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ABSTRACT

Turbulence in the upper ocean in the submesoscale range (scales smaller than the deformation radius) plays an important role for the heat
exchanges with the atmosphere and for oceanic biogeochemistry. Its dynamics should strongly depend on the seasonal cycle and the
associated mixed-layer instabilities. The latter are particularly relevant in winter and are responsible for the formation of energetic small
scales that extend over the whole depth of the mixed layer. The knowledge of the transport properties of oceanic flows at depth, which is
essential to understand the coupling between surface and interior dynamics, however, is still limited. By means of numerical simulations, we
explore the Lagrangian dispersion properties of turbulent flows in a quasi-geostrophic model system allowing for both thermocline and
mixed-layer instabilities. The results indicate that, when mixed-layer instabilities are present, the dispersion regime is local from the surface
down to depths comparable with that of the interface with the thermocline, while in their absence dispersion quickly becomes nonlocal with
depth. We then identify the origin of such behavior in the existence of fine-scale energetic structures due to mixed-layer instabilities. We fur-
ther discuss the effect of vertical shear on the Lagrangian particle spreading and address the correlation between the dispersion properties at
the surface and at depth, which is relevant to assess the possibility of inferring the dynamical features of deeper flows from the more accessi-
ble surface ones.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0041036

I. INTRODUCTION

Oceanic motions at scales larger than few tens of kilometers are
quasi-horizontal due to the pronounced stratification of seawater and
Earth’s rotation and are characterized by quasi-two-dimensional tur-
bulence. At scales around 300 km (in the mesoscale range), coherent
structures (almost circular vortices) with depths reaching 1000 m con-
tain most of the kinetic energy in the ocean. At scales around 10 km
(i.e., in the submesoscale range) and over the water column, the flow is
populated by smaller eddies and filamentary structures associated with
strong gradients of physical properties (such as temperature), which
play an important role in both physical and biogeochemical budg-
ets.1–6 Such small scales are found mainly in the mixed layer1 (the first
�100 m below the surface), a weakly stratified layer lying on top of a
more stratified one known as the thermocline.

Two mechanisms leading to the generation of these fine scales
have been proposed. On the one hand, they can be produced by the

stirring due to larger scale eddies.7–10 In such a case, however, they are
confined close to the surface. On the other hand, they can result from
mixed-layer instabilities, in which case they extend all over the mixed
layer.11 When the latter is sufficiently deep, as is the case in winter, the
potential energy contained in surface buoyancy gradients at meso-
scales can give rise to baroclinically unstable modes with horizontal
scale of Oð1� 10Þ km that grow over time scales of O(1) day. It has to
be noted that the first mechanism does not depend on the mixed-layer
depth, which strongly differs from one season to another. As such, it
cannot account for seasonal variations of the intensity of turbulence
(at small scales), which has been observed to be a distinctive feature of
submesoscale flows.12–14

In order to explore the impact of mixed-layer instabilities on sub-
mesoscale turbulence, an attractive quasi-geostrophic (QG) model was
recently proposed.15 It describes the dynamics of two coupled fluid
layers having different stratification properties giving rise to both
mixed-layer and thermocline instabilities, thus permitting a
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comparison of the two mechanisms mentioned above. In the absence
of a mixed layer, at sufficiently small scales the model essentially gives
surface quasi-geostrophic (SQG) dynamics,16,17 which are considered
a paradigm of mesoscale-driven submesoscale generation. It should be
noted, however, that in this case submesoscales are trapped at the sur-
face. As shown in Ref. 15, by including baroclinic mixed-layer instabil-
ities, the model gives rise to turbulent flows characterized by energetic
submesoscales down to the thermocline, which positively compare
with those observed in the field in winter.

In this work, we adopt the above QG model to carry out numeri-
cal simulations resolving both the mesoscale and submesoscale ranges,
in realistic conditions for the winter midlatitude ocean. Our main goal
is to investigate the role of mixed-layer instabilities in the spreading
process of Lagrangian tracer particles. Here, we ignore non-
geostrophic motions such as inertia-gravity waves that act at small
scales and at high frequencies, having also some effect on Lagrangian
dispersion.18

Lagrangian statistics allow access to the stirring operated by tur-
bulent flows, which plays an essential role in transport processes (e.g.,
of biogeochemical tracers), as well as for surface energy and heat
exchanges, at different scales.19,20 Several previous studies have
addressed the relative dispersion of pairs of surface drifters from
experimental data, and its relation with the statistical properties of the
underlying turbulent flows (see, e.g., Refs. 19 and 21–25) but the
results vary from region to region and are not always conclusive about
dispersion regimes. Interestingly, however, several lines of evidence of
enhanced dispersion at submesoscales have been recently pro-
vided,21,22,24,26,27 which ask for a more detailed understanding of the
physical processes acting at these scales.

Below the surface, the knowledge of flow properties is still lim-
ited, due to the complexity of performing measurements at depth. In
this respect, Lagrangian approaches can reveal a useful tool to under-
stand the coupling between the surface and interior dynamics. Not
many studies of relative dispersion at depth, from float trajectories, at
small temporal and spatial scales are available. There is, however,
some evidence, at rather large depths in the western Atlantic, of dis-
persion being local,28,29 meaning governed by eddies of the same size
as the pair separation distance, at scales between some tens and some
hundreds of km, or controlled by mean shear28 (up to 100 km).
Nonlocal dispersion, i.e., mainly due to the largest eddies, was detected
in the same area29 at scales smaller than 40 km and, more recently, in
the Antarctic Circumpolar Current at depths between 500 and 2000
m, in a study resolving the 1� 100 km scale range.30

Learning, from observations or numerical simulations, how sub-
mesoscale turbulence affects the spreading of Lagrangian particles at
different depths seems appealing also in view of the high-resolution
velocity data expected from future satellite altimetry, as the surface
water and ocean topography (SWOT) mission.31 As Lagrangian statis-
tics reflect Eulerian ones, such as energy spectra (see, e.g., Refs. 32–35)
they may serve to assess the range of validity, in terms of spatial scales,
of the satellite-derived flow. Furthermore, the characterization of dis-
persion properties below the surface can be informative about the pos-
sibility to extrapolate information from the surface to depth.

