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ABSTRACT

Ina recent study,O’Neill et al. analyzed thedivergenceof surfacewinds above thenorthwestAtlantic. In the time

mean, a band of convergence is found, overlying the southern flank of the Gulf Stream. To quantify the impact of

synoptic storms, the authors proposed to compare the time-mean divergence with the divergence averaged in the

absence of rain. In the resulting conditional-average field, divergence was found to be positive nearly everywhere.

O’Neill et al. concluded that this absence of convergence precludes the Ekman-balanced mass adjustment to be

responsible for the atmospheric response above theGulf Stream.Using a simplistic toymodel aswell as a numerical

simulation representative of a storm track, we show that the absence of negative divergence values purely results

from the correlation between rain and convergence: the conditional average based on the absence of rain neces-

sarily implies a shift toward positive divergence values. In consequence, we argue that conditional statistics (based

on the absence of rain or removing extreme values in the divergence field), as produced by O’Neill et al., do not

allow conclusions on the mechanisms underlying the atmospheric response to the Gulf Stream. They nevertheless

highlight the essential role of synoptic storms in shaping the divergence field in instantaneous fields.

1. Introduction

O’Neill et al. (2017, hereinafter ON17) have recently

presented a detailed analysis on the relation between

surface divergence and the underlying sea surface tem-

perature (SST) anomalies, drawing from a 10-yr record of

satellite measurements and from a 1-yr simulation with a

regional model. Their focus was on the relation between

the time-mean surface divergence and the fluctuations

associated with passing storms. Indeed, the time-mean

divergence of surface winds (or of surface stress on the

ocean) has been abundantly studied in the past decade,

showing a conspicuous relation to SST (Small et al. 2008;

Bryan et al. 2010 and references therein). In particular,

Minobe et al. (2008) convincingly showed that there is

convergence on the warm flank of the Gulf Stream and

divergence on the cold flank. Yet this time-mean di-

vergence is of order 1025 s21, that is, one order of magni-

tude weaker than the maximum instantaneous values

found in the divergence field (of order 1024 s21). These

extreme values of surface divergence are often negative

values (i.e., convergence) tied to surface fronts and the

associated resulting convection (e.g., Fig. 4 of ON17).

ON17 have used different approaches and filters to

isolate the contribution of storms to the time-mean

signature in divergence. Their systematic analysis

provides a novel and valuable outlook on an important

aspect of the effect of SST on atmospheric dynamics.

Indeed, different mechanisms have been proposed to

explain the relation between SST and the overlying

winds. On the one hand, the vertical momentum mixing

mechanism relies on the vertical stability of atmospheric

boundary layer over SST anomalies (Businger and Shaw

1984; Hayes et al. 1989; Chelton et al. 2004). On the

other hand, a pressure adjustment mechanism relies on

the hypothesis that the boundary layer is in an Ekman-

like balance (Lindzen andNigam 1987; Feliks et al. 2004;

Minobe et al. 2008; Lambaerts et al. 2013). However, the

related studies have often focused on the time-mean

fields, and the interplay of different mechanisms in in-

stantaneous complex flow fields remains unclear.
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This problem falls in a broader category of problems

common in geophysical fluid dynamics, in which a weak

time-averaged signal is dwarfed in any instantaneous

flow field by temporary fluctuations. As other examples,

one may think of the Hadley circulation, mean currents

in the ocean that are often dominated by the mesoscale

eddy field, or the Brewer–Dobson circulation (Butchart

2014), for which the ascending motion in the tropics can

only be indirectly inferred, because the associated ver-

tical velocities are dwarfed by the signatures of equa-

torial waves in any snapshot of the flow field.

We wish to build on the analysis of ON17 and to point

out an aspect of the method used in their paper that needs

to be emphasized. Indeed, part of the conclusions put

forward byON17 relies on the computation of conditional

averages of different fields. However, part of the in-

terpretation of these statistics is not justified. Specifically,

they claim that, because of the absence of convergence in

‘‘rain free’’ conditions (occurring between 80% and 90%

of the time; see Fig. 2 of ON17), an ‘‘Ekman-balanced

mass adjustment’’ (EBMA)mechanism cannot be atwork.

