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Abstract

This numerical study examines the stirring properties of a 2D flow field with a specific focus on the alignment dynamics
of tracer gradient vectors. In accordance with the study of Hua and Klein [Physica D 113 (1998) 98], our approach involves
the full second order Lagrangian dynamics and in particular the second order in time equation for the tracer gradient norm.
If the physical space is partitioned into strain-dominated regions and “effective” rotation-dominated regions (following
a criterion defined by Lapeyre et al. [Phys. Fluids 11 (1999) 3729]), the new result of this study concerns the “effective”
rotation-dominated regions: it is found, from numerical simulations of 2D turbulence, that the tracer gradient vector statistically
aligns with one of the eigenvector of a tensor that comes out from the second order equation and is related to the pressure
Hessian. The consequence is that, in those regions, the observed exponential growth or decay of the tracer gradient vector can
be predicted contrary to previous results which implied zero growth and only a rotation of this vector. This result strongly
emphasizes the important role of the time evolution of the strain rate amplitude which, with the rotation of the strain tensor,
significantly contributes to the alignment dynamics. Both effects are related to the anisotropic part of the pressure Hessian,
which emphasizes the non-locality of the mechanisms involved. These results are reminiscent of those recently obtained by
Nomura and Post [J. Fluid Mech. 377 (1998) 65] for 3D turbulence. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

It is well known that the properties of large-scale
geophysical flows can be understood through the study
of 2D turbulent flow fields. Within this context one im-
portant issue concerns their stirring and mixing prop-
erties [21]. The question is how to identify the regions
of physical space where the turbulent cascade is the
most active through the production of tracer gradients.
To address this question, several studies have focused
on the deformation of a tracer field through the dynam-
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ics of its gradients (e.g. [3,9–11,15,19,24,25]). This
approach has also been intensively used for 3D turbu-
lent flow field to understand the accumulation of vor-
ticity in thin sets (e.g. [8,18] and references therein).

For 2D turbulence, Okubo [19] and Weiss [24] (see
also [25]) were the first to derive a kinematic criterion,
based on the first order equation for the gradient vec-
tor, to separate “straining regions” where the motions
strongly shear the vorticity or a passively advected
tracer from “eddy regions” where motions advect the
vorticity or tracer smoothly. However, counterexam-
ples, such as the point vortex flow, suffice to show that
this criterion is not generally indicative of the growth
rate of the gradients [20]. An alternative to examine the
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tendency towards a turbulent cascade is to consider the
first order equation for the tracer gradient norm that in-
volves the magnitude of the strain rate (known in terms
of the velocity field) and the geometrical alignment of
the tracer gradient vector with the eigenvectors of the
strain rate tensor [15,22]. Thus the effectiveness of the
turbulent cascade crucially depends on the alignment
properties which need to be estimated.

One interesting property of the alignment dynam-
ics, which stimulates our study, is that the orientation
of the tracer gradient vector appears to be determined
only by its recent history [2,4]. This means that
over a few strain rate scales, an equilibrium should
be attained. Some studies [17,22] have revealed a
tendency for the vorticity gradient vector to align
with the compressional strain eigenvector. Lapeyre
et al. [13] have recently revisited the question of the
existence of a preferential direction for the tracer
gradient. Their results show that the alignment dy-
namics is a response to a competition between the
strain effects and the “effective” rotation (i.e. the sum
of vorticity and rotation of the axes of the strain rate
tensor) effects. This has led to define a criterion to
separate strain-dominated regime from “effective”
rotation-dominated regime. Their results represent a
substantial improvement to the Okubo–Weiss crite-
rion since an exact analytical solution is found for the
class of axisymmetric vortices (which the point vor-
tex belongs to) that lies between these two regimes.
Furthermore, for the strain-dominated regime, they
proposed an exact steady solution for the alignment
which is distinct from the compressional eigenvector
of the strain tensor. This solution was shown to pre-
dict more accurately the tracer gradient orientation
than those involving only the compressional eigenvec-
tor of the strain tensor. However, for the “effective”
rotation-dominated regime, their solution predicts no
growth of the tracer gradient, which was found to be
less statistically robust.

The original point of Lapeyre et al. [13] is to take
into account explicitly the rotation of the axes of the
strain rate tensor. This quantity cannot be deduced
directly from the local velocity field whereas the vor-
ticity and strain rate are expressed in terms of the local
velocity field. Actually this quantity is a non-local

quantity which requires to consider the Lagrangian ac-
celeration gradient tensor (equal to the pressure Hes-
sian for a 2D flow), i.e. to consider the second order
Lagrangian dynamics. This emphasizes the non-local
character of the stirring properties and the important
role of the pressure Hessian that has already been high-
lighted in [3,9]. This role of the pressure Hessian on
the stirring properties has also been well emphasized
by recent analytical and numerical results in 3D turbu-
lence (e.g. [8,18,23]). However, the solutions derived
in [13] use only a part of the information contained
in the pressure Hessian since they do not involve the
time evolution of the magnitude of the strain rate. Our
conjecture, based on our previous studies in 2D turbu-
lence [9] and on more recent results in 3D turbulence
[16], is that the full consideration of the pressure Hes-
sian should improve the solutions already proposed,
in particular for the “effective” rotation-dominated
regions. Indeed Fig. 18 of [16] shows that in the
rotation-dominated regions of a 3D turbulent flow
field the gradient vector aligns preferentially with one
of the eigenvectors of the pressure Hessian.