In our numerical study, we examine particle-pair separation sta-
tistics at different depths, relying on both fixed-time and fixed-scale
indicators. From a methodological point of view, our approach shares
some similarity with that of Ref. 36, where however the focus was not

on mixed-layer instabilities, and with that of Ref. 37, where the effect
of the latter was mainly considered for its signature on dispersion close
to the surface. By contrasting the results obtained with different turbu-
lent flow dynamics, i.e., generated by thermocline-only or mixed-layer
only instabilities, or both, we aim at identifying the resulting dispersion
regimes, with an emphasis on their general features. Furthermore, by
studying the correlation of dispersion properties at the surface and in
deeper layers, we address the question of inferring the dynamical fea-
tures of deeper flows from the more accessible surface ones.

This article is organized as follows: The model adopted for the
turbulent dynamics is presented in Sec. II; the main statistical proper-
ties of the turbulent flows are illustrated in Sec. III. The results of the
analysis of Lagrangian pair separation are reported in Sec. IV, where
we separately focus on horizontal dispersion at different depths (Sec.
IVA) and on the correlation of its properties along the vertical (Sec.
IVB). Finally, discussions and conclusions are presented in Sec. V.

II. MODEL

We consider a QG model (Fig. 1) consisting of two coupled fluid
layers (aimed to represent the mixed layer and the thermocline) with
different stratification. Such a model can give rise to both meso and
submesoscale instabilities and subsequent non-linear turbulent
dynamics that compare well with observations of wintertime submeso-
scale flows.15 While the former instabilities are due to classical baro-
clinic instability, the latter are associated with mixed-layer instabilities.

The model dynamics are specified by the following evolution
equations (more details in Ref. 15):

@thi þ Jðwi; hiÞ þ Ui@xhi þ Ci@xwi ¼ rr�2hi þ DsðhiÞ; (1)

where J is the Jacobian operator. The fields hi (with i¼ 1, 2, 3) are
three d �PV (potential vorticity) sheets at the ocean surface (z¼ 0),
at the base of the mixed layer (z ¼ �h) and at the bottom of the ther-
mocline (z ¼ �H), respectively. The variables wi stand for the stream-
functions at each depth, through which the horizontal flows can be
expressed as ui ¼ ðui; viÞ ¼ ð�@ywi; @xwiÞ.

The d �PV sheets are related to the buoyancy field b
¼ bðx; y; z; tÞ by

h1 ¼ �f
bðz ¼ 0Þ

N2
m

; (2)

FIG. 1. Schematics of the two-layer model.
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h2 ¼ f
bðz ¼ �hþÞ

N2
m

� bðz ¼ �h�Þ
N2
t

" #
; (3)

h3 ¼ f
bðz ¼ �HÞ

N2
t

; (4)

where f is the Coriolis frequency, and Nm and Nt are the
Brunt–V€ais€al€a frequencies for the mixed layer and the thermocline,
respectively. Due to the QG assumption, the buoyancy field is also
related to the streamfunction by b ¼ f @zw. The coupling between hi
and wi can be expressed, in Fourier space, by

ĥi ¼ Lijŵ j (5)

with the hat denoting the horizontal Fourier transform and Lij the ele-
ments of the matrix

L ¼ fk

� coth lm

Nm

csch lm

Nm
0

csch lm

Nm
� coth lm

Nm
� coth lt

Nt

csch lt

Nt

0
csch lt

Nt
� coth lt

Nt

0
BBBBBB@

1
CCCCCCA
; (6)

where k is the modulus of the horizontal wavenumber, and
lm ¼ Nmkh=f and lt ¼ NtkðH � hÞ=f are non-dimensional
wavenumbers.

In view of the ensuing discussions, an interesting feature of this
model is that it allows the computation of the horizontal velocity field
at any depth, once the streamfunction at the discrete levels 1, 2, and 3
is known (see the Appendix).

The system is forced by mean zonal flows with U1 ¼ 0; U2

¼ �Kmh; U3 ¼ �Kmh� KtðH � hÞ and mean meridional PV gra-
dients with C1 ¼ f 2Km=N2

m; C2 ¼ �f 2Km=N2
m þ f 2Kt=N2

t , and
C3 ¼ �f 2Kt=N2

t . Here, Km and Kt account for constant vertical shear
in the mixed layer and in the thermocline, respectively.

III. TURBULENT FLOW PROPERTIES

The evolution equations (1), with (5) and (6), are numerically
integrated by means of a pseudospectral method on a doubly periodic
square domain of side L at resolution 5122, starting from an initial
condition corresponding to a streamfunction whose Fourier modes
have random phases and small amplitudes such that the resulting
kinetic energy spectrum is constant in the range of wavenumbers con-
sidered. The code was adapted from an original one developed by Ref.
38 and previously used in Refs. 33 and 39. In the model, to remove
energy from the largest scales, we use hypofriction with coefficient r,
while small-scale dissipation (and numerical stability) is assured
through an exponential filter38,40,41 DsðhiÞ acting beyond a cutoff
wavenumber kc.

In our numerical simulations, we adopt realistic parameter values
for the (wintertime) midlatitude ocean (similarly to Ref. 15), as listed
in Table I. We further choose a domain linear size L¼ 500 km and
a grid spacing Dx�1 km. The value of the hypofriction factor is
r ’ 2:38� 10�16 m�2 s�1 and the non-dimensional cutoff wavenum-
ber for the exponential filter is kc ¼ 50 (corresponding to an inverse
wavelength of 0.1 km�1). Let us mention that, even if the results pre-
sented here are in dimensional units, the numerical integration is car-
ried out using non-dimensional variables, in which times are made

non-dimensional using the advective timescale L=ð2puÞ, where
u¼ 0.12 m s�1 is taken as the typical velocity.

