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The relevance of surface quasi-geostrophic dynamics (SQG) to the upper ocean and
the atmospheric tropopause has been recently demonstrated in a wide range of
conditions. Within this context, the properties of SQG in terms of kinetic energy
(KE) transfers at the surface are revisited and further explored. Two well-known
and important properties of SQG characterize the surface dynamics: (i) the identity
between surface velocity and density spectra (when appropriately scaled) and (ii) the
existence of a forward cascade for surface density variance. Here we show numerically
and analytically that (i) and (ii) do not imply a forward cascade of surface KE (through
the advection term in the KE budget). On the contrary, advection by the geostrophic
flow primarily induces an inverse cascade of surface KE on a large range of scales.
This spectral flux is locally compensated by a KE source that is related to surface
frontogenesis. The subsequent spectral budget resembles those exhibited by more
complex systems (primitive equations or Boussinesq models) and observations, which
strengthens the relevance of SQG for the description of ocean/atmosphere dynamics
near vertical boundaries. The main weakness of SQG however is in the small-scale
range (scales smaller than 20–30 km in the ocean) where it poorly represents the
forward KE cascade observed in non-QG numerical simulations.

1. Introduction
Fundamental questions of ocean and atmosphere dynamics are how their

equilibrium energy spectrum is established and what are the underlying spectral
energy transfers. One difficulty is that there is a variety of contributing processes, and
different fluid regions and dynamical regimes must be distinguished. In particular,
regions close to boundaries, such as the ocean surface or the atmospheric tropopause,
behave differently than does the interior. For boundaries Blumen (1978) developed a
surface quasi-geostrophic (SQG) theory that serves as a counterpart to a model of
three-dimensional geostrophic turbulence (Charney 1971). While the latter is driven by
large-scale interior potential vorticity (PV) contrasts and is not influenced by boundary
anomalies, SQG dynamics is entirely driven by the density (or potential temperature
in the atmosphere) anomaly evolution at the boundary. As such, frontogenesis (in
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its QG limit) is the key process in SQG systems. SQG theory has been recently
used to describe the three-dimensional dynamics of the upper troposphere (Juckes
1994; Hakim, Snyder & Muraki 2002; Tulloch & Smith 2006) and the upper oceanic
layers (Lapeyre & Klein 2006; LaCasce & Mahadevan 2006; Isern-Fontanet et al.
2006). To better understand the range of applicability of the SQG theory, Lapeyre
& Klein (2006) have further revisited theoretically and numerically the question of
the coupling of the boundary dynamics (driven by the surface density) with the
interior dynamics (driven by the interior PV gradients). Using the dynamical analogy
(suggested by Bretherton 1966) of the surface density as a boundary PV delta-function
and using the invertibility principle of PV (Hoskins, McIntyre & Robertson 1985),
Lapeyre & Klein (2006) demonstrate the relevance of the SQG dynamics in the upper
oceanic layers (the first 500 m) for a spectral range extending from the smallest scales
(O(10 km)) to mesoscales (up to O(400 km)); the larger scales are predominantly
influenced by the interior PV. Such scale partition also emerges from the studies of
Juckes (1994) and Tulloch & Smith (2006) for atmospheric flows.

The spectral energy transfers at the boundaries have still to be understood. Using
altimetry data Scott & Wang (2005) computed KE fluxes that are due to nonlinear
horizontal advection. They found an inverse cascade of surface kinetic energy (KE)
from scales close to the Rossby deformation radius (≈100 − 150 km at mid-latitudes)
to larger scales. Their interpretation is that this inverse cascade mainly reflects the
first baroclinic mode. In support of this hypothesis Scott & Arbic (2007) present
two-layer QG turbulent solutions for a baroclinically unstable ocean that undergoes
an inverse cascade of the baroclinic (and upper layer) KE. Using potential energy
(PE) simulations Capet et al. (2008) and Klein et al. (2008), confirm the Scott &
Wang (2005) results about the existence of a significant inverse cascade of surface
KE. Their inverse cascade, again estimated from the nonlinear horizontal advection
terms, extends even further down to scales around 30 km. Yet, it is not clear that this
cascade can entirely be understood in terms of QG turbulence that assumes uniform
surface density. Indeed, in agreement with Lapeyre & Klein (2006), density contrasts
at the ocean surface play a leading dynamical role for scales up to at least 300 km
(Klein et al. 2008). In this context we revisit SQG energy transfers and show that they
account for an inverse surface KE cascade, at least within the mesoscales to small
scales range.

