Dynamique de la troposphère

Vorticité potentielle et instabilité barocline

(supposé connus: notions sur la conservation de la vorticité barotrope ou quasi-géostrophique, modèle simple de l'instabilité barocline (Eady / Phillips))

documents recommandés:

- Hoskins, McIntyre & Robertson, 1985, On the use and significance of isentropic potential vorticity maps, *Quart. J. Met. Soc.*, **111**, 877-946

La vorticité potentielle d'Ertel

On commence par écrire l'équation complète de la vorticité

$$\frac{\partial}{\partial t}\vec{\zeta}_{a} + \vec{\nabla} \times (\vec{\zeta}_{a} \times \vec{u}) = \frac{1}{\rho^{2}}\vec{\nabla}\rho \times \vec{\nabla}p + \vec{\nabla} \times \vec{F}$$

où $\vec{\zeta}_a = \vec{\nabla} \times \vec{u} + 2 \vec{\Omega}$ est la vorticité absolue.

Le deuxième terme à gauche contient l'advection et l'étirement de la vorticité. Le premier terme à droite est le terme barocline et le second décrit les forces internes; il contient notamment la viscosité.

On considère maintenant θ , une fonction thermodynamique dépendant seulement de ρ et p, ce qui implique $\vec{\nabla} \theta \cdot (\vec{\nabla} \rho \times \vec{\nabla} p) = 0$. Autrement dit, on peut par le produit avec $\vec{\nabla} \theta$ faire disparaître le terme barocline de l'équation de la vorticité. Par définition de $D\theta/Dt$, on a

$$\frac{\partial}{\partial t}\vec{\nabla}\theta \equiv \vec{\nabla}\frac{D\theta}{Dt} - \vec{\nabla}(\vec{u}\cdot\vec{\nabla}\theta)$$

En combinant les équations de la vorticité et du gradient de θ , on obtient

$$\frac{\partial}{\partial t}(\vec{\zeta}_{a}\cdot\vec{\nabla}\theta) + \vec{\nabla}\theta\cdot\vec{\nabla}\times(\vec{\zeta}_{a}\times\vec{u}) + \vec{\zeta}_{a}\cdot\vec{\nabla}(\vec{u}\,\vec{\nabla}\theta) - \vec{\zeta}_{a}\cdot\vec{\nabla}\frac{D\theta}{Dt} - \vec{\nabla}\theta\cdot\vec{\nabla}\times\vec{F} = 0$$

$$\frac{\partial}{\partial t}(\vec{\zeta}_{a}\cdot\vec{\nabla}\theta)+\vec{\nabla}\theta\cdot\vec{\nabla}\times(\vec{\zeta}_{a}\times\vec{u})+\vec{\zeta}_{a}\cdot\vec{\nabla}(\vec{u}\,\vec{\nabla}\,\theta)-\vec{\zeta}_{a}\cdot\vec{\nabla}\frac{D\theta}{Dt}-\vec{\nabla}\theta\cdot\vec{\nabla}\times\vec{F}=0$$
On utilise maintenant l'ident \vec{W} é $(\vec{A}\times\vec{B})\equiv\vec{\nabla}\times\vec{A}\cdot\vec{B}-\vec{\nabla}\times\vec{B}\cdot\vec{A}$,
avec $\vec{A}=\vec{\nabla}\theta$ et $\vec{B}=\vec{\zeta}_{a}\times\vec{u}$, d'où
 $\vec{\nabla}\theta\cdot\vec{\nabla}\times(\vec{\zeta}_{a}\times\vec{u})=\vec{\nabla}\cdot(\vec{\nabla}\theta\times(\vec{u}\times\vec{\zeta}_{a}))=\vec{\nabla}\cdot((\vec{\nabla}\theta\cdot\vec{\zeta}_{a})\vec{u})-\vec{\zeta}_{a}\cdot\vec{\nabla}(\vec{\nabla}\theta\cdot\vec{u}))$
En utilisant cette relation, on obtient
 $\frac{\partial}{\partial t}(\vec{\zeta}_{a}\cdot\vec{\nabla}\theta)+\vec{\nabla}\cdot((\vec{\zeta}_{a}\cdot\nabla\theta)\vec{u})-\vec{\zeta}_{a}\cdot\vec{\nabla}\frac{D\theta}{Dt}-\vec{\nabla}\theta\cdot\vec{\nabla}\times\vec{F}=0$
soit $\frac{D}{Dt}(\vec{\zeta}\cdot\vec{\nabla}\theta)+(\vec{\zeta}_{a}\cdot\vec{\nabla}\theta)\vec{\nabla}\cdot\vec{u}=\vec{\zeta}_{a}\cdot\vec{\nabla}\frac{D\theta}{Dt}+\vec{\nabla}\theta\cdot\vec{\nabla}\times\vec{F}$
En utilisant l'équation de continu $\frac{D\theta}{Dt}+\rho\vec{\nabla}\cdot\vec{u}=0$, on obtient finaleme
 $\frac{D}{Dt}\left(\frac{\vec{\zeta}_{a}\cdot\vec{\nabla}\theta}{\rho}\right)=\frac{1}{\rho}\vec{\zeta}_{a}\cdot\vec{\nabla}\frac{D\theta}{Dt}+\frac{1}{\rho}\vec{\nabla}\theta\cdot\vec{\nabla}\times\vec{F}$
La quantité $P=\frac{\vec{\zeta}_{a}\cdot\vec{\nabla}\theta}{\rho}$ constitue la vorticité potentielle d'Ertel.
Elle est conservée pour chaque particule du fluide dans les condit
adiabatiques $(\theta/Dt=0)$ et inviscides \vec{t} (=0).