We consider three cases: the thermocline only case (TC), the
mixed-layer only case (ML), and the full model (F), which are specified
by the values of the depths h and H in Table II. For the thermocline
only case, the parameter h does not have a physical meaning, and its
value is set to H=2; moreover, we take Nm ¼ Nt ¼ 8� 10�3 s�1. In
the following, we will focus on dynamics down to depth z ¼ �500 m,
for all three considered cases.

A. Spatial structure and kinetic energy spectra

The spatial organization of the horizontal flow can be inspected
by plotting the vorticity field f ¼ @xv � @yu ¼ ð@2x þ @2y Þw. Some
snapshots of f at a given time after the system reached the statistically
steady state are shown in Fig. 2, after normalization by the root mean
square (rms) value frms ¼ hf2i1=2 (with brackets indicating a spatial
average). In the figure, each column corresponds to a different model
(TC, ML, F, from left to right). In the top, middle, and bottom rows,
f=frms is shown at the surface, at z ¼ �100 m and at z ¼ �500 m,
respectively.

In all the examined cases, the surface fields are characterized by a
whole range of active scales. In the TC case, vorticity is prominently
organized in a tangle of long filaments [Fig. 2(a)]. Eddies of different
sizes are also present, so that the flow field is characterized by both fea-
tures simultaneously. As argued in Ref. 15, in this case the dynamics of
surface buoyancy anomalies decouple from those at the bottom at suf-
ficiently small scales, essentially giving rise to turbulent flows of surface
quasi-geostrophic (SQG) type. Then, as only the mesoscale instability
is here present, small-scale eddies are generated by a roll-up instability
of larger flow features.16 Small-scale eddies rapidly decay with depth
and at z ¼ �100 m only the largest structures are still present [Fig.
2(d). At z¼ �500 m, the TC vorticity field is statistically equivalent to
its surface counterpart, due to SQG-like dynamics at level z ¼ �H
and symmetry of the dynamics with respect to the half total depth.

The situation is quite different for the ML case (central column
of Fig. 2). In the presence of mixed-layer instabilities, eddies, initially
of the same size as the scale of the submesoscale instability, grow until
being balanced, in a statistical sense, by hypofriction. Several coherent
vortices are visible in the surface vorticity field. One can also remark
that filaments are now shorter and less intense. In sharp contrast with

TABLE I. Main physical parameters of the model; in the present study
Km ¼ Kt ¼ K.

Vertical shear K 10�4 s�1

Mixed-layer buoyancy frequency Nm 2� 10�3 s�1

Thermocline buoyancy frequency Nt 8� 10�3 s�1

Coriolis frequency f 10�4 s�1

TABLE II. Depth values used for the three different models (see the text).

Model TC (m) ML (m) F (m)

Mixed-layer depth h 250 100 100
Total depth H 500 1000 500
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the TC case, vorticity varies very little, in a statistical sense, over the
first 100 m below the surface, pointing to energetic submesoscales in
this whole depth range. Below the mixed layer, small scales decay in a
way similar to what observed for TC, until at z ¼ �500 m only very
large vorticity patches are found. Notice that here the thermocline is
virtually absent, as H ¼ 10h, which accounts for the differences
observed at z¼ �500 m with respect to other cases.

The picture in the full model (right column of Fig. 2) is similar to
that of the ML case in the mixed layer and the upper thermocline.
However, at larger depths, the flow recovers energy at small scales, due

to the effect of the finite-depth thermocline and SQG-like dynamics at
its bottom. At z¼ �500 m, vorticity has a rather filamentary structure
in which several small eddies are immersed.

A statistical characterization of these turbulent flows can be pro-
vided by their kinetic energy spectrum E(k), which is shown in Fig. 3
for each model. The top row shows the spectra (as a function of the
horizontal wavenumber) at some selected depths, while in the bottom
row a more complete description for varying depth is reported. Here,
the dashed lines correspond to the reference depths considered for the
horizontal Lagrangian dispersion (Sec. IVA).

FIG. 2. Vorticity field, normalized by its rms value, for the TC, ML, and F cases (columns from left to right) at the surface [(a)–(c)], at z ¼ �100 m [(d)–(f)], and at z ¼ �500
m [(g)–(i)]. In all panels, a zoom on the subregion ½250; 500� � ½0; 250� km2 of the total domain is shown.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 036603 (2021); doi: 10.1063/5.0041036 33, 036603-4

Published under license by AIP Publishing

https://scitation.org/journal/phf


In the TC case, the spectrum at the surface (and at the bottom)
displays a scaling behavior that is rather close to EðkÞ � k�5=3, as
expected in SQG turbulence. In the interior, the energetic content of
the largest scales is comparable to the corresponding value at the sur-
face, but the spectrum rapidly falls off, due to the decay of small eddies
with depth. Indeed, already at z ¼ �100 m, E(k) is found to be defi-
nitely steeper than k�3.

In the ML case, kinetic energy spectra are similar in a broad range
of wavenumbers over the mixed layer, which is then fully energized.
At the surface and at the base of the mixed layer, their scaling is not
far from k�5=3, though slightly steeper at large scale, as also observed
in Ref. 15. Below z ¼ �100 m, the spectrum shows a fast decrease
with the wavenumber and becomes steeper than k�3, due to less and
less intense small scales at larger and larger depths. Note that we veri-
fied that the value of the total depthH does not considerably affect the
spectral properties of the turbulent flows down to z¼ �500 m.