Consequently this paper reexamines the alignment
properties of tracer gradients in a 2D flow field with
the consideration of the full second order Lagrangian
dynamics by using the first two order time derivatives
equations for the tracer gradient. A rationalization
of this approach, based on a Taylor series expan-
sion, has been given by Ohkitani and Kishiba [18].
Following the recent results of Nomura and Post
[16], a specific purpose of our study is to investigate
whether the eigenvectors of the tensor involved in the
second order equation represent a preferential direc-
tion for the tracer gradient vector in the “effective”
rotation-dominated regime. Our approach is devel-
oped and discussed in the next two sections. Its po-
tentialities are assessed in Section 4 from numerical
experiments of 2D decaying turbulence. For the sake
of simplicity, our approach is developed within the
context of the 2D Euler equations since the addition
of viscosity makes the analytical problem difficult to
interpret. However, the numerical experiments result
from the integration of the Navier–Stokes equations
with the inclusion of a Newtonian viscosity. The
conclusions are summarized in Section 5.
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2. Second order Lagrangian approach of
alignment dynamics

Let us consider a tracer fieldq conserved on a La-
grangian trajectory:

dq

dt
= 0, (2.1)

where(d/dt)( ) = ∂( )/∂t + u(∂( )/∂x) + v(∂( )/∂y),
with u andv, respectively, the zonal and meridional
components of the 2D velocity field.

The approach used in [9] to study the deformation
of the tracer field was to consider the equations of the
first and second orders in time for the tracer gradient
vector. The first equation involves the velocity gradi-
ent tensor and the second one the pressure Hessian
(see Appendix A). In this study, we use a slightly
different approach: we consider the first two order
time derivative equations for thenorm of the tracer
gradient instead of those for the gradient vector. The
main argument for this choice is that these equations
are independent of the coordinates system and allow
to focus on the geometrical alignment of the tracer
gradient vector. Defining|∇∇∇q|2 ≡ ∇∇∇q∗∇∇∇q, with ∗
denoting the transpose, we obtain

d

dt
|∇∇∇q|2 = −2∇∇∇q∗SSS∇∇∇q, (2.2)

d2

dt2
|∇∇∇q|2 = ∇∇∇q∗NNN∇∇∇q, (2.3)

with

SSS = 1

2

[
σn σs

σs −σn

]
, (2.4)

NNN =


 σ 2

n +σ 2
s −ωσs − dσn

dt
ωσn − dσs

dt

ωσn−dσs

dt
σ 2

n +σ 2
s + ωσs+dσn

dt


 ,

(2.5)

where ω, σn and σs are, respectively, the vorticity
and the normal and shear strain rates defined asω ≡
∂v/∂x − ∂u/∂y, σn ≡ ∂u/∂x − ∂v/∂y and σs ≡
∂v/∂x + ∂u/∂y. Note that in 2D turbulence, the vor-
ticity ω is a tracer that verifies (2.1).

Eq. (2.2) involves the strain tensorSSS and Eq. (2.3)
the tensorNNN . The tensorNNN involves dSSS/dt and is

Fig. 1. Angles between∇∇∇q and the different eigenvectors. The
different angles are defined in the text.

directly related to the pressure Hessian (see Appendix
A). Let us introduceSSS− andNNN−, 1 the eigenvectors
of, respectively,SSS andNNN corresponding to their low-
est eigenvalues. From (2.2), the growth rate of the
tracer gradient depends on the eigenvalues ofSSS and
on the alignment of∇∇∇q with SSS−. On the other hand,
from (2.3) (see [8] for a more complete demonstra-
tion), the growth rate tendency and the dynamics of
the alignment of∇∇∇q with one of the eigenvectors ofSSS

depend on the alignment of∇∇∇q with NNN−. ThusNNN ex-
plicitly affects the alignment dynamics. Consequently
when∇∇∇q does not align withSSS−, as in the “effective”
rotation-dominated regime (see [13]), it seems natural
to examine whether it preferentially aligns withNNN−.