$$1 \text{ PVU} = 10^{-6} \text{ K kg}^{-1} \text{ m}^2 \text{ s}^{-1}$$

Importance of Static Stability at the Tropopause

Copyright Federation Francaise de Parachutisme (1999)

La vorticité potentielle comme traceur conservatif

Appenzeller, Davies & Norton, 1996, JGR, D101(1), 1435-1456

Canal vapeur d'eau de Meteosat

Figure 8. Satellite radiance images (compare Figure 3) at 12-hour intervals from 0000 UT, May 13, 1992 (compare panels for the same time periods as in Figure 7 and Plate 2).

Reconstruction de la vorticité potentielle par advection de contours à 320K

Dynamic Tropopause at 2PV units

Effet d'une anomalie de vorticité potentielle (PV) axisymétrique localisée à la tropopause. 100 En haut: anomalie positive mb En bas: anomalie négative 200 300 400 8 500 Stabilité augmentée 600 froid Cyclone 700 800 900 1000 0 froid 100 mb 200 Stabilité réduite 300 400 A l'intérieur des des zones chaud 500 colorées: anomalie de PV. A 600 Anticyclone 700 l'extérieur anomalie PV=0 800 Lignes de température potentielle 900 1000 avec intervalle de 5K. C Contours du vent azimuthal

9

PV +

PV -

Flow "Induced" by an IPV Anomaly (Cyclonic)

Hoskins, McIntyre and Robertson (1985) Fig. 9a. θ in K, PV in PV units

Cut-off Lows and Blocking Highs

IPV on 330K for consecutive days. 1-2PVU filled in black

> **ADVECTION OF** LOW IPV

IPV A BETTER WAY OF DEFINING "CUT-OFF" THAN 500hPa HEIGHT

CUT-OFF LOWS AND BLOCKING HIGHS HAVE SIMILAR (OPPOSITE) STRUCTURES

CONVECTIVE HEATING DAMPS **CYCLONE FASTER THAN RADIATIVE COOLING DAMPS** ANTICYCLONE

PV diagnostics, Met.TC, MJ Kouwen, 15 May 2004

Hoskins, McIntyre and Robertson (1985) Fig. 11

CUT-OFF LOW BLOCKING HIGH

Ondes de Rossby dans un gradient de PV

Effet d'une anomalie de température au sol. En haut: anomalie chaude, anomalie de PV positive En bas: anomalie froide, anomalie de PV négative

A l'intérieur des des zones colorées: anomalie de PV. A l'extérieur anomalie PV=0 Lignes de température potentielle avec intervalle de 5K. Contours du vent azimuthal

Développement d'une pertubation cyclonique dans l'Atlantique nord. Images IR satellites et pression au niveau de la mer

5/2/1997 1200UTC

Structure à 850 hPa: température potentielle (contours) et vorticité relative

Structure à la tropopause: hauteur de la surface PV=1,5 PVU et vecteur vent pour v > 40 m/s

Développement du cyclone dans un référentiel centré sur le noyau de basse couche.

Vorticité relative à 850 hPa (trait épais), vorticité à la tropopause (tarit fin) et vent à la tropopause.

Vorticité potentielle (PV)

• La pénétration verticale, la magnitude et la vitesse de phase de l'écoulement induit par une anomalie de PV croît avec son échelle horizontale.

• Les anomalies chaudes de surface peuvent conduire à de large valeurs de $\left(\frac{\partial p}{\partial \theta}\right)$ et donc de la PV $-g\zeta_{\theta}(\partial \theta/\partial p)$ à la surface.