When both the mixed layer and the thermocline are present
(case F), E(k) is very similar to the spectrum found in the previous
case, both in the mixed layer and in the upper thermocline.
Nevertheless, close to z ¼ �500 m it displays energetic small scales
again, due to the dynamics at the bottom. At this depth, similarly to
what occurs at the surface, a scaling range with the spectrum not far
from k�5=3 is observed at relatively small scales, while at large scales
the spectrum is steeper and tends to approach k�3.

B. Turbulence intensity at varying depth

Here, we consider the variation with depth of the typical intensi-
ties of the turbulent flow velocities and of their gradients, both of
which are expected to be relevant for the transport of Lagrangian
particles.

We first examine the rms turbulent velocity urms ¼ hjuj2i1=2 and
compare it to the intensity of the zonal mean flow U ¼ UðzÞx̂ ¼ Kzx̂

(see Sec. II and Table I). The behavior of both quantities as a function
of the depth jzj is reported in Fig. 4, where the inset shows the
(inverse) turbulence intensity, U=urms, vs depth. Generally speaking,
one can see from these plots that turbulence becomes weaker, while
the mean flow gains importance, with depth. The way this occurs,
however, depends on the model dynamics. While for the TC and ML
cases, the mean flow can become comparable to typical turbulent
velocity fluctuations, in the full model U=urms never exceeds 0.4. In
the absence of the mixed layer, U > urms=2 at depths larger than 250
m (half the total depth, where the turbulent flow is weakest), and the
ratio U=urms reaches its peak value (�1) close to the bottom, namely,
for 300 m < z < 400 m, then slightly decreasing to reach 0.7 at z ¼
�500 m, due to more intense turbulence at the bottom. In the pres-
ence of the mixed layer, urms remains essentially unchanged in the first
100 m from the surface. Below the mixed layer, it decreases, but the
mean flow becomes comparatively relevant only at quite large depths
(in the ML case U > urms=2 at jzj > 400 m). Moreover, while in the
ML case U=urms ’ 1 at z ¼ �500 m, in the full model the more ener-
getic turbulent dynamics at the bottom of the thermocline partially
compensate the importance of the mean flow at the largest depths,
where U=urms � 0:35 at most.

If the rms velocity gives information about the intensity of the
turbulent flow, what matters in the separation process of advected
Lagrangian particles are the velocity gradients. The latter can be quan-
tified by the rms vorticity frmsðzÞ, which is shown in Fig. 5 for the
three models. Its decrease with depth is evident in all cases. In the TC
case, as for urms, the symmetric behavior with respect to jzj ¼ 250 m
results from the dynamics at the bottom. The trace of the latter is also
visible in the full model, where it causes an increase in frms at the larg-
est depths. This feature is absent in the ML case, where frms monoto-
nously decreases below the mixed layer. In the presence of the latter
(ML and F cases), the rms vorticity is always larger above z¼ �100 m
than deeper below and typically larger than in the TC case.

FIG. 3. Kinetic energy spectra, temporally averaged over several flow realizations in the statistically steady state, at some selected depths for the TC (a), ML (b), and F (c)
cases. The variation of spectra with depth is shown in (d)–(f) for the TC, ML, and F cases, respectively. Here, the dashed lines indicate the reference depths considered for the
horizontal Lagrangian dispersion (Sec. IVA).
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IV. LAGRANGIAN PAIR DISPERSION

In the following, we will consider the horizontal dispersion prop-
erties of an ensemble of Lagrangian tracer particles moving at fixed
depth z� in the turbulent flows produced by the TC, ML, and F mod-
els. The equation of motion of these particles is

dxi
dt
¼ vðxiðtÞ; z�; tÞ; i ¼ 1;…;N; (7)

where xi ¼ ðxi; yiÞ denotes the horizontal position of particle i and
vðx; y; z�; tÞ ¼ uðx; y; z�; tÞ þ Uðz�Þ the total velocity field at the par-
ticle position (at depth z�) resulting from the sum of the turbulent
component u, computed from the streamfunction in Eqs. (A1) and
(A2), and the mean flow Kz�x̂ .

In our numerical experiments, Eq. (7) is integrated using a
fourth-order Runge–Kutta scheme and bicubic interpolation in space
of the velocity field at particle positions.42 We assume that the particle
motion occurs in an infinite domain and use the spatial periodicity of

the Eulerian flow to compute the Lagrangian velocities outside the
computational box.

The particles are seeded in the turbulent flows once the latter
have reached statistically steady conditions. At each considered
depth, particles are initially placed in triplets, uniformly spread (on the
horizontal) over the spatial domain. The number of triplets is
M ¼ 64� 64 ¼ 4096 at each depth level. Each triplet is constituted
by a pair of particles along x and one along y, both of which are char-
acterized by an initial separation R0 ¼ Dx=2 ’ 500 m (with Dx ’ 1
km the grid spacing). For simplicity, below we will focus on the results
from the indicators based on the total separation R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
x þ R2

y

q
(where Rx and Ry are the separations along x and y, respectively), for
pairs initially along x. We verified that there was no major difference
in the statistics when considering dispersion in the x or y direction,
despite the presence of the mean zonal shear at depth. In this study,
we only consider original pairs, and we choose as reference depths z ¼
0;�100; �250;�350;�500 m, except where explicitly mentioned.

In Sec. IVA, we examine horizontal dispersion at different depths
using both fixed-time indicators, as relative dispersion (as a function
of time)19,33,43 and fixed-scale ones, as the finite-size Lyapunov expo-
nent (FSLE, or FSLE-I).43–45 In Sec. IVB, we address the properties of
the relative motion of subsurface particles with respect to surface ones,
by analyzing the so-called FSLE of the 2nd kind (FSLE-II).46,47

A. Horizontal dispersion

Here, we are interested in assessing how the horizontal dispersion
process varies in the vertical. In particular we aim at identifying differ-
ent dynamical regimes and at highlighting possible transitions among
them as a function of depth.