Blumen (1978) and later Held et al. (1995) noted two invariants in SQG dynamics:
the surface density variance (also equal to the surface KE when appropriately
dimensionalized) and the depth-integrated total energy (KE plus potential energy).
By analogy with two-dimensional turbulence the system undergoes an inverse cascade
of the total energy at low wavenumbers and a direct cascade of surface density
variance at high wavenumbers. Neither Blumen (1978) nor Held et al. (1995)
discussed the specific properties of the surface KE cascade in SQG theory. The
focus of this paper is to characterize these properties. In §2 and §3 we show (first
analytically and then numerically) that despite the equivalence of surface density
and velocity spectra in SQG, the details of their spectral budget differ: horizontal
advection induces an upscale flux of surface KE over a large spectral range extending
to small scales, whereas it fluxes density variance downscale. The difference is
compensated by an extra term in the surface KE spectral budget that we connect
to frontogenesis in §4. The conclusion (§5) examines the relevance and limitations
of the SQG framework in understanding energy spectral transfers in more complex
systems.
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2. Surface KE and density variance budgets
2.1. SQG equations

The SQG model (Blumen 1978 and Held et al. 1995) is based on a small-Rossby-
number approximation to the PE (that describes an hydrostatic Boussinesq fluid
system). All variables are non-dimensionalized as in Pedlosky (1987) using U and L,
respectively the velocity and length scales, f the Coriolis parameter, N the Brunt–
Väisälä frequency, and H the depth scale. The Rossby number (defined as ε = U/f L)
is assumed small (ε � 1) and the Burger number (defined as B = NH/f L) is of order
one (B = 1). For any variable X, its perturbation expansion in terms of the Rossby
number ε is X = X0 + εX1 + O(ε2). Retaining the Φ(1)-terms in the momentum and
hydrostatic balances leads to the resulting geostrophic and hydrostatic relations

(u0, v0, ρ0) = (−Φ0
y , Φ

0
x , −Φ0

z ) (2.1)

where u and v are the horizontal velocity components respectively along the zonal
(x) and meridional (y) coordinates, ρ is the density and z the vertical coordinate
(with z < 0 for an oceanic setup). The streamfunction Φ0 is related to pressure. SQG
theory furthermore assumes that potential vorticity (PV) is uniform in the interior of
the fluid and the flow decays away from the surface (i.e. Φ0 → 0 as z → −∞). The
resulting PV equation in non-dimensional form is

∇2
HΦ0 + ∂zzΦ

0 = 0, (2.2)

with the boundary condition

−∂zΦ
0|z=0 = ρs. (2.3)

The subscript s refers to surface variables and ∇H is the horizontal gradient operator.
Solving these two equations in the spectral Fourier space leads to

Φ̂0(k, l, z) = − ρ̂s(k, l)

K
exp (Kz) , (2.4)

where ·̂ is the horizontal spectral transform, k, l are the horizontal wavenumbers along
the x- and y-directions and K = (k2 + l2)1/2. The dynamics at zero order and at any
depth is thus entirely determined by the surface density, ρs . Time evolution of the
flow requires one to consider the next leading-order approximation (in ε) to the PE
and in particular that for surface density:

∂tρs + u0
s · ∇H ρs = 0, (2.5)

with t the time. Equations (2.1), (2.4) and (2.5) form a closed system, i.e. the basic
SQG equation set.

