = τ) .

(A.9)

This gives the final result

∂J

∂(�X0)
= 2

E0
N∗

|X0+�X0+δx0
A δx(t = τ)

− 2

E0
N∗

|X0+�X0
A δx(t = τ) .

(A.10)
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échelles synoptiques: influence des non-linéarités et de l’humidité’.
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