A way to examine more explicitly the alignment
dynamics is to rewrite (2.2) and (2.3) using the nota-
tions ∇∇∇q = ρ(cosθ, sinθ) with ρ ≥ 0 (see Fig. 1)
and (σs, σn) = σ(cos 2φ, sin 2φ) with σ ≥ 0. These
equations become

1

ρ2

d

dt
ρ2 = −σ sinζ, (2.6)

1

ρ2

d2

dt2
ρ2 = σ 2(1 − χ cos(ζ − α)), (2.7)

1 NNN (as well asSSS) is symmetric and therefore its eigenvectors (and
those ofSSS) are orthogonal. SoSSS− andNNN− suffice to characterize
the eigenvectors ofSSS andNNN .
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with

ζ = 2(θ + φ),

and whereχ andα are defined by

χ =
√

r2 + s2, (sinα, cosα) =
(

s

χ
,

r

χ

)
, (2.8)

with

r ≡ ω + 2(dφ/dt)

σ
, s ≡ dσ/dt

σ 2
. (2.9)

The anglesθ, φ, ζ andα are shown in Fig. 1.
The RHS of (2.6), i.e. the exponential growth rate

of the tracer gradient norm, involves onlyσ and ζ .
The angleζ is directly related to the orientation of
∇∇∇q with the compressional eigenvectorSSS−, since from
the preceding definitions the angle ofSSS− with the
x-axis is −(φ + π/4) (see Fig. 1). Then a perfect
alignment of∇∇∇q with the compressional eigenvector
(ζ = −π/2) corresponds to the largest growth rate.
On the other hand,ζ = 0 means that∇∇∇q is aligned
with the bisector of the strain rate eigenvectors, which
leads to a zero exponential growth rate. The RHS of
(2.7) involves two new non-dimensional terms:r and
s. The termr is a “rotational” term related to the
“effective” rotation (i.e. the rotation effects resulting
from the competition between the vorticity and the
rotation of the main axes of the strain rate tensor). The
term s represents the effects of the time evolution of
the strain rate amplitude. It should be emphasized that
both tensors,NNN and dSSS/dt (and hence the anisotropic
part of the pressure Hessian), can be expressed in terms
of r ands (see Appendix B).

From Eqs. (2.2) and (2.3),SSS− andNNN− represent
two natural directions which the tracer gradient vec-
tor could preferentially align with. The angle between
SSS− andNNN− is just equal to1

2(α + π/2) (Fig. 1). This
means that, when bothr ands differ from zero,NNN−
is coaligned neither with the strain axes nor with the
bisector of the strain axes. The alignment of∇∇∇q with
SSS− has been addressed by several studies (see [22]
and references therein). However, a more recent study
[13] has shown that the tracer gradient vectors prefer
to align with specific directions that differ fromSSS−.
These directions, that involve only the value of the
parameterr (and nots), were derived by using only

the first order equation for the tracer gradient vector.
The present study, based on the first and second order
equations for the tracer gradient norm, yields a new
direction,NNN−, which naturally stems from the second
order equation and that depends on bothr ands. Con-
sequently the question now is: do the tracer gradient
vectors prefer to align withNNN− rather than with the
other directions? This question is addressed in the next
sections within the framework of Eqs. (2.2) and (2.3).

3. Discussion of the approach used

3.1. Relation with previous work

The combination of (2.6) and (2.7) allows to obtain
an equation for the time evolution of the angleζ :

dζ

dt
= σ(r − cosζ ). (3.1)

The equation is actually identical to that derived by
Lapeyre et al. [13]. Similar equations have also been
derived by Dresselhaus and Tabor [6] and Dritschel
et al. [7] (see also [12]). Eq. (3.1) only involvesr
and has led Lapeyre et al. [13] to define two regimes:
the strain-dominated regime (when|r| ≤ 1) for which
there are two steady solutions:

ζ− = − arccos(r) stable, (3.2)

ζ+ = arccos(r) unstable, (3.3)

and the “effective” rotation-dominated regime (when
|r| > 1) for which no steady solution exists. Steady
solutions express that the alignment angle,ζ , results
from the balance between the strain effects (σ ) that
tend to align the tracer gradient vector in the direction
of the compressional eigenvectorSSS− and the rotation
effects (ω + 2(dφ/dt)) that tend to move away the
tracer gradient vector fromSSS−.

For the “effective” rotation-dominated regime
(|r| > 1), Lapeyre et al. [13] only predicted a contin-
uous rotation of the gradient vector with a minimum
rate of rotation for a preferential orientation

ζprob = π

2
(1 − sign(r)), (3.4)
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which corresponds to the bisector of the strain axes
and therefore to a zero exponential growth rate of the
tracer gradient norm.

The solutions of Lapeyre et al. [13] depend only
on r. However, Eqs. (2.6) and (2.7) reveal that both
r ands should affect the alignment dynamics and the
growth rate. Consequently we would like to examine,
in particular for the “effective” rotation-dominated
regime, whether the consideration of the full second
order Lagrangian dynamics, allows to better identify
the preferential direction for the alignment of the
tracer gradient. More precisely we intend to examine
whether the eigenvectorNNN− represents a preferential
direction for the tracer gradient vectors or not. Some
insights for a positive answer are given by the solu-
tions for the alignment dynamics for three different
limiting cases.