Using the density equation (and retaining only the Φ(ε)-terms), we have at any
depth

w1 = ∂tρ
0 + u0 · ∇Hρ0. (2.6)

Thus, from (2.4), (2.5) and (2.6), the vertical velocity in spectral space can be computed
diagnostically:

ŵ1 = − ̂∇H · (u0
s ρs) exp (Kz) + ̂∇H · (u0 ρ0), (2.7)

where ρ̂0(k, l, z) is given by ρ̂0(k, l, z) = ρ̂s(k, l) exp (Kz) (using (2.1), (2.4), and
∇H · u0 = 0). Similarly, taking the z-derivative of (2.6) and using (2.1) and (2.4)
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provides a diagnostic expression for w1
z as a function of surface density:

ŵ1
z = −K ̂∇H · (u0

s ρs) exp (Kz) + ̂∇H · (u0 ρ0
z ). (2.8)

Because of the hypothesis of uniform interior, the PV horizontal and vertical structures
of the flow are related to each other in this balanced model. This explains why the
horizontal, as well as the vertical, velocity fields can be retrieved at all depths from
only surface density (Hakim et al. 2002; Lapeyre & Klein 2006). Another important
property within the context of this study is that surface velocity and density spectra
are identical: from (2.1) and (2.4), we have

|ρ̂s |2(k, l) = |û0
s |2(k, l). (2.9)

Finally, it should be noted that a difference between SQG and two-dimensional
flows emerges from the form of the preceding equations. In SQG flows the conserved
scalar is the surface density (2.5) instead of the relative vorticity, Z = vx −uy , for two-
dimensional flows. The streamfunction at the surface is given by Φ̂0

s (k, l) = −ρ̂s(k, l)/K
(see (2.4)) instead of Φ̂0(k, l) = −Ẑ(k, l)/K2 for two-dimensional flows. This implies
that near the surface large-scale strain in SQG plays less of a role in the advection
of small-scale features, resulting in a cascade of density variance to small scales that
is more local in wavenumber (Pierrehumbert, Held & Swanson 1994).

2.2. KE and density variance equations

Time evolution of the horizontal velocity, within the QG framework, is obtained by
retaining only the Φ(ε)-terms in the momentum equations (Pedlosky 1987). At the
surface the resulting equation is

∂t u0
s = −u0

s · ∇u0
s − k ∧ uag

s (2.10)

where k is the unit vertical vector and uag
s = u1

s + k ∧ ∇Φ1
s the horizontal velocity

ageostrophic component. We neglect dissipation in (2.10). By spectrally manipulating
(2.5) and (2.10), we obtain the surface kinetic energy and density variance budgets in
spectral space:

∂t |ρ̂s |2/2 = −Re[ρ̂∗
s ( ̂u0

s · ∇ρs)], (2.11)

∂t |û0
s |2/2 = −Re[û0

s

∗
· ( ̂u0

s · ∇u0
s )] − Re[ŵ1

z s
Φ̂0

s

∗
], (2.12)

where ∗ denotes the conjugate. In (2.12), we have utilized the identities

û0
s

∗
· k ∧ ûag

s = ûag
s · ∇̂Φ0

s

∗
= −∇̂ · uag

s Φ̂0
s

∗
= ŵ1

z s
Φ̂0

s

∗
,

noting that ∇H · uag
s = −w1

z .
The nonlinear transfers due to the horizontal advection are captured by the first

right-hand side term in (2.11) and (2.12). Integrating these equations with respect
to K and averaging isotropically (denoted as 〈.〉) leads us to introduce the density
variance and kinetic energy spectral fluxes related to those terms, i.e.

Πρ = −
∫ ∞

K

〈Re[ρ̂∗
s

̂u0
s · ∇ρs] 〉dK (2.13)

Πu = −
∫ ∞

K

〈Re[û0
s

∗
· ̂u0

s · ∇u0
s ] 〉dK. (2.14)

We also define

Πa = −
∫ ∞

K

〈 Re[ŵ1
z s

Φ̂0
∗
s ]〉 dK, (2.15)
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Figure 1. (a) Snapshot of surface density at t = 8 over a 512 × 512 points subregion for
simulation HR. (b) LR, MR and HR spectra (continuous with high-wavenumber variance
increasing with resolution) of surface density variance (i.e. also surface KE) averaged over the
time interval [6.4 11.2]. The dashed line (resp. dotted) represents a −5/3 (resp. −3) slope.

related to the last term on the right-hand side of (2.12), that involves ageostrophic
variables. Given (2.9) the right-hand side of (2.11) and (2.12) are equal which yields

Πρ = Πu + Πa. (2.16)

The relation (2.16) states that the surface density variance and KE fluxes are due
to geostrophic advection (respectively Πρ and Πu); they differ by Πa which involves
the ageostrophic flow. The striking consequence of this last term, Πa , (as shown in
the next section) is that the spectral transfer properties of surface KE and of density
variance differ from each other despite (2.9).

