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The two-dimensional erosion of a vortex subjected to an external, adverse shear is
studied experimentally. The flow takes place in a thin stratified layer ; the vortex is
produced by electromagnetic forcing, whereas the shear is driven mechanically. The
system thus allows the vortex strength and the external shear to be controlled
independently. We observe the so-called ‘erosion’ process, i.e. the progressive decrease
of the vortex area, leaving the vortex core unaffected. This process is controlled by the
ratio γ¯S}ω

max
, where ω

max
and S are respectively the maximum vorticity of the

vortex and the external shear. At small γ, the erosion is weak and the vortex survives
over the duration of the experiment. At large γ, the vortex is first eroded, and then,
after a critical time, becomes stretched and eventually breaks up into filaments. During
the first period of time, the compensated maximum vorticity (with friction decay
removed) is constant and the vortex area decreases, while beyond the critical time, both
quantities decrease with time. A critical value for γ, defining the transition between
these two regimes, is determined experimentally : γ

c
¯ 0±051³0±017. The breaking

process itself, during which the vorticity of the vortex core decreases, is investigated.
All the qualitative aspects of the erosion process, the onset of breaking and the
breaking process itself are found to be in excellent agreement with the theoretical and
numerical description. The experimental value of γ

c
and the properties of the

filamentation process are consistent with the numerical estimates.

1. Introduction

The deformation of two-dimensional vortices under the action of an external
velocity field caused by other vortices or a large-scale flow plays a crucial role in two-
dimensional turbulence and geophysical fluid dynamics. It is found empirically that
either such vortices are elongated and then return to their initial shape or they undergo
irreversible deformations, leading to the generation of vorticity filaments expelled from
the vortex into the background field. Filamentation accompanies total or partial
merging of two vortices, a phenomenon which has received considerable attention in
the literature, but is mostly observed in the absence of merging under the action of a
large-scale strain. The importance of these phenomenon in the middle atmosphere is
well illustrated in Waugh et al. (1994). As an idealized case of maximum simplification,
the dynamics of an isolated patch of uniform vorticity submitted to a strain was first
studied by Moore & Saffman (1971) and Kida (1981). Kida showed that, in the
presence of an external shear, an elliptical patch can be stationary if the shear is not
too large. In particular, Kida derived an exact solution of the problem, in the form of
an elliptical vorticity patch undergoing regular oscillations. Later, Dritschel (1990)
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2 O. Paireau, P. Tabeling and B. Legras

showed that some of these solutions are unstable to perturbations developing on the
boundary of the vortex.

Recently, Legras & Dritschel (1993, 1994) studied the behaviour of an initially
axisymmetric distributed vortex subjected to an external adverse shear, i.e. one which
opposes the rotation of the vortex. They showed that, unlike the uniform patch,
stripping develops as a direct response to the shear and not as a linear instability.
Stripping erodes the external vorticity layers which are expelled as filaments while the
interior layers retain quasi-elliptical shapes. A particularly interesting result is that
vortex breaking is controlled by a critical value γ

c
of the ratio between the shear and

the maximum vorticity, practically independently of the vorticity profile of the vortex,
provided that it is smooth, and of the Reynolds number of the flow. In a more general
deformation field (pure shear corresponds to the particular case in which strain equals
rotation), the critical value depends on an additional parameter – the ratio between
rotation and strain. The influence of viscosity was studied by Mariotti, Legras &
Dritschel (1994), in the case of pure shear ; they showed that diffusion first induces a
continuous, slow erosion of the vortex, and then, after some critical time, the vortex
becomes stretched and eventually breaks up. In this problem, the role of viscosity is
thus somehow counter-intuitive since it favours the break-up of the vortex. An
interesting property found by Mariotti et al. (1994) is that the critical value γ

c
for the

onset of vortex break-up is almost independent of viscosity, provided that the
Reynolds number is large enough. All these results are based on numerical and
analytical calculations but in the literature there is no experimental study of the effect
of shear on an isolated vortex, despite its importance in two-dimensional flows. Let us
mention here the experiments of Trieling (1996) which address the problem of two-
dimensional vortices in a strain flow. This situation contrasts with numerous studies on
merging and dipole collisions (e.g. Griffiths & Hopfinger 1986; van Heijst & Flor 1989;
Voropayev & Afanasyev 1991).