3.2. Three limiting cases

These limiting cases concern the saddle point, the
axisymmetric vortex and the strongly rotating case.
1. The saddle point(r = 0). For a saddle point where

r = s = 0(χ = 0), the stable solutions of (2.6)
and (2.7) lead to

sinζ = −C1 sinh(σ t) + C2 cosh(σ t)

C1 cosh(σ t) + C2 sinh(σ t)
,

where C1 and C2 are constants. This yields the
following equilibrated solutionζ = −π/2. Con-
sequently the exponential growth rate of the tracer
gradient is maximum and∇∇∇q is exactly aligned
with the compressional eigenvectorSSS−. Further-
more,∇∇∇q is also exactly aligned withNNN− (since
NNN is a diagonal matrix and therefore any vector is
an eigenvector, which emphasizes the degenerated
character of this example).

2. The axisymmetric vortex(|r| = 1). A steady ax-
isymmetric vortex is characterized by a stream
function that is only radially varying. (Note that
the point vortex satisfies this characteristic.) This
leads tor = ±1 and s = 0 (χ = 1). Then the
exact solutions of Eqs. (2.6) and (2.7) lead to

sinζ = −2r
A + rσ t

1 + (A + rσ t)2
,

whereA is a constant. At equilibrium,ζ = 0 orπ ,
which means that the exponential growth rate of the
tracer gradient is 0 and that the vector∇∇∇q exactly
aligns with the bisector of the strain axes. The equi-
librated solution corresponds to only an algebraic
growth. However, sinceα = arctan(s/r) = 0, ∇∇∇q

is exactly aligned withNNN−.
3. The strongly rotating case(|r| � 1). From (3.1)

there is no steady solution forζ in that case and
the tracer gradient is continuously rotating. How-
ever, one can argue (as in [13]) that the tracer gra-
dient vector could spend statistically more time in
the direction for which|dζ/dt | is minimum (i.e.
for d2ζ/dt2 ≈ 0). This direction can be found
from the equation for d2ζ/dt2 only assuming that
2|d2φ/dt2| � |dσ/dt |, which leads to

d2ζ

dt2
= σ 2χ sin(ζ − α).

Thus the preferential direction that corresponds to
d2ζ/dt2 ≈ 0 is ζ ≈ α. This direction that strongly
depends ons corresponds toNNN−. It differs from
the strain axes and from the bisector of the strain
axes whens is non-zero.
These specific examples that are only limiting cases

are quite different with respect to the alignment of∇∇∇q

with the eigenvectors ofSSS. The first one has a de-
generated character. However in the two other exam-
ples, that represent the lower and upper bounds of the
“effective” rotation-dominated regime,∇∇∇q aligns with
NNN−. Furthermore, the last one involves both param-
etersr ands and takes into account strong unsteadi-
ness. This suggests that,in a 2D time-evolving turbu-
lent flow field, ∇∇∇q could be preferentially aligned with
the eigenvectorNNN−, in particular for the “effective”
rotation-dominated regime. Consequently, in order to
assess the importance of the parametersr and s, the
next section examines, from the results of numerical
experiments, the alignment of the tracer gradient vec-
tor with various directions.

4. Experimental results

The experimental results concern the flow field ob-
tained in a numerical simulation of decaying turbu-
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lence at a resolution of 1024× 1024 (see [9] for more
details). There is a Newtonian viscosity such that the
Reynolds number is 3.5 × 104. In the following sec-
tions, the characteristics of this flow field are analyzed
after about 40 turnover time scales of the predomi-
nant eddies. At this stage of the decay, the vorticity
field (see [9, Fig. 1]) exhibits the usual emergence of
coherent structures together with a strong filamenta-
tion resulting from the mutual straining and shearing
influences of closely located vortices. The results dis-
cussed below have been corroborated by the analysis
(not reported here) of the numerical simulation at later
times (after 50 and 60 turnover time scales) and also
of other numerical simulations of 2D turbulence.

Fig. 2. PDF, conditioned by|r| ≤ 1 and|∇∇∇q| > 100, of the alignment: (A) between the tracer gradient and the compressional eigenvector
SSS− (i.e. ζ + π/2); (B) between the tracer gradient and the eigenvectorNNN− (i.e. ζ − α); and (C) between the tracer gradient and the
direction corresponding to the stable solution (3.2) (i.e.ζ − ζ−).

4.1. Preferential alignment of the tracer gradient
vector

The preferential direction which the vector∇∇∇q tends
to align with has been estimated through the statis-
tics of the geometrical alignment of∇∇∇q with differ-
ent vectors. The vectors considered are, first, the com-
pressional eigenvectorSSS− and the eigenvectorNNN−.
The alignment of∇∇∇q with SSS− (respectively,NNN−) is
assessed by checking whetherζ ≈ −π/2 (respec-
tively, ζ ≈ α). Furthermore, we have also estimated
the alignment with the solutions of Lapeyre et al. [13]
namely, the steady solution (3.2) when|r| < 1 (by
checking whetherζ ≈ ζ−) and the most probable
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Fig. 3. PDF, conditioned by|r| > 1 and|∇∇∇q| > 100 of the alignment: (A) between the tracer gradient and the compressional eigenvectorS−
(i.e. ζ +π/2); (B) between the tracer gradient and the eigenvectorNNN− (i.e. ζ −α); (C) between the tracer gradient and the eigenvectorPPP ′′