3. Numerical simulations
3.1. Description

We have performed numerical simulations for an SQG turbulent eddy field in free
decay. The computation domain is doubly periodic. The numerics are based on the
model of Hua & Haidvogel (1986) modified to solve the SQG equations set. The
resolutions we employ are 5122 (LR), 10242 (MR) and 20482 (HR). Initial conditions

are constructed by specifying a φ̂0 field at the surface, with random phase angles and

amplitude given by |φ̂0
s |2(k, l) = K5/(K + ko)

12. The wavenumber ko = 14 corresponds
to the KE peak. Dissipation involves a biharmonic operator and a coefficient adjusted
for each resolution to the minimal value for which no density variance accumulates
at small scale (by inspecting the spectra).

The numerical solutions exhibit the well-known features of SQG turbulence. In
the density field (figure 1a) small scales are energetic. This is due to frontogenesis
that intensifies the density gradients and to destabilization of filaments that leads to
numerous eddies having a diameter of around a dozen grid points. Consequently,
the density spectrum is quite flat, with a slope between −5/3 and −2 over one and
half decade (figure 1b). Note that this description and the analyses performed below
are for early times during which nonlinear interactions are rather strong (at a much
longer time our free-decay solutions evolve toward a state where the total energy is
diminished, surface spectra are steeper than −2, and nonlinear interactions are very
weak because large isolated eddies dominate the flow).
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Figure 2. (a) HR transfer functions of surface density variance (Πρ , solid line) and surface
KE (Πu, dashed line and Πa , dotted-dashed line) as a function of wavenumber. Some values
for the sum Πu + Πa are also represented with + symbols. (b) Πρ (solid lines) and Πu (dashed
lines) for the three different resolutions (LR, MR and HR).

3.2. Spectral transfers of surface KE and density variance

The different terms (2.14), (2.14) and (2.15) are computed from 10 snapshots of
density (taken over six eddy turnover time units during which an inertial range is
most cleanly present in the density spectral transfers). w1

z (required to compute Πa)
is diagnosed from (2.8). Results are given for HR in figure 2a). The forward cascade
of density variance extends roughly from k = 15 to the dissipation scale (k > 500).
This is the classical result anticipated by Blumen (1978) and subsequently verified by
numerous studies (Celani et al. 2004). The flux is close to constant over this interval.
The advective flux of surface KE, on the other hand, is upscale (Πu < 0) over a
large spectral range. To our knowledge this important aspect of SQG turbulence had
been overlooked. A downscale flux is also present but it concerns a narrow range of
very small scales (with wavenumbers larger than k = 300). From (2.16) the difference
between Πρ and Πu is entirely explained by Πa (whose physical interpretation is
discussed in the next section). This has been checked by plotting some values of
Πu + Πa in figure 2(a). Unlike Πρ , Πu and Πa have no plateau.

In figure 2(b), Πu and Πρ are plotted for different horizontal resolutions. For
Πρ , increasing the resolution simply extends its plateau, corresponding to a forward
cascade of density variance over a wider spectral range. The same behaviour is
observed for the upscale surface KE advective flux, which indicates its robustness.
On the other hand, the downscale surface KE flux is not robust with respect to the
resolution changes. As resolution increases, the region where Πu is positive moves to
higher wavenumber and roughly follows the dissipation range. In other words, the
downscale advective flux of surface KE would be absent from a solution with infinite
resolution.

4. Discussion
Although surface density and velocity spectra are identical over a large spectral

range (as confirmed by their tendency terms), their dynamics revealed by their
budgets are quite different because of the term Πa . The physical meaning of Πa can
be understood in terms of surface frontogenesis. Let us consider a front undergoing
frontogenesis as represented in figure 3. In the following reasoning we assume that
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Figure 3. Schematic of the frontogenetic situation described in §4. This situation represents
an intensifying density front embedded in a horizontal deformation field near the ocean surface
(top of the figure) with light/warm water on the right-hand side. The underlying ageostrophic
secondary circulation (arrows) counteracts frontal intensification (Hoskins & Bretherton 1972)
with Φwz < 0 on either side of the front near the surface.