In this paper, we report an experimental study of a vortex subjected to an adverse
shear flow in which we perform a qualitative and quantitative comparison between
experiment and theory. The design of this experiment is such that the flow develops in
a quasi-two-dimensional configuration, and that we independently control the vortex
strength and the external shear. The paper is organized as follows: §2 presents the
experimental set-up; §3 describes the experimental observations; and §4 compares
them with numerical predictions, offers some discussion and proposes a conclusion.

2. Experimental set-up

2.1. Description of the experiment

The experimental system is schematically represented in figure 1. The cell is 40 cm long,
25 cm wide and 5 cm high, and it is filled with two layers of salty water, 6 mm thick
for the lower layer and 2 mm for the upper layer. The concentration of the lower layer
is twice that of the upper layer. The flow thus takes place in a stably stratified fluid. The
stratification tends to inhibit the vertical motions and thus to reduce the three-
dimensional effects, in particular within the upper layer. To produce the external shear
flow, we use two co-rotating disks, 15 cm in diameter and 5±5 mm thick, driven by DC
motors, and immersed in the lower layer. This configuration minimizes the mixing of
the two layers (if both layers were driven together, Ekman pumping would tend to mix
them). As the upper and lower layers are coupled, the shear created occurs in both
layers. The distance d between the disks is 4 cm. In such a geometry, the streamlines
of the external velocity field are almost parallel in the region between the disks. The
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A �ortex subjected to shear 3

I

1 2
3

4

ΩΩ

F 1. Schematic representation of the experimental system. 1: Two layers of salty water
(thickness : 6 and 2 mm). The density of the lower and upper layers are respectively equal to
1±155 kg l−" and 1±072 kg l−". 2 : Permanent magnets. 3 : Co-rotating disks. 4 : Electrodes.

vortex is produced in this region by electromagnetic forcing, using a method which has
been described in several references (e.g. Tabeling et al. 1991; Dolzhanskii, Krymov &
Manin 1992). In our case, an electric current is driven horizontally from one side of the
cell to the other (figure 1), with typical intensity I¯ 1±5 A. Permanent magnets are
located just below the fluid, each of them producing a magnetic field of maximum
intensity 0±32 T. The interaction of the magnetic field with the electric current produces
a Lorentz force defined by F¯h¬B, where j is the current density and B is the
magnetic field. In the case of a suddenly applied current (which corresponds to our
experimental situation), the short-time response of the flow is governed by

¥ω
¥t

¯ curl ( j¬B), (2.1)

where ω is the vorticity. For a horizontal homogeneous current density j, the vertical
vorticity ω

z
is thus

ω
z
E j

¥B
z

¥x
t, (2.2)

where the direction x is that of the electric current. In other words, the vertical vorticity
is proportional to the gradient of the vertical magnetic field along the electric current.
In the experimental set-up, we use a line of permanent magnets, located just below the
cell, to produce a single vortex. This line is divided into two halves with opposite
polarization. In each half-line, all the magnets have their north pole in the same
direction. We shall characterize below, in some detail, the structure of this vortex. The
upper layer flow is visualized by floating latex particles of 10 µm size. Images of the
flow are taken from a video camera located above the experimental cell, and recorded
on a U-matic video tape recorder. During the recording, an audio signal is generated
by the computer and recorded on the sound channel of the video tape recorder, so as
to identify each frame of the video signal. In a second step, the video frames are
digitized and stored on a magneto-optical disk. The calculations are performed on a
Macintosh IIfx computer, assisted by a double Digital Signal Processor board
DSP32C. The method of velocity retrieval (Cardoso, Marteau & Tabeling 1994)
consists in discretizing the surface flow on a square grid, usually with 40¬40 points,
and in computing for each node an average velocity within a box of l¬l pixels centred
on the node. This is obtained by calculating the spatial correlation of two images of the
cell separated by a time interval δt. The position of maximum correlation provides the
local displacement of the particles, giving an average velocity with a spatial resolution
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4 O. Paireau, P. Tabeling and B. Legras

of the size of the cell. The choice of the size l – typically l¯ 32 pixels of the elementary
box – is guided by the following considerations.

(a) l is much smaller than a typical scale of variation of the flow.
(b) Each box contains several particles, so as to take advantage of statistical

averaging. In practice, five particles per box is a minimal value.
(c) Most of the particles stay within the box during the time interval δt. This

introduces some limitations on the largest measurable velocity.
The choice of δt also requires some care: for a given box size, it must satisfy

condition (c), and must be such that the displacement of the particles is measurable. We
took δt¯ 0±04 s. Even when all the above criteria are met, we may obtain, in some cells,
aberrant data (typically one per thousand). To check the validity of the measurement,
we compute a local divergence of the velocity field by finite difference around every
suspicious point. When this value exceeds some threshold, we replace the computed
velocity by a local average of the neighbouring values.