The underlying premise is that this mechanism should be

‘‘persistent’’ and therefore be present even when averag-

ing over a subset of times, especially a large subset.

The present comment aims merely to point out that

conditional averages and other similar filters that are

considered by ON17 introduce a bias, because the var-

iable used for the condition is strongly correlated to the

variable that is averaged. In the present case, it is not the

sign of the averaged divergence that is meaningful but

rather its spatial variations. With that in mind, there is

no longer a straightforward transition from ON17’s re-

sults to an interpretation in terms of mechanisms.

Nonetheless, we acknowledge that the study of ON17

has the merit of unveiling the possible role of synoptic

storms in shaping the different mechanisms at work in

instantaneous winds.

In section 2, a toy model is proposed to illustrate the

difficulty in diagnosing the behavior of the marine at-

mospheric boundary layer (MABL) and storms in in-

stantaneous or time-meanwinds. An idealized simulation

of storm tracks carried out with the WRF Model is then

investigated in section 3, to further illustrate and confirm

the statements of section 2 but also to explore how the

time-mean divergence may result from a combination of

mechanisms. Implications and directions for further re-

search are discussed in section 4.

2. A toy model for illustrating conditional averages

To clarify the interpretation of the observations and

model simulations carried out by ON17, we propose to

consider a very simplified model.

a. On the sign of the average divergence

Many of the conclusions of ON17 come from the fact

that the conspicuous band of convergence on the southern

flank of the Gulf Stream vanishes when divergence is av-

eraged for rain-free conditions only (their Fig. 1b) or when

other filters retaining rain events are used (their Figs. 5b

and 8b). It is the disappearance of the negative values

(in green with their color bar) that they emphasize. ON17

deduce ‘‘that the existence of theGulf Streamconvergence

zone in the time-mean winds owes its existence to extreme

storm convergences, since removing a relatively small

number of data points associated with storms removes the

time-mean convergence’’ (ON17, p. 2397). This line of

reasoning bears a fundamental flaw, as the conclusions of

ON17 are mainly based on the sign of the rain-free time-

mean convergence. In fact, it can be shown that any

conditional average (here, rain-free conditions) will sys-

tematically introduce a positive or negative (here, positive)

bias in the variable that is averaged (here, divergence) if

this variable is statistically correlated with the chosen

condition. The positive bias arises because rain and surface

divergence are not dynamically independent. Hence, the

sign of the conditionally averaged divergence is not nec-

essarily meaningful.

b. Toy model

A toy model is proposed below with the purpose of

illustrating how a conditional average can shift the

values of divergence toward positive or negative values,

suggesting a different interpretation of ON17’s figures.

In the present case, our toy model is constructed such

that a stationary, weak convergence coexists with ran-

dom fluctuations that dominate the signal at any time

but do not impact the long-term average. This toy model

mimics two physical properties of the fields that are

considered:

1) Rain and surface divergence are not independent

variables: convective rain events are associated with

mesoscale motions, which include strong conver-

gence roughly beneath the precipitating cell.

2) In the boundary layer, over a sufficiently long time

and over a wide-enough region, there is no net export

or import of air. In other terms, strong conver-

gence must be compensated by divergence in other

locations.

The toy model describes the divergence spatial field,

assuming that it consists of a permanent feature and ran-

dom fluctuations that resemble convective events (rain

associated with strong convergence values). To simplify,

we consider only one-dimensional signals, noted d(y, t),

where y is a spatial dimension (e.g., transverse to a front
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of sea surface temperature) and t is time. We assume that

the divergence field is the sum of a permanent component

dp(y) and fluctuations ds(y, t) composed of several indi-

vidual ‘‘storms’’ at each time, centered at random locations

yc(t) but all with the same spatial shape (see the appendix):

d(y, t)5 d
p
(y)1d

s
(y, t). (1)

Note that no assumption on the physical origin of the

permanent signal is required in the following develop-

ment, as we only want to stress our difficulties in inter-

preting conditional averages.