Cette PV "induit" un écoulement (analogie avec le champ électrique crée par une charge)).

• Les écoulements "induits" par 2 (ou plus) anomalies de PV peuvent être approximativement superposées..

• Les écoulements induits (par les anomalies de surface ou internes) permettent la propagation des ondes de Rossby. UPPER-LEVEL +PV ADVECTED OVER A LOW-LEVEL BAROCLINIC REGION CAN LEAD TO MUTUAL AMPLIFICATION. MOIST PROCESSES COULD ENHANCE THE SURFACE DEVELOPMENT

Slide 17

Hoskins, McIntyre and Robertson (1985) Fig. 21

Schéma du développement d'un cyclone

Jet barocline non perturbé

Action d'une perturbation cyclonique (noyau de PV) à la tropopause.

> Mouvements adiabatiques: vers le sud et descendant vers le nord et montant

Action d'une perturbation cyclonique (noyau de PV ou zone zone chaude) dans les basses couches.

Modèle conceptuel de l'amplification mutuelle

Cartes du géopotentiel au sol et en altitude pendant le développement d'une instabilité barocline

PV diagnostics Mot TC M L P		· · · · · · · · · · · · · · · · · · ·			
Wernli et al. (2002) Fig. 7b	θ [K]	280	290	300	310

Propagation verticale ou latérale d'une onde

Croissance d'un mode barotrope ou barocline couplant deux ondes dans des gradients oppsés de PV

- L'instabilité requiert
- Gradients de PV de signes opposés
- Inclinaison vers l'ouest
- $\cdot U_{s} > c > U_{i}$

y or z

 $2 \partial^2 \psi$

$$\frac{\overline{Dt}}{\partial z} \left[\nabla^2 \psi + \mu \frac{\partial \psi}{\partial z^2} + \beta y \right] = 0$$
$$\frac{\partial \psi}{\partial z} = 0 \quad \text{en} \quad z = z_{0,} z_4$$

Equations sur les niveaux 1 et 3

 $\left(\frac{\partial}{\partial t} + \nabla \psi_1 \cdot \nabla \right) \left(\nabla^2 \psi_1 + \beta y + S (\psi_3 - \psi_1) \right) = 0$ $\left(\frac{\partial}{\partial t} + \nabla \psi_3 \cdot \nabla \right) \left(\nabla^2 \psi_3 + \beta y + S (\psi_1 - \psi_3) \right) = 0$ avec $S = \frac{\mu^2}{4\mu^2}$ Etat de base U_1 , U_3 , $\Psi_1 = -U_1 y$, $\Psi_3 = -U_3 y$ Etat perturbé $\psi_1 = \Psi_1 + \psi_1'$, $\psi_3 = \Psi_3 + \psi_3'$ **Equations linéarisées** $O = \left(\frac{\partial}{\partial t} + U_1 \frac{\partial}{\partial x}\right) \left(\nabla^2 \psi_1' + S(\psi_3' - \psi_1')\right) + \frac{\partial \psi_1'}{\partial x} S(U_1 - U_3) + \beta \frac{\partial \psi_1'}{\partial x}$ $O = \left(\frac{\partial}{\partial t} + U_3 \frac{\partial}{\partial x}\right) \left(\nabla^2 \psi_3' + S(\psi_1' - \psi_3')\right) + \frac{\partial \psi_3'}{\partial x} S(U_3 - U_1) + \beta \frac{\partial \psi_3'}{\partial x}$

Modèle simplifié en couches de Phillips (2)

Equations linéarisées

$$0 = \left(\frac{\partial}{\partial t} + U_{1}\frac{\partial}{\partial x}\right) \left(\nabla^{2}\psi_{1}' + S(\psi_{3}' - \psi_{1}')\right) + \frac{\partial\psi_{1}'}{\partial x} S(U_{1} - U_{3}) + \beta \frac{\partial\psi_{1}'}{\partial x}$$

$$0 = \left(\frac{\partial}{\partial t} + U_{3}\frac{\partial}{\partial x}\right) \left(\nabla^{2}\psi_{3}' + S(\psi_{1}' - \psi_{3}')\right) + \frac{\partial\psi_{3}'}{\partial x} S(U_{3} - U_{1}) + \beta \frac{\partial\psi_{3}'}{\partial x}$$
On pose $\psi_{m} = \frac{1}{2}(\psi_{1}' + \psi_{3}')$, $\psi_{T} = \frac{1}{2}(\psi_{3}' - \psi_{1}')$, $U_{m} = \frac{1}{2}(U_{1} + U_{3})$, $U_{T} = \frac{1}{2}(U_{3} - U_{1})$
d'où
$$0 = \left(\frac{\partial}{\partial t} + U_{m}\frac{\partial}{\partial x}\right) \nabla^{2}\psi_{m} + \beta \frac{\partial\psi_{m}}{\partial x} + U_{T}\frac{\partial\nabla^{2}\psi_{T}}{\partial x}$$