The calculation of the vorticity field is then done by polynomial interpolation within
a moving window followed by numerical differentiation. The accuracy of the
measurement of the velocity field can be estimated to a few percent, and that of the
vorticity to about 10%. Also, an estimation of the divergence yields that of the vertical
motions, i.e. the three-dimensional effects, by continuity. It turns out that the
divergence is less than 10% of the maximum vorticity in all experiments. This indicates
that the vertical velocity is much weaker than the horizontal motion.

The determination of the experimental protocol is an important issue. In all the
experiments, we use the following procedure in sequence:

(i) the disks are rotated at constant speed until the flow is fully established (this takes
a few minutes) ;

(ii) an electric current I is imposed for a prescribed short period of time τ ;
(iii) the current is quenched at a time which is subsequently taken as the origin

t¯ 0;
(iv) the decay process is recorded; vortex erosion is studied during this phase (which

takes typically 20 s).
Throughout phases (ii)–(iv) the disks are maintained at constant speed. The

procedure (i)–(iv) is justified for two reasons: first, the time constant involved in the
establishment of the shear flow turns out to be large compared to the duration of the
experiment (a few minutes compared to 20 s) ; therefore, in order to keep the shear as
steady as possible, the rotation of the disks is maintained constant. Secondly, it is
preferable to investigate the phenomenon in the absence of body forces for the sake of
comparison between theory and experiment; this condition imposes the quenching of
the current and the restriction on the decay period.

Owing to the presence of friction at the bottom, the vorticity of the vortex decreases
during the decay phase, while the shear remains fixed. Therefore we need to correct for
this effect when we calculate the ratio between the maximum vorticity in the vortex core
and the shear, which is an important parameter of the system. We shall return to this
question below.

The two-dimensionality of the flow is also an important issue. We have checked, by
studying elementary and well-documented situations (dipole propagation, merging of
like-signed vortices, dipole collision, dipole propagating against a wall), that the
behaviour of the system is similar to that of two-dimensional flow. We recently
performed detailed velocity measurements simultaneously in the inner layer and on the
free surface, for a decaying vortex and a propagating dipole (Paret et al. 1996) ; these
experiments allow the flow structure within the layer to be analysed. We found that
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A �ortex subjected to shear 5
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F 2. Typical vorticity profile of a vortex created in the absence of an external flow. This radial
profile integrated on a circle is taken at t¯ 0. A Gaussian curve fitting the profile of the vortex is
plotted.

after a transient regime (1–2 s), momentum is transferred throughout the fluid layer.
Beyond this regime, the flow occurs both in the lower and upper layers. The relaxation
of the three-dimensional effects is due to the presence of stratification. Moreover,
Ju$ ttner et al. (1997) have done a quantitative comparison between direct numerical
simulation of two-dimensional Navier–Stokes equations and experiments for the
particular problem of free turbulent decay. A good agreement is found between two-
dimensional direct numerical simulation and the experiment. These results support the
conclusion that the flow can be considered as two-dimensional in the experiment.

2.2. Characterization of the single �ortex (without an external shear)

Figure 2 shows the vorticity profile of the single vortex generated according to the
experimental procedure described above. The profile is produced without an external
shear by imposing an electric current I¯ 1±5 A for a duration τ¯ 1±5 s. We have used
the same excitation parameters throughout all the experiments. The profile is shown at
t¯ 0. The maximum vorticity ω

max
at the vortex core is 3±8 s−", and the radius –

determined by considering the contour where the velocity is maximum – is r¯ 1±2 cm.
This corresponds to a vorticity level ω¯ 0±3ω

max
. One also sees a ring of weak negative

vorticity around the vortex. The amplitude of the negative ring corresponds to 4% of
the positive vorticity part and we assume that it can be neglected. The Reynolds
number can be defined as Re¯ω