We also consider that, at any particular time, dp and ds

integrate to zero over the domain of interest and that

storms occur at random locations with uniform proba-

bility so that they cancel out in the long run. In this case,

the long-time-averaged divergence yields dp(y)

d(y)5 lim
T/‘

1

T

Ð T
0
d(y,t0) dt0 /d

p
(y). (2)

Using simple sinusoidal functions, an implementation

has been carried out; details are given in the appendix.

For simplicity, at each time step, five ‘‘storm’’ centers

are defined at random (uniformly distributed) locations

in the domain (of length 2D 5 5000km). Each storm

consists in a region of convergence of maximal magni-

tude a51:03 1024 s21 and of width 2l 5 100km, com-

pensated by weaker divergence of maximal magnitude

1.0 3 1025 s21 and over a width L 5 500 km on both

sides. The stationary signal has a smaller magnitude, of

0.5 3 1025 s21. Figure 1 illustrates the stationary signal

(Fig. 1a) and a typical instantaneous divergence field

(Fig. 1b). It confirms that the stationary signal is dwarfed

at any time by the intermittent signal from the fluctua-

tions with much larger amplitude.

In ON17, the conditional average is taken over rain,

which is related in some proportion to divergence. To

represent this, we produce an intermediate field

r(y, t)52ds(y, t)1h, where h is a random Gaussian

noise [to make the field r(y, t) more similar to rain, one

could set all its negative values to zero]. The condi-

tional average is then taken using the condition r. 0

(rain only) or r# 0 (rain free). Figure 2a illustrates the

resulting averages obtained for different numbers of

time steps used. In the overall average, the stationary

signal dp(y) is recovered (note that a signal different

from dp is observed near the boundaries of the domain

because of a finite-domain effect). In the rain-free av-

erage, the same signal is recovered but shifted to pos-

itive values. The shift is sufficient that all values [even

in the region of convergence for dp(y)] become posi-

tive. In other words, this shift, or positive bias, is larger

than the amplitude of dp(y). The rain-only signal is

shifted to strongly negative values; again, the spatial

structure is unaltered, but it is hidden in the noise

unless a long time average is taken.

The conclusion from this figure is that the conditional

average (in the setting of this toy model) shifts the rain-

free average toward positive values but without altering

its spatial structure. Moreover, as the rain-free average

excludes the intense values (tied to storms), it is less noisy

than the overall average. The rain-only average including

mainly extreme events is by construction very noisy.

c. The positive bias

We now take advantage of the simplicity of this toy

model to quantify, in this case, the amplitude of the

positive bias. This can be calculated simply in the case

when there is no noise; that is, we average conditionally

on the sign of ds(y, t), and we consider only one storm

FIG. 1. (left) The stationary divergence dp(y) (s
21). (right) Snapshot of the fluctuating component ds(y, t) (blue line; s

21)

and of the resulting full divergence signal d(y, t) (red dashed line; s21). Note the different vertical scale relative to (left).

JUNE 2018 CORRES PONDENCE 2141



per time step. The storm locations being uniformly dis-

tributed and the spatial shape of ds(y, t) being fixed, the

‘‘rain frequency’’ x5 p(rain. 0) is uniform across

the domain and is given by the ratio of the width of the

convergent region (ds , 0) over the width of the domain,

2D, such that x5 l/D. The form given to the conver-

gence is such that its average value computed over the

convergence zone is 22a/p. Hence, the rain-only aver-

age is

dRO(y)5 d
p
(y)2

2a

p
. (3)

As all times are partitioned into rain free and rain only,

one necessarily verifies d5dRF(12 x)1 dROx, and the

rain-free average can be calculated as

dRF(y)5 d
p
(y)1

2a

p

l

D2 l
. (4)

The above gives an estimate of the systematic biases in-

troduced by the conditional averaging in the absence of

noise, that is, when r(y, t)52ds(y, t). When a random

noise is present, rain and divergence have a less simple

relation but are correlated. As the noise increases, the

biases decrease in absolute value from their values ob-

tained above, and the asymmetry between rain-free and

rain-only means decreases, as illustrated from Fig. 2b.