Φ0 has a zero horizontal average at the surface because Φ0 is a streamfunction
anomaly. Since ∂zΦ

0 = −ρ0 and velocities are vanishing at depth, we have Φ0 > 0
(resp. Φ0 < 0) at the surface on the warm (resp. cold) side. As for the ageostrophic
secondary circulation, it is made up of an ascending branch on the warm side and
a descending branch on the cold side (Hoskins & Bretherton 1972). The condition
w = 0 at the surface yields Φ0w1

z < 0 on both sides of the front. Since frontogenesis
statistically dominates over frontolysis in the wavenumber range, where the forward

cascade of surface density variance is taking place, we expect −ŵ1
z Φ̂

0
∗

to be positive
there; this is consistent with the shape of Πa (figure 2a).

A more quantitative analysis allows us to relate Πa to the release of available
potential energy by the frontogenesis mechanisms. This is done by using (2.6), (2.10)
(valid at any depth), and the thermal wind balance (deduced from the geostrophic
and hydrostatic approximations (2.1)):

∇Hρ = k ∧ ∂zu0. (4.1)

Taking ∇H of (2.6) leads to

d∇H ρ

dt
= − Q + ∇Hw1. (4.2)

with Q = [∇Hu0]T · ∇Hρ0 ([ ]T is the transpose matrix) the frontogenetic vector.
Subtracting k ∧ ∂z of (2.10) from (4.2), and using the thermal wind balance yields
(Hoskins & Bretherton 1972; Klein, Tréguier & Hua 1998)

2 Q = ∇Hw1 − uag
z . (4.3)

Equation (4.3), that comprises the QG version of the Eliassen–Sawyer equation
(Thomas & Lee 2005), leads to

2

K
Q̂ · ∇̂Hρ0

∗
= Kŵ1ρ̂0

∗
− 1

K
ûag

z · ∇̂Hρ0
∗
. (4.4)

However, (4.4) can also be written as (using ∇H · uag = −w1
z )

2

K
Q̂ · ∇̂Hρ0

∗
= [ŵ1

z Φ̂
0

∗
− ŵ1Φ̂0

z

∗
]z. (4.5)
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Integrating (4.5) over the whole water column (with w1 = 0 at the boundaries and
Φ0 = 0 at the bottom) and over K , yields

−
∫ ∞

K

〈
Re

[
2

K

∫ 0

−∞
Q̂ · ∇̂Hρ0

∗
dz

]〉
dK = −

∫ ∞

K

〈Re[ŵ1
zΦ̂0

∗
|z=0]〉dK = Πa, (4.6)

which was verified in our numerical solutions. The same integration but involving
(4.4) yields

Πa =

∫ ∞

K

〈
Re

[
− K

∫ 0

−∞
ŵ1ρ̂0

∗
dz +

1

K

∫ 0

−∞
ûag

z · ∇̂Hρ0
∗
dz

]〉
dK. (4.7)

Equation (4.6) indicates that Πa is directly related to the production of density
gradients within the fluid. This term should be positive, in particular in the high-
wavenumber region, where density gradients are the strongest (since the density
gradient spectrum has a k1/3 slope). Equation (4.6) bears some similarity with a relation
found by Lapeyre, Klein & Hua (2006) that couples frontogenesis and restratification
(through wzρ) and redistributes density vertically. Equation (4.7) further indicates
that Πa is related to the release of available PE by the ageostrophic circulation
associated with frontogenesis. Indeed, the first term on the right-hand side of (4.7)
corresponds to a buoyancy flux while the second term reflects the manner in which
ageostrophic flows modify the stratification through differential horizontal advection.
For frontogenetic conditions (figure 3), both of these terms are positive and lead to a
reduction of the available PE. Thus Πa , directly related to the production of density
gradients within the fluid, can be interpreted as a transformation of available PE into
surface KE. From (2.16) the consequence of the positiveness of both Πa (related to
the frontogenesis strength) and Πρ (related to the direct cascade of density variance)
and of the dominance of Πa is that Πu (related to the nonlinear advective transfers
of surface KE) must be negative over most of the spectral range. These findings
emphasize the importance of small-scale frontogenesis in the surface KE budget (also
noted in Capet et al. 2008 and Klein et al. 2008).