The first diagnostic we consider is relative dispersion, which is
defined as

hR2ðtÞi ¼ hjxiðtÞ � xjðtÞj2i; (8)

where the average is over all pairs (i, j) such that at t¼ 0 (the release
time) jxið0Þ � xjð0Þj ¼ R0.

Assuming that relative velocity is independent of the particle pair
separation, at sufficiently short times a ballistic behavior hR2i � R2

0
� t2 is expected.32,33,48–50 At intermediate times, for which dispersion
scales are within the inertial range of the turbulent cascade, the
expected behavior depends on the form of the kinetic energy spectrum
(see Ref. 51 for a compact review). Assuming a power-law spectrum,
EðkÞ � k�b, the value of the exponent b then determines the expected
dispersion regime. For a rough flow, for which b < 3, relative disper-
sion should scale as hR2i � t4=ð3�bÞ (see Refs. 19, 52, and 53) which
includes Richardson superdiffusive behavior hR2ðtÞi � t3 for
b ¼ 5=3. In such a case (b < 3), the dispersion process is referred to
as a local one, meaning that the growth of the separation distance
between two particles in a pair is governed by eddies of the same size
as the separation itself.19,33 When b > 3, instead, the flow is smooth
and the expectation for relative dispersion is hR2ðtÞi � exp ð2 kL tÞ
(see Refs. 19 and 54) where kL is the Lagrangian maximum Lyapunov
exponent. Such an exponential growth of hR2i is typically referred to
as a nonlocal dispersion regime, meaning governed by the largest
eddies.19,33 Finally, for separations much larger than the largest charac-
teristic flow scale, a diffusive behavior hR2i � t is expected, due to
essentially uncorrelated particle velocities.

FIG. 5. Typical turbulent vorticity fluctuations frms as a function of depth for the TC,
ML, and F cases. In the inset frms is normalized by the Coriolis frequency f and
plotted in semilogarithmic scale. The rms vorticities shown here are temporally
averaged over several flow realizations in the statistically steady state.

FIG. 4. Typical turbulent velocity fluctuations urms and mean flow intensity U(z) as a
function of depth for the TC, ML, and F cases. Inset: ratio UðzÞ=urms vs depth. The
rms velocities shown here are temporally averaged over several flow realizations in
the statistically steady state.
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To identify different dispersion regimes, it is useful to perform a
rescaling of the considered variables. A relevant quantity is, in this
respect, the rms vorticity frms, which accounts for the intensity of typi-
cal velocity gradients. The behavior of hR2ðtÞi is reported in Fig. 6.
Here, time is rescaled with 1=frms, which provides an estimate of the
typical time over which trajectory pairs loose memory of their initial
condition; relative dispersion is plotted after subtraction of its initial
value R2

0 and normalization by the latter. Through this representation
we are able to detect several distinct behaviors, which correspond to
the different dispersion regimes that are realized in the course of time.
The quite nice collapse of the data further indicates the generality of
the observed spreading mechanisms. As it can be seen, independently
of the model and of the depths, when t is smaller than a time of order
1=frms, a clear ballistic behavior (�t2) is found. In the opposite limit
of very large times, all curves indicate diffusive behavior (�t), as
expected. At intermediate times, relative dispersion approaches a t3

scaling, suggesting Richardson local dispersion, at the surface (for all
models), at the base of the mixed layer (for the ML and F cases), and
at the bottom of the thermocline (for the TC and F models). These
results are in fair agreement with the expectation based on the shape
of the kinetic energy spectrum, which in these cases is close to EðkÞ �
k�5=3 (Fig. 3). For the remaining cases (i.e., in the interior of the TC
system, below the mixed layer in the ML one, and in the upper thermo-
cline for the F case), the collapse of the curves (for fixed model and dif-
ferent depths), points to a common dispersion regime characterized by
fast growth in time (meaning faster than t3) of hR2i. Here, based on E(k)
being steeper than k�3, we should expect exponential growth of the
squared separation distance (nonlocal dispersion). Even when examined
on a lin/log scale, the data, however, do not quantitatively support this
picture and do not allow to measure kL (not shown). A possible reason
for such a difficulty is that relative dispersion is constructed as an average
at fixed time.45 Indeed, in the presence of large variability as a function
of the initial pair location and/or time, as it is found to be the case here
(not shown), hR2ðtÞi does not allow the detection of the correct scaling
behavior. An illustration of this effect showing a spurious anomalous
regime for a system of point vortices is documented in Ref. 55, while
Ref. 53 reports the difficulty to detect Richardson’s scaling from hR2ðtÞi,
but not from the FSLE, in direct numerical simulations of three-
dimensional homogeneous isotropic turbulence.

Let us now consider dispersion indicators at fixed length scale,
which are less affected by the superposition of different regimes associ-
ated with particle pairs having different separation distances at the
same time. We first consider relative diffusivity, defined as

j ¼ 1
2
dhR2ðtÞi

dt
: (9)

This is presented in Fig. 7, as a function of the separation distance
d ¼ hR2ðtÞi1=2, after rescaling time by 1=frms and distance by R0.
This diagnostic returns a picture more in adequacy with the theo-
retical expectations based on the shape of the kinetic energy spec-
trum. Even if in some cases, the curves show some wiggles, on
average we find that the scale-by-scale relative diffusivity reason-
ably scales according to the dimensionally expected behaviors, d2

(corresponding to a spectral exponent b > 3 and nonlocal disper-
sion) and d4=3 (corresponding to b ¼ 5=3 and local dispersion).
The first scaling behavior is observed in the interior for the TC case,
below the mixed layer in the ML case, and in the upper thermocline
for the F case. At the surface (for all cases), at the base of the mixed
layer (for the ML and F cases) and at the bottom (for the TC and F
cases), instead, the results support the second scaling behavior. The
quite good collapse of data from different models and at different
depths (in the same scale ranges as those from relative dispersion)
onto general behaviors determined by the kinetic energy spectrum
provides a first clear evidence of universal dispersion regimes con-
trolled by the dynamical properties of the turbulent flows.