Nonetheless, because the signature in convergence of the

rain events ismuch larger than that of the stationary signal,

a � max[dp(y)], and despite the fact that they occupy a

small portion of space [l/(D2 l); l/D� 1], it is likely that

the positive bias is sufficient to shift the whole signal of dRF

to positive values.

The point that the above toy model illustrates is that

the absence of convergence in the rain-free conditional

average [dRF(y). 0] does not rule out the presence of a

stationary signal in the divergence field. It merely re-

flects that divergence and rain are strongly correlated, as

illustrated by ON17 (see their Fig. 4c). We return to this

issue below and in section 4.

3. Idealized atmospheric simulation

To bridge the gap between the maps displayed by

ON17 and the one-dimensional illustrations from our

toy model, we here take advantage of a simulation car-

ried out for investigating the atmospheric response to

mesoscale SST anomalies (A. Foussard et al. 2018, un-

published manuscript). It consists of an idealized setup

of a midlatitude storm track using the WRF Model

(Skamarock et al. 2008) in a zonally periodic channel

and using a gray radiation scheme (Frierson et al. 2006).

The domain is 9216km in both horizontal directions and

extends up to about 20 km (50hPa) in height. The hor-

izontal resolution (dx 5 18km) allows a good de-

scription of atmospheric storms, leading to a

reasonable storm track. Boundary layer processes are

represented by the Yonsei University (YSU) scheme,

convection by the Kain and Fritsch scheme, and mi-

crophysics by the Kessler scheme. The fixed zonally

symmetric SST distribution in the simulation pre-

sented here consists of a large-scale meridional gra-

dient with maximal amplitude of 4K (100 km)21. The

simulation has been carried out for 4 years, and the

first 90 days were discarded. Data were recorded

every 12 h.

FIG. 2. (left) Time-mean divergence of the toy model, averaged over 10 000 (thick lines), 1000 (dashed lines), and

100 time steps (dotted lines). The green lines correspond to total averages, whereas the blue lines correspond to

rain-only and the red lines correspond to rain-free conditional averages. (right) As in (left), but with a noise level of

s5 53 1025 s21 instead of s5 13 1025 s21. In both panels, the black dashed curve is dp. Parameters used for the

toy model are given in the appendix.
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a. Conditional averages of surface divergence

Figure 3 shows the rain frequency and the mean rain

rate over the whole domain, clearly indicating a pre-

ferred location for rain that is south and away from the

SST front. This may be compared with Fig. 2 of ON17,

the comparison suggesting that our simulation has a

realistic mean rain rate but overestimates the maximum

rain frequency and the meridional contrast in rain fre-

quency over the SST front. This does not matter for the

present purpose, which is again to illustrate the sys-

tematic bias introduced by the conditional averages and

by other similar filters.

Figure 4 shows the time average and conditional av-

erages of the surface divergence, as in Fig. 1 of ON17.

The mean surface divergence (Fig. 4a) shows a pattern

with convergence south of the SST front and divergence

over the SST front and to the north of it, analogous to

that displayed over the Gulf Stream by ON17. Mean

values (extremes of about 60.4 3 1025 s21) are quite

comparable to the values found from observations. For

the conditional averages, as expected, the rain-free di-

vergence is shifted to positive values in all locations

(Fig. 4b), whereas the rain-only divergence is shifted to

only negative values (Fig. 4c).

Now, one advantage of this idealized setting is the

zonal symmetry of the underlying SST, allowing us to

average easily in the alongfront direction. This averag-

ing leads to the same presentation as for the toymodel of

section 2. Figure 5 shows the zonally averaged time-

mean surface divergence along with the rain-free and

rain-only conditional averages. In addition, the un-

derlying Laplacian of SST is also displayed as an in-

dication of area where surface convergence is expected

in the EBMA theory. Again, it is clearly seen that the

conditional average displaces the rain-free average to

FIG. 4. Surface divergence (colors; 1025 s21) considering (a) an unconditional mean, (b) a rain-free conditional mean, and (c) a rain-only

conditional mean. Contours show the SST field (K).