−
of the pressure Hessian (i.e.ζ − δ); and (D) between the tracer gradient and the preferential direction of Lapeyre et al. [13] (i.e.ζ − ζprob).

solution when|r| > 1 (by checking whetherζ ≈
ζprob). At last, in order to compare our results with
those of Nomura and Post [16], we have computed
the statistics of the alignment of∇∇∇q with one of the
eigenvector of the pressure Hessian (PPP ′′

−) by consid-
ering the statistics ofζ −δ (with 1

2(δ+π/2) the angle
betweenPPP ′′

− andSSS−, see Fig. 1).
The statistical results clearly confirm the partition

of the physical space into strain-dominated regions
(|r| < 1), which concerns 60% of physical space, and
“effective” rotation-dominated regions (|r| > 1). The
key results are summarized in Figs. 2 and 3 that display
the probability density function (PDF) of the different

angles conditioned by|∇∇∇q| > 100 (which concerns
more than 50% of physical space).2

For the strain-dominated regions, the PDFs (Fig. 2)
reveal that∇∇∇q preferentially aligns withζ−. The align-
ment withSSS− andNNN− are comparable and less effi-
cient than withζ−, but more efficient than withPPP ′′

−
(not shown). These results clearly confirm that for
the strain-dominated regions the solution proposed by
Lapeyre et al. [13], i.e.ζ−, is the best one. On the other
hand, the consideration ofNNN− does not introduce more
information on the gradient orientation than that ofSSS−.

2 The mean|∇∇∇q|-value is 162.
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Fig. 4. Vorticity (left); r (middle); alignment (with a precision of±13◦) of tracer gradient vectors withSSS− (black),NNN− (blue), ζ− when
|r| < 1 (red) andζ+ when |r| < 1 (green) (right).

For the “effective” rotation-dominated regions
(Fig. 3) the results significantly differ. The alignment
of ∇∇∇q with NNN− strongly dominates. It is more effi-
cient than withPPP ′′

− and significantly much better than
with ζprob. This figure shows that the tracer gradient
vectors actually lie close to the bisector of the axes of
the strain rate tensor with, however, a non-zero shift
as displayed by the enlarged PDF ofζ + ζprob. This
non-zero shift appears to be well captured byNNN−,
which is a significant improvement relatively to the
previous studies.

Since the alignment of∇∇∇q in the strain-dominated
regions significantly differs from that in the “effective”
rotation-dominated regions, we have assessed the
sharpness of the boundary|r| = 1. For that purpose we
have calculated the same PDFs as in Figs. 2 and 3 for
the regions corresponding to 0.8 < |r| ≤ 1 and 1<

|r| ≤ 1.2. The PDFs (not shown) clearly confirm the
strong preference of∇∇∇q to align withζ− when|r| < 1
and withNNN− when|r| > 1, which emphasizes the role
of |r| = 1 as a threshold in the alignment dynamics.

Fig. 4, that focuses on one vortex of the turbulent
field (Fig. 4(left)), provides an illustration of a re-
gion where both regimes,|r| < 1 and |r| > 1, co-
exist. Fig. 4(middle) shows that these regimes are well
separated and that the|r| > 1 regime is dominating.

The vortex core is a region wherer > 1 because of
large values ofω. The vortex periphery is composed
of regions where|r| < 1 because of large values of
σ and regions wherer < −1 because of large val-
ues of dφ/dt (whose sign is opposite to that ofω,
Fig. 4(left)). Moreover, the|r| > 1 region at the vortex
periphery is characterized by a sharp interleaving of
negative and positive values with a domination of the
latter. Actually, for all vortices of the turbulent flow
field, we have observed that large values ofr at the vor-
tex periphery and in the vortex core globally have op-
posite sign. Fig. 4(right) shows the directions the tracer
gradient vectors prefer to align with among the direc-
tions: SSS−, ζ−, ζ+ andNNN−. Clearly there is a strong
preference for∇∇∇q to align withNNN−, where|r| > 1 and
with ζ−, where|r| ≤ 1. However, it is interesting to
note that in some regions where|r| ≤ 1 (as in the lower
right edge) some gradients prefer to align withζ+.

Thus the new outcome of this study concerns the
“effective” rotation-dominated regions for which the
present results clearly display a preferential alignment
with the eigenvectorNNN−, which differs from the bi-
sector of the eigenvectors ofSSS when s is non-zero,
yielding a non-zero exponential growth. This outcome
has to be contrasted with previous results that only
predicted a perfect alignment with the bisector of the
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Fig. 5. Joint PDF ofs with r conditioned by|∇∇∇q| > 100.

eigenvectors ofSSS and consequently a zero exponen-
tial growth. Therefore, the present results strongly em-
phasize the importance of the parameters, which was
not found in previous studies. Furthermore, the align-
ment withNNN− is better than withPPP ′′

− for 98% of the
tracer gradients,3 which justifies the present approach
using the time evolution of the tracer gradient norm
rather than of the vector itself. At last this clearly con-
firms the significant influence of the full Lagrangian
second order dynamics. On the other hand, for the
strain-dominated regions, the results well confirm the
conclusions of Lapeyre et al. [13] about the preferen-
tial alignment of the tracer gradient vector withζ−.