The dispersion rate at a fixed length scale is quantified by the
FSLE. Since here we consider the separation process of two particles
advected by the same flow starting from different positions, we refer to
the FSLE-I, which is computed as

kðdÞ ¼ log r
hsðdÞi ; (10)

where the average is over all pairs and sðdÞ is the time needed to
observe the growth of separation from a scale d to a scale rd (with
r> 1). We verified that the results do not appreciably change when
using a generalization of the previous definition to discrete time.43,45

The amplification factor was set to r ¼
ffiffiffi
2
p

, but we checked the
robustness of the results with respect to this choice.

Let us recall that, dimensionally, one expects the FSLE to scale as
kðdÞ � dðb�3Þ=2 for a kinetic energy spectrum EðkÞ � k�b (see Refs.
19 and 33) If b < 3 one then has a power-law behavior of the FSLE,
corresponding to a local dispersion process. In the case of Kolmogorov
scaling, b ¼ 5=3 and hence kðdÞ � d�2=3, a behavior that is directly
related to Richardson superdiffusive regime, hR2ðtÞi � t3. When
b > 3, instead, i.e., when the advecting flow is smooth, the FSLE is
expected to be constant, which indicates a nonlocal dispersion regime.

FIG. 6. Relative dispersion (after subtraction of the initial value R2
0 and normalization by it) as a function of the time rescaled by the rms vorticity frms (Fig. 5) at the reference

depths for the TC (a), ML (b), and F (c) cases.
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Finally, at scales much larger than the largest eddies, the FSLE has a
diffusive scaling kðdÞ � d�2.

Figure 8 reports the FSLE-I, rescaled by frms, as a function of the
separation distance rescaled by its initial value, d=R0. The results quite
clearly indicate that dispersion is nonlocal (constant FSLE-I, with
kðdÞ � 0:2frms) over a broad range of scales up to Oð100ÞR0, in the
interior of the TC system, as well as below the mixed layer in the ML
case. It is also the case for the F model, provided jzj is not too large.
Close to the vertical boundaries and in the mixed layer, when present,
dispersion is instead always local. The value of kðdÞ at the smallest sep-
arations, which should provide an estimate of kL, is found to be quite
close to 0:1frms. In the range d < Oð100ÞR0, extending up to the larg-
est active flow scales, the FSLE-I displays a power-law dependence on
the separation distance compatible with d�2=3 (the theoretical expecta-
tion for Richardson superdiffusion), at least on average. Finally at
scales larger than Oð100ÞR0; kðdÞ � d�2 in all cases, indicating a dif-
fusive behavior in this range.

Summarizing, once properly rescaled with the rms vorticity, rela-
tive dispersion, relative diffusivity, and the FSLE-I return a coherent
picture that allows identifying different dispersion regimes and relating
them to the statistical features of the turbulent flows. In particular, the
analysis reveals a transition of behavior with depth. The dispersion
process is found to be local at the surface, while it becomes nonlocal at
depth, due to the decay of small eddies. However, while this occurs
rapidly with increasing depth in the absence of mixed layer instabil-
ities, when the latter are present the transition is moved to larger
depth, below the mixed layer, due to energetic submesoscale dynamics
in the whole mixed layer.

B. Vertical correlation of horizontal dispersion
properties

In Sec. IVA, horizontal dispersion properties were discussed,
depth by depth, in particular using the 1st-kind FSLE. We are now
interested in the relative motion between particles seeded at different
depths. This amounts to considering the evolution of pairs of trajecto-
ries starting from the same initial position, on the horizontal, but with
dynamics governed by different flows (see Fig. 9). Their spreading pro-
cess can be examined using a modified type of FSLE, as proposed in
the context of predictability studies.46,47

To take this approach, we consider the positions at time t, xiðtÞ,
and xjðtÞ, of particles initialized on different levels (zi and zj) and
advected by the horizontal flow at their depth:

dxi
dt
¼ vðxiðtÞ; zi; tÞ;

dxj
dt
¼ vðxjðtÞ; zj; tÞ;

with xið0Þ ¼ xjð0Þ. We can still define as d ¼ jxiðtÞ � xjðtÞj the hori-
zontal separation distance for pair (i, j), i.e., as if the two particles were
at the same level (or, in other terms, by projecting xiðtÞ on the plane z
¼ zj, as in Fig. 9). We then introduce the FSLE-II with a definition
analogous to that of the FSLE-I, Eq. (10), and denote it kvðdÞ. In the
following, we will always consider that one particle is at the surface
(hence, e.g., zj¼ 0).

Before looking at the results, it is useful to discuss the behaviors
expected for this indicator. We first remark that in our case, below the
surface, the turbulent intensity can be considerably lower, depending

FIG. 7. Relative diffusivity as a function of the separation distance d ¼ hR2ðtÞi1=2, after rescaling time with f�1rms and distance with R0, at the reference depths for the TC (a),
ML (b), and F (c) cases. The dashed and dashed-dotted lines, respectively, correspond to d4=3 (Richardson local regime) and d2 (nonlocal regime) for reference.

FIG. 8. FSLE-I, normalized by the rms vorticity frms as a function of the separation distance normalized by its initial value, d=R0, at the reference depths for the TC (a), ML
(b), and F (c) cases.
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on the depth and the model dynamics (see the behavior of urms with
jzj in Fig. 4), and vertical shear can play a relevant role. It is not diffi-
cult to obtain from dimensional arguments that, due to the mean
shear, kvðdÞ ’ log ðrÞKjzjd�1 (recall that the mean shear is
K ¼ Km ¼ Kt in the present simulations, see Table I). This type of
contribution to the FSLE-II can be expected to be large where
UðzÞ=urms is large (see inset in Fig. 4). A similar scaling of kvðdÞ can
also arise, more generally, from the shear due to the typical difference
(vs depth) of the total velocity hjvðzÞ � vð0Þj2i1=2, where vðzÞ
¼ UðzÞ þ uðx; y; z; tÞ [see also Eq. (7)], from which one would expect
kvðdÞ ’ log ðrÞhjvðzÞ � vð0Þj2i1=2d�1.