FIG. 3. Mean rain frequency and mean rain rate (mmday21) over the 4 years. Contours show the SST field (K). All

calculations have been made considering rain rates over 12 h of larger than 3mmday21.
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positive values and the rain-only average to negative

values. Both conditional averages retain some of the

spatial structure present in the all-weather average, but

there are also notable differences. For example, in the

rain-free average, the central couplet occurs on shorter

spatial scales than in the all-weather average. The

meaning and interpretation of these differences are not

the purpose of the present comment and would anyhow

be tied to specificities of these idealized simulations. The

important message is that the conditional average of

divergence, conditioned on a variable with which di-

vergence is correlated, leads to a bias that makes the

convergent values disappear from the rain-free average.

The disappearance of these convergent values does

not allow the interpretation made by ON17, that is,

that a stationary (or permanent or persistent) feature is

absent from the divergence field.

The same simulation can be used to illustrate another

analysis made by ON17, bearing on the statistics of di-

vergence. The skewness of the divergence distribution

was emphasized as a crucial parameter (e.g., ON17,

section 6). As a complement to the conditional averages,

ON17 examined the average of divergence when ex-

treme values (away from the mean by more than twice

the standard deviation, 2s) are excluded or when only

extreme values are retained (ON17, their Fig. 5). This

was not explored in the toy model because the distri-

bution of divergent values in there was not tied to a

physical description of the processes. In the numerical

simulation with a mesoscale model, it becomes mean-

ingful to explore this distribution. Figure 6 shows maps

of the mean divergence overall and filtered divergence

excluding extreme values or retaining only those. The

format for the first four panels is the same as that of

Fig. 5 of ON17. As shown by Fig. 6d, the 2s filter

removes a comparable amount of data (4%–5%) in the

area of maximum convergence. Again, the maps are

very similar to the rain-free and rain-only means. In

particular, the mean divergence excluding extreme

values (Fig. 6b) is positive essentially everywhere, as is

the rain-freemean (Fig. 4b). Yet, as we saw previously, it

is not the sign of the mean divergence that is meaningful

but the spatial variations: in both cases, the rain-free

divergence did retain conspicuously part of the spatial

variations present in the overall time mean. In Figs. 6e

and 6f, the averaged divergences excluding or retaining

extreme values are presented but removing their do-

main average. It then becomes apparent that the former

includes spatial variations very similar to those of the

mean divergence but slightly weaker. In contrast, the

mean retaining only extreme events consists only of a

strong band of convergence, wider than that of the

overall mean divergence, and without the positive

counterpart to the north. These different spatial struc-

tures and relative amplitudes can be better appreciated

from the zonally averaged description of these means in

Fig. 7 rather than in maps where the choice of colors

guides the eye and interpretation. It would be very in-

formative in ON17 if their Figs. 1 and 5 were com-

plemented with similar figures: for example, instead of

presenting only the rain-free mean divergence, if a panel

was included to show the rain-free mean divergence

minus the spatial average over the area shown. Alter-

natively, the rain-free divergence could be shown with

contours overlaid to the overall mean divergence, so one

could see if the spatial variations and features coincide

(but the comparison of the amplitudes would remain

difficult).

b. Statistics of divergence values

Finally, we use the simulation to explore the overall

distribution of the values taken by the divergence, sim-

ilar to ON17 in their Fig. 6. The distribution of divergent

values in our simulation is shown in Fig. 8a, showing

good qualitative agreement with the distribution dis-

played from observations by ON17. In particular, we

also find that large positive values of divergence are

more frequent in rain-only conditions than in rain-free

conditions, implying that there is not systematically

convergence below rain. But we emphasize that the

large positive values are one order of magnitude less

likely than negative values. Now it was stressed several

times above that divergence and rain are not dynami-

cally independent and that they are statistically

FIG. 5. Zonally averaged unconditional and conditional means of

surface divergence (1025 s21). Same quantities as in Fig. 4, con-

sidering the zonal mean of the signals. The light blue line is the

Laplacian of SST (10210 Km22).
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correlated. The simulation makes it possible to docu-

ment the joint probability distribution function of di-

vergence and rain, shown in Fig. 8b. The mean

divergence, for a given value of rain, is negative and

increasingly negative as the rain value increases, as

shown by the blue line. This gives another a posteriori

justification of the setup of the toy model, where the

intermediate rain field has been built by adding random

FIG. 6. Mean surface divergence (shading; 1025 s21) (a) for the whole time series, (b) with values smaller than 2s,

and (c) with only values larger than 2s. (d) Fraction of points with deviation from the mean bigger than the