3 Indeed for the remaining 2% that correspond to the largest
gradients, another alignment dynamics seems to prevail.

4.2. The role of the parametersr and s on the
alignment process

The alignment of∇∇∇q with either the direction
of the stable solution (3.2) or withNNN− depends on
the parametersr and s. So one question is: where
are the tracer gradients and the different alignment
properties located in the parameter space{r, s}? The
region where most of the tracer gradients are located
is displayed by the joint PDF ofr and s condi-
tioned by |∇∇∇q| > 100 (Fig. 5). Tracer gradients
are mostly found where|r| < 1.5 (with an almost
even distribution) and where values ofs are slightly
negative. Furthermore, we have found (figure not
shown) that, in the region where|r| ≤ 1 tracer gra-
dients that align with the stable solution (3.2) are
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Fig. 6. Joint PDF ofs with r conditioned by|∇∇∇q| > 100 and cos(ζ − α) > 0.9.

also almost evenly distributed betweenr = −1 and
r = 1.

Fig. 6 shows the joint PDF ofs andr conditioned
by |∇∇∇q| > 100 and cos(ζ −α) > 0.9 (which concerns
more than 18% of physical space). This corresponds
to an angle of∇∇∇q with NNN− that is less than 13◦. It re-
veals that tracer gradients that align withNNN− are more
frequently found in three well-defined regions whose
characteristics are close to those of the first two limit-
ing cases discussed in Section 3. The first region is cen-
tered around the point{r, s} = {0, −0.15}. It means
that tanα = s/r ≈ ∞ and therefore that the eigen-
vectors ofNNN andSSS are almost parallel. This situation
is close to the first limiting case (the saddle point). We
have checked that, in this region, the alignment of the
tracer gradient vector with the stable solution (3.2) is,

however, better than withNNN−. The two other regions
are centered around the peaks{r, s} = {−1, −0.05}
and{r, s} = {0.95, −0.025}. This means that tanα is
small but non-zero in those regions and thus the an-
gle between the eigenvectors ofNNN andSSS is not equal
to π/4. The consequence is that the direction of∇∇∇q

should differ from the bisector of the eigenvectors of
SSS. Therefore, the tracer gradient exponential growth
rate should be small but non-zero. These situations are
close to the second limiting case (the axisymmetric
vortices). However, they emphasize the important role
of s. Again, we have checked that the alignment of
the tracer gradient vector with the stable solution (3.2)
is better than withNNN− when|r| ≤ 1. However, when
|r| > 1, the angle of∇∇∇q with NNN− is much closer to 0
than when|r| ≤ 1.
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The preceding results reveal that the alignment of
the tracer gradient vectors withNNN− occurs preferen-
tially for negative values ofs. This feature is corrobo-
rated by the joint PDF (not shown) ofs and the growth
rate of the tracer gradient norm, defined as

∆ = −σ sinζ, (4.1)

which displays a negative correlation ofs with ∆ and
which presents a strong asymmetry that is more pro-
nounced for large amplitudes ofs: positive (negative)
values of the growth rate are more frequently found
in regions wheres is negative (positive). Thus, when
the amplitude ofs is large, the sign ofs affects the
alignment process and the growth rate of the tracer
gradient norm. On the other hand, the sign ofr does
not seem to have a so much pronounced influence on

Fig. 7. Joint PDF of the growth rate with its estimation using (4.2) and conditioned by|∇∇∇q| > 100 and|r| < 1.

the alignment of∇∇∇q with the eigenvectors ofNNN (and
therefore on the sign of the growth rate). We observe,
however, in Fig. 6 that the PDF is stronger in the re-
gion centered around{r, s} = {−1, −0.05} than in the
region around{r, s} = {0.95, −0.025}.

4.3. Consequence on the growth rate of the tracer
gradient

What can be inferred from the alignment proper-
ties, in particular in the “effective” rotation-dominated
regions, for the production of the tracer gradients and
the tracer cascade? One way to address this ques-
tion is to compare the observed instantaneous growth
rates of the tracer gradient norm (∆) with their es-
timations using the strain rate amplitude and the
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Fig. 8. Same as Fig. 7 but using (4.3) and conditioned by|r| > 1.

analytical expressions for the alignment properties.
The strong preference for∇∇∇q to be aligned withζ−
in the strain-dominated regions and withNNN− in the
“effective” rotation-dominated regions leads to the
following analytical expressions of the instantaneous
exponential growth rate,∆, of the tracer gradient
magnitude:

∆ = σ sin(arccosr) = σ
√

1 − r2 when |r| ≤ 1,

(4.2)

∆ = −σ sin(α) = −σ
s

χ
when |r| > 1. (4.3)