Another point to bear in mind is that, in all (TC, ML, F) cases,
also the small-scale energetic content of our flows is reduced in the
upper thermocline, or below the mixed layer. This situation is close to
the one discussed in Ref. 47, which considers the separation of two
particles advected by two flow fields v and v0 that have identical energy
spectra at large scales but one of which has no scales smaller than a
cutoff length ‘�. In such a case, the distance between the two corre-
sponding trajectories should be jxðtÞ � x0ðtÞj � jv � v0jt � v�t,
where v� is the typical velocity difference, as long as
jxðtÞ � x0ðtÞj < ‘�. Thus, dimensionally, one has that the FSLE-II
should scale as kvðdÞ � d�1 for d small enough. At larger scales, the
difference between the two flows has no more influence and the FSLE-
II typically recovers the behavior of the FSLE-I kðdÞ. In our case, an
analogous reasoning (with v and v0 the velocities at the surface and at
depth, respectively) would imply that a critical length scale ‘� should
mark the transition between the behaviors kvðdÞ � d�1 and
kvðdÞ � kðdÞ, provided the previously discussed shear contribution is
weak enough.

Let us now illustrate the results, which are obtained using 4096
original pairs, as for the computation of the FSLE-I (but now selecting
one particle at the surface and another one at depth). Our interest is
mainly focused on the scale range between O(1) km and O(100) km.
The FSLE-II is shown in Fig. 10 for the reference depths and two

additional ones, z ¼ �50 m and z ¼ �150 m, respectively, above
and below the mixed layer, when present. At small depths, the slope
of the FSLE-II is close to that of the FSLE-I (recall that kðdÞ � d�2=3

at the surface, before the onset of the diffusive regime d�2 at the
largest values of d). This is particularly evident for the ML and F
cases, where the behavior �d�2=3 is observed over a broader range
of separations, namely, from few to slightly less than 100 km.
For the TC model, already quite close to the surface [z ¼ �50 m in
Fig. 10(a)], at separations d < Oð10Þ km, however, the slope of the
FSLE-II gets definitely larger in absolute value [kvðdÞ � d�1]. As
the vertical shear is still weak at such depths, it is possible to associ-
ate this change of scaling with the missing small scales in the deeper
flow. It also appears reasonable, here, that the crossover scale is
‘� � 10 km, as this value is also close to the length scale of the
mixed-layer instability (capable of energizing the submesoscale in
the first 100 m below the surface), which is absent in this model. A
similar transition to kvðdÞ � d�1 becomes evident only below the
mixed layer [z ¼ �150 m in Figs. 10(b) and 10(c)] in the ML and F
cases, for which small scales are energetic down to z ¼ �100 m.
Further below the surface, the FSLE-II is in all cases close to d�1

(though slightly steeper for the ML and F models, where
kvðdÞ � d�a, with a ’ 1:25 and 1.15, respectively) over a more
extended range of separations, due to the missing small scales, but
now also due to the vertical shear becoming more important with
depth and eventually dominating. Interestingly, some indications
about the relevant role of vertical shear were recently documented
also in a more realistic, albeit more specific, numerical study
addressing pair dispersion at submesoscales in the Bay of Bengal.56

At the largest depths, a flattening of the FSLE-II at the smallest sep-
arations is seen, particularly for the ML and F cases. It should be
noted, however, that in this range of scales and depths, due to the
large velocity differences involved, the results may be affected by
the finite temporal resolution of the data.

To better appreciate the contribution from the vertical shear, in
Fig. 11 we report kvðdÞ compensated by the expectation in the pres-
ence of the vertical shear arising from both the mean flow and the tur-
bulent velocity, log ðrÞhjvðzÞ � vð0Þj2i1=2d�1 (main panels). The
compensation by the contribution from the mean vertical shear only,
i.e., log ðrÞKjzjd�1, was not found to be sufficient to account for the
behavior of the FSLE-II (not shown). On the contrary, the FSLE-II
compensated by the total-shear prediction approaches the constant
value 1 (Fig. 11), particularly at larger depths. Note that the collapse of
the different curves corresponding to different depths is much better
for the TC case than for the ML and F cases. For the TC case, the devi-
ations at the smallest depths (e.g., z ¼ �50 m) for separations d > 10
km are related to the scaling kvðdÞ � d�2=3, as shown by the inset of
Fig. 11(a). Indeed, due to still energetic eddies in both flows at these
scales, and weak vertical shear at these depths, as already observed
from Fig. 10(a), in this range the FSLE-II is close to the FSLE-I. In the
ML and F cases, when depths larger than the mixed-layer depth
(h¼ 100 m) are considered, the compensated (by d�1) FSLE-II is
fairly close to 1 in a broad range of horizontal separations (2 km � d
� 100 km). More important deviations are observed at smaller depths
(inside the mixed layer) and can be attributed to the scaling kvðdÞ
� d�2=3 [insets of Figs. 11(b) and 11(c), related to the similar small-
scale energetic content of the flows at the surface and below it, in this
range of depths.