2s threshold. (e),(f) As in (b) and (c), respectively, after subtracting out the domain-averaged signal. Contours

show the SST field (K).
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noise to the divergence. This also makes it possible to

revisit how the sign of the rain-only mean divergence is

determined. If we write p(e) de, the probability that the

divergence takes a value between e and e1 de, the overall

mean divergence can be written as

d5

ð‘
2‘

ep(e) de . (5)

The rain-only mean divergence (calculated using only

values of rain above a threshold «) is then written as

dRO 5

ð‘
2‘

ep(ejrain. «) de

ð‘
2‘

p(ejrain. «) de

. (6)

In the integrand of the numerator in Eq. (6), one may

decompose the conditional probability on rain being

larger than the threshold « and write it as the sum of the

conditional probabilities knowing that rain is within in-

terval [r, r1 dr[:

p(ejrain. «)5

ð1‘

«

p(ejr# rain, r1 dr)q(r) dr , (7)

with q(r) the probability density function for the rain

rate. This yields

dRO 5

ð‘
2‘

e

ð1‘

«

p(ejr# rain, r1 dr)q(r) dr de

ð‘
2‘

p(ejrain. «)de

5

ð1‘

«

q(r)

ð1‘

2‘

ep(ejr# rain, r1 dr) de dr

P(rain. «)

5

ð1‘

«

q(r)f (r) dr

P(rain. «)
,

(8)

with f (r)5
Ð 1‘

2‘ ep(ejr# rain, r1dr) de. Up to a nor-

malizing factor, f (r) is the average divergence knowing

the rain rate. This is calculated in our simulation and

FIG. 7. Unfiltered and filtered surface divergence (1025 s21).

Same quantities as in Figs. 6a–c, considering the zonal mean of the

signals.

FIG. 8. (a) PDF of the surface divergence (red curve), calculated from all time outputs and for points within

a band of latitudes (3600 # y # 5600 km). Blue and green dashed lines show respective contributions of the rainy

and rain-free points to the unconditional PDF. (b) Joint PDF of the rain rate (vertical axis; mmday21) and the

surface divergence (horizontal axis; 1025 s21). Color scale is logarithmic. The blue line indicates the conditional

mean of the surface divergence for a given rain rate.
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shown in Fig. 8b as the thick blue line. Consistent with

the physical expectation that surface convergence and

precipitation are highly correlated, the average di-

vergence knowing the rain rate is always negative for

values of rain larger than about 1mmday21 and in-

creasingly negative with increasing precipitation. This

clearly demonstrates that the correlation of convergence

and precipitation leads to dRO being negative. As a

consequence, dRF will systematically have a positive

shift relative to d. Note that, because strong conver-

gence corresponds to rain-only regions (see Fig. 8a), an

analysis based on the 2s filter would lead to the same

conclusion. The reason is that the condition still is

strongly correlated to the divergence itself.

4. Discussion and perspectives

ON17 conclude from their analysis ‘‘that the existence

of theGSCZ in the time-meanwinds owes its existence to

extreme storm convergences, since removing a relatively

small number of data points associated with storms re-

moves the time-mean convergence’’ (ON17, p. 2397). In

the conclusion again they state that ‘‘strong convergences

associated with storms explains the existence of the

GSCZ in the time-mean surface winds’’ (ON17, p. 2409).