The joint PDFs of the experimental values of∆ with
the analytical expressions provided by (4.2) and (4.3),
shown in Figs. 7 and 8, reveal that these estimations
of the growth rate are statistically close to the experi-

mental values. In the regions where|r| ≤ 1, the joint
PDF (Fig. 7) exhibits a maximum near∆ = 2.5.
Most of the tracer gradients located in those regions
align with ζ−. However, there is a branch in the upper
left-hand quarter that corresponds to a correlation of
−1. This means that, at those locations, the tracer gra-
dient vectors align withζ+ instead ofζ−. So far we
have no explanation for this intriguing feature. Fig. 8
reveals that in the “effective” rotation-dominated re-
gions, the growth rate of the tracer gradients ranges be-
tween−1.5 and 1.5 and that the estimation produced
by (4.3) is statistically correct. These results again em-
phasize the important role of the amplitude and sign of
r ands on the growth rate of the tracer gradients and
therefore on the stirring properties of a 2D flow field.
Thus the main novel feature that emerges, relatively
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to the previous studies, is that taking into account the
rate of change of the strain rate amplitude allows to
predict the exponential growth rate of the tracer gra-
dients in the “effective” rotation-dominated regions.

5. Conclusion

The purpose of this study was to examine the
alignment dynamics of the tracer gradient vectors by
considering the second order Lagrangian dynamics.
In accordance with the results of Hua and Klein [9],
the approach used has been to consider the first two
order equations for the tracer gradients. The equations
for the tracer gradient norm are considered instead of
those for the tracer gradient vectors. These equations
are indeed independent of the coordinates system and
allow to focus on the geometrical alignment of the
tracer gradient vectors relatively to the strain eigen-
vectors. The main result, that emerges from direct
numerical simulations, is that the full consideration of
the second order Lagrangian dynamics significantly
improves the statistical estimation of the alignment
dynamics and therefore the knowledge of the stirring
properties of a 2D turbulent flow field.

More precisely, defining a parameterr, that mea-
sures the competition of the “effective” rotation ef-
fects (due to both the vorticity and the rotation of
the strain axes) with the strain modulus effects, the
present results well confirm those obtained in [13] in
the strain-dominated regime(|r| < 1): for this regime,
that concerns almost 60% of the physical space, there
is a stronger preference for the alignment with a di-
rection corresponding to a steady equilibrium between
the “effective” rotation and strain effects.

The major improvement which emerges from our
approach concerns the “effective” rotation-dominated
regime (|r| > 1) that concerns 40% of the phys-
ical space: the experimental results clearly reveal
a strong preference for the tracer gradient vec-
tors to be statistically aligned withNNN−, one of the
eigenvectors of a matrixNNN related to the pressure
Hessian. These results are corroborated by other nu-
merical simulations of decaying 2D turbulence (not
reported here). The eigenvectorNNN− differs from the
bisector of the eigenvectors ofSSS when the time evo-

lution of the strain rate modulus,s, is non-zero. This
feature strongly emphasizes the importance of this
parameters, which was not found in the previous
studies. The consequence is that, in these “effective”
rotation-dominated regions, the non-zero exponential
growth or decay of the tracer gradient vector (and
therefore both the sign and amplitude of the growth
rate) can be predicted contrary to previous results
which predicted zero growth and only a rotation of
this vector.

The tensorNNN is directly related to the time evo-
lution of the amplitude and orientation of the strain
tensor. This clearly confirms the significant influ-
ence of the pressure Hessian, more precisely of its
anisotropic part, since this part modifies both the
amplitude and orientation of the strain tensor. Fur-
thermore, this emphasizes the strong influence of
the non-local (in terms of the velocity field) interac-
tions on the alignment dynamics in particular for the
“effective” rotation-dominated regime. Indeed calcu-
lation of the anisotropic part of the pressure Hessian
requires to solve a Poisson equation over the whole
domain [9], whereas the isotropic part is expressed in
terms of the local velocity gradients.

The present results are similar to those obtained
recently by Nomura and Post [16] for 3D turbulence.
For the rotation-dominated regions, these authors
found that the vorticity vector (equivalent to the tracer
gradient vector in 2D turbulence) preferentially aligns
with one of the pressure Hessian eigenvectors. Our
results clearly reveal that for a 2D field, the tracer
gradients prefer to align withNNN− rather than with
the eigenvectors of the pressure Hessian, which jus-
tifies the present approach using the equations for the
tracer gradient norm. An explanation of this differ-
ence is that in a 2D flow field, the tracer gradients are
affected by the vorticity (see Eq. (A.1)), whereas in
a 3D field the vorticity vector cannot be directly af-
fected by itself. This is why the expression ofNNN (see
(A.6)) involves, besides the pressure HessianPPP ′′ and
its isotropic part(λ0III ), an additional term linearly
related to the vorticity(ΩΩΩ∇∇∇uuu∗).