5. Conclusion
We have revisited the spectral transfer properties of the SQG theory. Although

the velocity and density spectra at the surface are identical, their spectral budgets
differ. Surface density variance experiences a forward cascade as stated by Blumen
(1978) and confirmed by numerous subsequent studies. Surface KE on the other hand
experiences a clear and significant inverse cascade on a large range of scales, i.e. a
transfer through advection by the geostrophic flow from small to larger scales. This
apparent contradiction is explained by the presence in the surface KE budget of an
additional term associated with the ageostrophic component of the flow that acts as
a source term. Its main underlying physics is the restoration of the thermal wind
balance, which tends to be destroyed by the frontogenesis processes near the surface.

In systems more complex than SQG, surface density and velocity spectra have also
been found to coincide remarkably, at least over a large part of the submesoscale and
mesoscale range as shown in the PE framework by Klein et al. (2008) (see figure 4a
that reproduces their spectra; their simulations are for a baroclinically unstable quasi-
equilibrated jet in a periodic channel). But again the similarity of these surface spectra
does not imply a similarity of their respective advective fluxes. In fact, and as found
in SQG, surface density variance is fluxed downscale, whereas KE is fluxed upscale
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Figure 4. (a) Surface velocity spectrum (red curve) and density spectrum normalized by
[g/(Nρ0)]

2 (green curve) estimated from a high-resolution PE simulation (from Klein et al.
2008). k = 10 corresponds to a wavelength of 300 km. (b) Surface kinetic energy transfer
functions (from Klein et al. 2008): Πu calculated directly from the total (divergent plus
non-divergent components) velocities u and v (thick solid curve); Πu calculated from the
non-divergent (geostrophic) velocities (thin solid curve); Πa (dashed curve). The dashed-dot
curve corresponds to the tendency and the dotted curve to the mixing terms contribution.

over a wide central part of the wavenumber range (figure 4b). The KE advective
flux is compensated by an ageostrophic term whose expression is similar to Πa . The
main difference with our SQG results is that nonlinear interactions involve advection
of geostrophic quantities by both the geostrophic and ageostrophic velocities. As
a result, both Πa and Πu give a net contribution to the surface KE budget for
PE solutions since they are non-zero for the lowest wavenumbers. These results
corroborate previous evidence of a strong impact of the ageostrophic circulation on
near-surface KE spectral transfers (Capet et al. 2008; Klein et al. 2008).

Overall the comparison between SQG and PE energy transfers suggests SQG as
a pertinent framework to understand the inverse KE cascade found by Scott &
Wang (2005) using altimetry data. A rapidly growing body of numerical (Lapeyre
& Klein 2006; Klein et al. 2008) and observational (LaCasce & Mahadevan 2006;
Isern-Fontanet et al. 2006; Le Traon et al. 2007) evidence indicates that the ocean
sea level often does significantly reflect surface modes (as opposed to primarily the
interior first baroclinic and barotropic modes, Scott & Arbic 2007) even for scales
above the deformation radius.

One weakness of SQG is that it exhibits a downscale surface KE flux for high
wavenumbers that is weak and resolution-dependent (it is basically confined to
the dissipation range). On the other hand, high-resolution PE (Capet et al. 2008)
or Boussinesq (Molemaker, McWilliams & Capet 2008) solutions produce robust
downscale surface KE within the small-scale range (<20–30 km). This discrepancy
can be traced to momentum advection by the ageostrophic flow as shown in figure
4(b), where it can be seen that the advective KE flux associated with the total flow is
always greater than that associated with its geostrophic component (see also Capet
et al. 2008). Molemaker et al. (2008) further relate the non-QG effects to ageostrophic
frontal instabilities at submesoscale. This downscale flux of KE at submesoscale
inadequately reproduced within the QG approximations may play an essential role in
the dissipation of oceanic energy.
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