They explain that the skewness of the surface divergence

distribution, due to the strong convergence signatures of

midlatitude cyclones, ‘‘is sufficient to change the sign of

the timemean and the interpretation of the SST influence

on divergence. Removing fewer than 4% of the strongest

divergence events, or removing fewer than 20% of values

in raining conditions, effectively eliminates the GSCZ

from the time-mean surface winds’’ (ON17, p. 2409). The

underlying premise is that if the convergence band van-

ishes when only a small portion of values is removed, this

feature cannot be ‘‘a persistent feature anchored to the

Gulf Stream’’ (ON17, p. 2404).

We disagree with this premise, but this does not in-

validate the entire analysis of ON17 and their conclu-

sions. Our disagreement stems from the too-strong

emphasis on the sign of the rain-free divergence. Our

study has put in evidence the bias in this sign because

of a dynamical link between surface divergence and

precipitation that statistically correlates the two fields.

As a consequence, the conditional average shifts

the rain-free divergence toward positive values and the

rain-only divergence toward strongly negative values.

The correlation between precipitation and surface di-

vergence is especially true for themost intense values, as

can be seen in their Figs. 4b and 4c. The joint proba-

bility distribution function (PDF) of convergence and

precipitation, as shown in Fig. 8b for our simulation, il-

lustrates clearly this correlation. It would be very

interesting to estimate this joint PDF from observations.

Yet, as far as the color bars in their Figs. 1, 5, and 13

allow us to judge, much of the spatial variations between

the rain-free and all-weather divergence coincide.

Rather than showing the absolute values of the rain-free

and rain-only divergence, showing anomalies (relative

either to the mean over the domain or to the field

smoothed on large scales) would be less misleading. In

the case of the toy model, the same spatial structure

came out in the three averages, but the rain-only average

is noisier. In the idealized simulation, the spatial struc-

tures of the rain-free average have strong resemblance

to those of the overall average, whereas those of the

rain-only average display some differences.

In the comparisons of their different figures, ON17

emphasize absolute values and discard the similarity

that is often found between the spatial variations. For

example, the claim of ON17 that the rain-free di-

vergence in their Fig. 13b ‘‘bears no resemblance’’

(ON17, p. 2401) to the SST Laplacian (their Fig. 13h) is

at the very least misleading. The spatial variations of

both fields, as far as eye can tell, seem very correlated.

The colors differ because the rain-free divergence is

shifted everywhere to positive values because of the

conditional average. Similarly, in the interpretation of

their Fig. 11, the strong similarity at spatial scales shorter

than 1000km (their Figs. 11a and 11b) is perhaps more

significant than the difference (again a positive shift) in

the spatially low-pass-filtered fields (their Figs. 11c

and 11d). It is worth emphasizing that on spatial scales

shorter than 1000km (their Figs. 11a and 11b), there is a

strong similarity between the time-mean divergence

(colors) and the SST Laplacian (contours).

Now, to make progress, we suggest making the line of

reasoning of ON17 more explicit and to formulate two

different hypotheses:

1) Hypothesis 1 (H1): The divergence at any time

results from two signals: a stationary signal (related

to EBMA) and random fluctuations from storms

whose positions vary in time. The signal due to these

fluctuations should diminish when averaging over

longer times.

2) Hypothesis 2 (H2): The divergence at any time only

results from storms. The spatial variations of these

storms are such that, in the time average, they

produce the signature that is observed.

Set in the above terms, ON17 claims that the absence

of convergence (negative values) in the rain-free aver-

age divergence rules out H1. The toy model of section 2

merely served to illustrate that this conclusion is not

justified: it is possible to have a rain-free divergence

everywhere positive and yet to have a stationary signal
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that is responsible for all of the time-averaged signal. In

other words, the absence of convergence in the rain-free

divergence (or after filtering out extreme values) does

not rule out H1 (i.e., the existence of a permanent signal

in the divergence).

Now, in our toy model, the shift is uniform in space as

the storms were uniformly distributed in space. In con-

trast to this, in our idealized simulation (see section 3)

and in the observations (see Fig. 1c of ON17), the shift is

not uniform. Introducing spatial variations in the prob-

ability of occurrence of the storms in our toy model (see

the appendix for a description of themodifications of the

toymodel), one observes that storms still leave a residual

signal that is related to the stationary divergence term

(Fig. 9). Of course, this is on top of another signal due to

the localization in space of storms in relation with H2.