It should be mentioned that throughout this study
we do not make distinction between the gradient of
a passive tracer conserved on a Lagrangian trajectory
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and that of the vorticity. We have indeed found in
our numerical 2D simulations that, for times longer
than an initial enstrophy time scale, the two gradients
have an identical orientation in most of the domain.
This is also confirmed by Babiano et al. [1] who have
noted that isolines of tracer and vorticity have similar
orientations. Therefore, the present results are valid
for both gradients. However, a more thorough study
on the comparison between the behaviors of active and
passive scalars in 2D turbulence is under progress.

Two questions arise from the results of the present
study. The first one concerns the sign of the growth rate
of the tracer gradient. Indeed the analytical findings of
this study indicate that in the strain-dominated regions,
the tracer gradient vectors should align in a direction
that corresponds to a positive growth rate. However, at
some locations, the numerical results clearly reveal an
alignment just in the opposite direction. This suggests
that at those locations the tracer gradient vectors pref-
erentially align in the direction of the unstable fixed
point of (3.1). The mechanisms that force this solution
to be stabilized in those regions, and more specifically
the role of the parameters, should be investigated as
s was not taken into account in the derivation of (3.2)
and (3.3). The second question concerns the effects of
the dissipation on the alignment dynamics which have
not been examined in this study. Some recent results
show that both the magnitude and the form of the vis-
cosity (using a Newtonian or an hyperviscous model)
can have a significant effect on the alignment dynam-
ics with the strain eigenvectors [22] and on the strip-
ping of vortex caused by the steep vorticity gradients
[14]. These results suggest to study more carefully the
effects of the viscosity on the topology of the stirring
processes. Such a study could use a recent technique
of Lagrangian path analysis to take into account the
diffusion on Lagrangian trajectories as it permits to
have an exact expression for the tracer distribution (see
for instance [5] and references therein). We intend to
address these questions in the next future.
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Appendix A

One approach to study the deformation of the tracer
field is to consider the first two order time derivative
equations of its gradient vectors (see [3,9]):

d∇∇∇q

dt
= −∇∇∇uuu∗∇∇∇q, (A.1)

d2∇∇∇q

dt2
=

[
[∇∇∇uuu∗]2 − d∇∇∇uuu∗

dt

]
∇∇∇q, (A.2)

with ∇∇∇ the gradient operator and∇∇∇uuu∗ the transpose
of the velocity gradient tensor, expressed as

∇∇∇uuu∗ =
[

∂xu ∂xv

∂yu ∂yv

]

= 1

2

[
σn σs

σs −σn

]
+ 1

2

[
0 ω

−ω 0

]
= SSS + ΩΩΩ,

whereω, σn, andσs are, respectively, the vorticity and
the normal and shear strain rates andΩΩΩ = 1

2ωRRR(π/2)

with RRR(π/2) the rotation matrix ofπ/2. Furthermore,
if PPP ′′ designates the Hessian matrix of the pressure:

P ′′ ≡
[

∂xxp ∂xyp

∂xyp ∂yyp

]
,

we have the relation [9]:[
[∇∇∇uuu∗]2 − d∇∇∇uuu∗

dt

]
= −RRR

(
−π

2

)
PPP ′′RRR

(π

2

)
. (A.3)

This relation emphasizes the role of the pressure Hes-
sian (i.e. of the acceleration gradient tensor) on the
evolution of the tracer gradient vectors. For a 2D flow,
we have[
[∇∇∇uuu∗]2 − d∇∇∇uuu∗

dt

]
= λ0III − dSSS

dt
, (A.4)

since dω/dt = 0 and [∇∇∇uuu∗]2 = λ0III with III the iden-
tity matrix andλ0 = 1

4(σ 2
n + σ 2

s − ω2). The partλ0III

is related to the isotropic part of the pressure Hes-
sian(λ0 = −1

2∇2p), whereas dSSS/dt is related to the
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non-isotropic part, which points out its non-local na-
ture [9]. The studies of Basdevant and Philipovitch [3]
and Hua and Klein [9] have clearly revealed the ne-
cessity to take into account bothλ0III and dSSS/dt for a
better characterization of the stirring processes.

The tensorNNN defined in (2.5) can be directly re-
lated to the pressure Hessian using the preceding
expressions:

NNN = 2
[
−RRR

(
−π

2

)
PPP ′′RRR

(π

2

)
+ ∇∇∇uuu∇∇∇uuu∗

]
, (A.5)

or

NNN = 2
[
−RRR

(
−π

2

)
PPP ′′RRR

(π

2

)
+ λ0III − 2ΩΩΩ∇∇∇uuu∗

]
.

(A.6)

Appendix B

Simpler expressions for bothSSS and NNN can be
obtained when they are rewritten in the strain coordi-
nates. Using the relations(σs, σn) = σ(cos 2φ, sin 2φ)

with σ ≥ 0, these expressions are

SSS = σ

2
RRR

(
φ − π

4

) [
1 0
0 −1

]
RRR

(π

4
− φ

)
,

NNN = σ 2RRR
(
φ − π

4

) [
1 − s r

r 1 + s

]
RRR

(π

4
− φ

)
,

where the termsr ands are defined by (2.9).
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