FIG. 9. Schematic illustration of typical trajectory pairs used for the computation of
the FSLE-II. Here dðtÞ is the horizontal separation distance between trajectories
xiðtÞ and xjðtÞ, evolving on different depth levels (zi and zj, respectively). The gray
curve is the projection of the trajectory at depth on the upper level. The initial posi-
tion of particles i and j is the same on the horizontal and is here indicated by a dot.
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V. CONCLUSIONS

We explored Lagrangian pair dispersion in stratified upper-
ocean turbulence. We focused on the identification of different dis-
persion regimes and on the possibility to relate the characteristics
of the spreading process at the surface and at depth. The latter
question is particularly relevant to assess the possibility of inferring
the dynamical features of deeper flows from the experimentally
more accessible (e.g., by satellite altimetry) surface ones. In this
sense, Lagrangian dispersion statistics can provide useful informa-
tion to understand the coupling between the surface and interior
dynamics. Some perspectives on the use of further particle-based
approaches to this subject, which is key to understand how subme-
soscale flows participate in biogeochemical and heat budgets, are
discussed in Ref. 57.

Tracer particles were advected by turbulent flows characterized
by energetic submesoscales close to the surface, both in the presence
(ML and F cases) and in the absence (TC case) of mixed-layer instabil-
ities. The numerical simulations of the model dynamics15 were carried
out using realistic parameter values for the midlatitude ocean. Even if
the presence of a mixed layer has a signature at the surface in terms of
a less filamentary flow field, its main effect is to energize the full upper
part of the water column and, hence, to strongly impact the vertical
variation of the statistical features of turbulence. Kinetic energy spectra
close to k�5=3 are found at the surface in all models. They are instead
steeper than k�3 at depth, due to the decay of small eddies. However,
while this change of behavior occurs already close to the surface in the

TC case, in the ML and F cases, it only manifests below the depth of
the mixed layer (z¼ �100 m).

The different statistical indicators examined, once properly
rescaled to take into account the typical intensity of velocity gradients,
allowed to group the data at different depths and from different mod-
els into only two universal behaviors, corresponding to nonlocal and
local dispersion, which are in agreement with the dimensional expecta-
tions based on kinetic energy spectra. Therefore, our results indicate a
clear transition of dispersion regime with depth, which is quite generic.
The spreading process is local at the surface. In the absence of a mixed
layer it very soon changes to nonlocal at small depths, while in the
opposite case this only occurs at larger depths, below the mixed layer.

It is here worth commenting on our results from a dimensional
point of view. Horizontal dispersion is always found to be diffusive-
like at spatial scales larger than O(100) km and at times t> 30 day
from the release. The intensity of the dispersion process, as quantified,
e.g., by the FSLE-I, decreases with depth in all models, except close to
the bottom boundary in the TC and F cases (due the small-scale flows
gaining energy again there). In the nonlocal-dispersion cases, the flat
behavior of the FSLE-I in a broad range of scales [O(1) km <d <
Oð100Þ km] allows estimating the Lyapunov exponent kL. The latter is
found to be of order 0.01 day�1 in the TC case and 0.1 day�1 in the
ML and F ones. Under local-dispersion, the behaviors found are com-
patible with Richardson superdiffusion from few km to about 100 km.
The scale-by-scale dispersion rate, kðdÞ, is considerably enhanced at
submesoscales, reaching values �ð0:1� 0:2Þ day�1 in the TC case

FIG. 10. FSLE-II for the TC (a), ML (b), and F (c) cases. The settings are as in Fig. 8 but particles in a pair are now selected such that, initially, the first one is at the surface
and the second one is at a depth z, with no horizontal separation between them. Two additional depths, with respect to the computation of the FSLE-I, are here shown: z
¼ �50 m and z ¼ �150 m. Darker symbols correspond to larger depths.

FIG. 11. FSLE-II for the TC (a), ML (b), and F (c) cases; darker symbols correspond to larger depths. In the main panels kvðdÞ is compensated by the expectation in the pres-
ence of the typical vertical shear due to both the mean flow and turbulent fluctuations, log ðrÞhjvðzÞ � vð0Þj2i1=2d�1 [where vðx; y; z; tÞ is the total velocity at depth z]. The
insets show kvðdÞ compensated by d�2=3; the dashed lines are guides to the eye for constant values.
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and �1 day�1, compatible with surface-drifter observations in differ-
ent regions,24 in the ML and F cases.

We further investigated the transition from local to nonlocal dis-
persion, with increasing depth, by means of the FSLE-II. Our results
indicate that, in the absence of a mixed layer, dispersion properties
rapidly decorrelate from those at the surface. In the ML and F cases,
instead, a similar phenomenon occurs only below the mixed layer. The
transition is sharper in the TC model. However, the relation between
dispersion at depth and at the surface appears in this case to be largely
controlled by the vertical shear (due to the total velocity), as revealed
by the very good collapse of the data rescaled by the prediction based
on it. This suggests that, even in this case, it should be in principle pos-
sible to infer how a tracer at depth separates from one at the surface, if
the shear is known, or to parameterize it using information at the sur-
face only. In the presence of mixed-layer instabilities, the results indi-
cate that the statistical properties of the spreading process at the
surface can be considered as a good proxy of those in the whole mixed
layer. The vertical-shear prediction for the FSLE-II still appears rea-
sonable, particularly below the mixed layer and for separations ranging
from few km to�100 km, but now the agreement is essentially limited
to the order of magnitude, which makes it more difficult to establish a
link between the interior and surface dispersion.

Finally, based on the above considerations, in our opinion, this
study provides evidence of the interest for future satellite altimetry, as
the SWOT mission,31 that should provide surface velocity fields at
unprecedented high resolution, also in light of understanding subsur-
face ocean dynamics.
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APPENDIX: STREAMFUNCTION AT ARBITRARY
DEPTH

The streamfunction w at a generic depth z can be expressed, in
Fourier space (with k the horizontal wavenumber) in terms of w1,
w2, w3 as

ŵðk; zÞ ¼ 1
sinh lm

ŵ1ðkÞsinh lm
z þ h
h

� �
�ŵ2ðkÞsinh lm

z
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� �" #

(A1)

in layer 1 (�h < z � 0) and as
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in layer 2 (�H � z � �h).
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