Spelling out explicitly the two hypotheses provides

two extreme pictures, and reality is likely, as often, in

between. The links between the conditional averages

analyzed by ON17 and the underlying mechanisms of

the atmospheric response to the SST anomalies are not

so simple, as illustrated by the present comment. Now,

the detailed and extensive analysis carried out by ON17

does emphasize several important points: the in-

stantaneous fluctuations in the divergence field over-

whelms the time mean, and understanding this response

requires considering how the SST influences storms, in

particular in setting their preferred location. We believe

that detailed investigations of the instantaneous signa-

ture of different mechanisms through which the SST

influences the marine atmospheric boundary layer, as

sketched in section 5 of ON17, are necessary to properly

evaluate the relevance of these different mechanisms.

These issues are complex, as they depend on the vari-

ables and approach considered to quantify one or the

other mechanism, as will be discussed based on the

simulation used in section 3 (A. Foussard et al. 2018,

unpublished manuscript).
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APPENDIX

Implementation of the Toy Model

The toy model we constructed only depends on the

divergence fields dp and ds. We here describe the choices

used to implement it. The permanent divergence signal

was chosen as

d
p
(y)5

8><
>:

A sin
�py
2L

�
, for 22L, y, 2L

0, for jyj. 2L

. (A1)

The divergence field is constructed as a sum of dp and

of five ‘‘storms,’’ each centered at a random (uniformly

distributed) location within the domain [2D, D]. Each

event, relative to its central location, has the following

spatial structure:

FIG. 9. (left) Rain frequency for the modified toy model. (right) Time-mean divergence of the modified toy

model, averaged over 10 000 time steps. The green line corresponds to total averages, whereas the blue line

corresponds to dRO/2, the red line to dRF, and the dashed black line to dp. The blue dotted curve is dRO minus its

spatial average value. It overlaps almost exactly with dp. Parameters used for the toy model are given in the

appendix.
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g(y)5

8>>>>>>>>>>>><
>>>>>>>>>>>>:

al

L
sin

�
(y1L1 l)p

L

�
, for 2(L1 l), y,2l

2a cos
�yp
2l

�
, for 2l, y, l

al

L
sin

�
(y2 l)p

L

�
, for l, y,L1 l

0 for jyj.L1 l

,

(A2)

where2a describes the peak intensity of the convergence

(a . 0), l describes the width of the convergent region,

and L describes the width of the surrounding regions

where compensating divergence occurs. This definition is

consistent with our idea that the net divergence would be

zero [i.e.,
Ð
g(y) dy5 0]. Then ds takes the form of

d
s
(y, t)5 �

5

i51

g[y2 yic(t)] , (A3)

where yic(t) is the location of one of the storm centers at

time t.

To obtain the ‘‘rain’’ field r(y, t)52ds 1h, a random

noise h is added. This noise has normal distribution with

zero mean and a standard deviation of snoise.

The values chosen for the parameters in order to

generate the figures were A5 0:53 1025 s21, a5
13 1024 s21, l5 50 km, L5 500 km, and D5 2500 km.

The number of points in the y direction is ny 5 200.

Different values for the parameters have been

explored. As the noise is increased, the positive bias of

the rain-free mean divergence decreases. Nonethe-

less, as long as the noise is not much larger than a,

the positive bias is robust and significant (i.e., suffi-

cient for the rain-free mean to be positive nearly

everywhere).

The model was also modified to show that the same

results can be obtained when storms are located on the

convergence zone. To this end, we introduce a param-

eter 0 , C , 1. For each event, we take two random

numbers, r uniformly distributed in [0, 1] and s with a

Gaussian distribution (centered at 0 and with a variance

of 1). The storm position yc is then defined as

y
p
5

8><
>:

(s2 1)L , if r,C�
2
r2C

12C
2 1

�
D , if r$C

. (A4)

Figure 9 was produced with this scheme, still using five

storms per time step but without noise (snoise 5 0) and

with 10 000 time steps. Parameter C was set to C 5 0.4.

The other parameters were the same as before.
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