$$0 = \left(\frac{\partial}{\partial t} + U_{m}\frac{\partial}{\partial x}\right) (\nabla^{2}\psi_{T} - 2S\psi_{T}) + \beta \frac{\partial\psi_{T}}{\partial x} + U_{T}\frac{\partial}{\partial x} (\nabla^{2}\psi_{m} + 2S\psi_{m})$$
On adopte $\psi_{m} = A e^{ik(x-ct)} \cos l y$ et $\psi_{T} = B e^{ik(x-ct)} \cos l y$ avec $K^{2} = k^{2} + l^{2}$
Ainsi $ik \left((c - U_{m})K^{2} + \beta\right) A - ik K^{2} U_{T} B = 0$

$$-ik U_{T} (K^{2} - 2S) A + ik \left((c - U_{m})(K^{2} + 2S) + \beta\right) B = 0$$

L'équation caractéristique est

$$(c - U_m)^2 (K^4 + 2SK^2) + 2\beta (K^2 + S)(c - U_m) + \beta^2 + U_T^2 (2S - K^2) = 0$$

Relation de dispersion $c = U_m + \frac{\beta (K^2 + S)}{K^2 (K^2 + 2S)} \pm \delta$
avec $\delta^2 = \frac{\beta^2 S^2}{K^4 (K^2 + 2S)^2} - U_T^2 \frac{2S - K^2}{K^2 + 2S}$

27

Modèle simplifié en couches de Phillips (3)

Relation de dispersion
$$c = U_m + \frac{\beta(K^2 + S)}{K^2(K^2 + 2S)} \pm \delta$$

avec $\delta^2 = \frac{\beta^2 S^2}{K^4(K^2 + 2S)^2} - U_T^2 \frac{2S - K^2}{K^2 + 2S}$
a) $U_T = 0$, dans ce cas c est réel (propagation pure) avec deux valeurs possibles
 $c_1 = U_m - \frac{\beta}{K^2}$ (mode externe) et $c_2 = U_m - \frac{\beta}{K^2 + 2S}$ (mode interne)
b) $\beta = 0$, dans ce cas $c = U_m \pm U_T \left(\frac{K^2 - 2S}{K^2 + 2S}\right)^{1/2}$
Il y a instabilité pour $K < \sqrt{2S}$
c) cas général, le seuil d'instabilité $\delta = 0$ est alors donné par

$$\frac{K^4}{2S^2} = 1 \pm \left(1 - \frac{\beta^2}{4S^2U_T^2}\right)$$

 β a un effet stabilisateur

Avec
$$U_T = 4 \text{ m s}^{-1}$$

entre 750 et 250 hPa.
Mode le plus instable:
 $K = 1/4000 \text{ km}$

Modèle simplifié en couches de Phillips (4)

La vorticité de l'écoulement de base est

$$Q_{3} = \beta y + S y(U_{3} - U_{1})$$

$$Q_{1} = \beta y + S y(U_{1} - U_{3})$$

sachant que $U_1 < U_3$, la condition nécessaire d'instabilité sur les gradients de vorticité potentielle est

$$\frac{\partial Q_1}{\partial y} < 0 < \frac{\partial Q_3}{\partial y}$$
c'est à dire $S(U_1 - U_3) < -\beta < S(U_3 - U_1)$
ce qui se traduit par $\frac{2SU_T}{\beta} > 1$
permettant de retrouver le critère d'instabilité établi
dans les vues précédentes.
Ici le gradient est purement dû à la vorticité planétation

Ici le gradient est purement dû à la vorticité planétaire et à la structure thermique, le vent étant uniforme sur chaque niveau.

Température en trait plein, géopotentiel en tiretés, vecteur Q: voir leçon suivante

Formation de fronts associés au développement d'un cyclone

<u>T(C) 5 15 25 -55 -25 5 35</u>

1 LAND/SEA TEMPS & CLOUDS - 12 NOV 08 06:00 UTC - (SSEC:UW-MADI<mark>&CINAS</mark>

CLOUD TOP

12/11/08 01h00 légales

Température, humidité et Lignes de courant et vent 36 vent à 850 HPa CAPE et eau précipitable