!
r#}ν, where ν is the kinematic viscosity and ω

!
¯

ω
max

(t¯ 0). We find a value of Re of about 600. In the absence of shear, the structure
and the size of the vortex remain constant during the decay phase while the energy and
the maximum vorticity decrease exponentially with time. The evolution of the
maximum vorticity is shown in figure 3. The exponential decrease is characterized by
a time constant of 20 s; this value is consistent with the estimate 4b#}π#ν (giving 25 s),
which is obtained by decomposing the velocity profile, within the fluid layer, into
Fourier series, resolving the Stokes equation, and tracking the evolution of the
dominant Fourier mode. A convenient way to correct for the effect of the bottom
friction is to plot the maximum ω$

max
of the compensated vorticity defined as

ω*(x, t)¯ (ω(x, t)}ω
!
) exp (t}τν). (2.3)
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6 O. Paireau, P. Tabeling and B. Legras

0.1

1

10

0 5 10 15 20 25

t (s)

ωmax ω*
max

2.0

1.5

1.0

0.5

0

F 3. Maximum of vorticity ω
max

(circles) and compensated maximum of vorticity ω$
max

(t)¯
(ω

max
}ω

!
) exp (t}τν) (diamonds), as a function of time, for a single vortex, without external shear.

–2

–1

1

2

–1 0 1 2

x (cm)

y (cm) 0

F 4. Streamlines of the external shear in the region between the two disks where the vortex is
localized. The horizontal directions of the external shear x and y are respectively perpendicular and
parallel to the axis joining the centres of the disks. The extremal streamfunctions ψ are: ψ

min
¯

®0±30 cm# s−" and ψ
max

¯ 0±35 cm# s−".

Figure 3 shows that ω$
max

is indeed constant during the decay phase. The advantage of
considering the compensated vorticity rather than the actual one is that it is easier to
identify situations where the maximum vorticity decreases at a rate larger than due to
viscosity alone.

2.3. Characterization of the shear flow

The streamlines of the flow produced in the upper layer by the two rotating disks are
shown on figure 4. This pattern is obtained 7 min after the onset of rotation. Just after
the onset, there are large velocity gradients close to the disks, and no flow in the central
region. Then gradients are reduced and the flow is established between the disks, over
a period of a few minutes, under the action of diffusion. The shear is stable for rotation
rates smaller than 70 mHz. At larger rotation speeds, instabilities become visible after
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A �ortex subjected to shear 7

–0.4

–0.2

0.2

0.4

–1 0 1 2

y (cm)

V
 (

cm
 s

–1
)

0

〈Vx〉

〈Vy〉

–2

F 5. Profile of the imposed external velocity field. The two dashed lines represent the
corresponding limiting slopes. Error bars indicate the standard deviation for each point.

10 min. We presume that this is an inflexional instability, but we have not analysed it
in detail. We therefore can define a window within which the shear can be considered
as established and remaining stable. This window is, in the worst case between 6 and
10 min. We shall see that this period of time is comfortably larger than the duration
of an experiment. This suggests that there is no coupling between the phenomenon we
study and the modes of instability of the shear. We have used, throughout the
experiment, the same conditions for the establishment of the shear : the vortex is
produced 7 min after the onset of the rotation. The limited size of the window in the
time domain must be viewed as a significant experimental constraint.

The average profiles of the two components of the velocity field are shown on figure
5, along an axis joining the centres of the disks, again 7 min after the onset of rotation.
The average is taken over a period of 18 s across the region where the vortex is
generated. As expected from the symmetry of the device, the velocity V

y
parallel to the

axis is negligible within the accuracy of the measurements. This property holds in a
region several cm wide between the disks. As shown by the error bars corresponding
to one standard deviation, the perpendicular velocity is estimated with a good
accuracy. It vanishes at the centre of the interval where it exhibits an inflexion point.
The local strain s¯ "

#
δV

x
}δy varies significantly within the interval. The value in the

central region s
"
¯ 0±045 s−", taken between y¯®1±2 cm and y¯ 1±2 cm, is shown as

the initially lower of the two dashed lines on figure 5. The initially upper dashed line
is drawn between the two extreme points of the curve at y¯³1±8 cm located where the
vorticity equals zero (see figure 2). The corresponding strain is s

#
¯ 0±09 s−". The mean

strain S¯ 0±07 s−" is defined by taking the average of the two estimates s
"

and s
#
.

The experimental design allows one to work with cooperative or adverse shears (i.e.
with vorticity of the same or opposite sign to the vortex). In the case of a cooperative
shear, we observe that the vortex remains essentially unaffected by the shear, which is
not surprising according to the theoretical studies of Kida (1981) and Dritschel (1989).
The cooperative shear is expected to produce a less dramatic effect on the vortex since
equilibria exist for vorticity patches for any value of the strain. We thus focus in this
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8 O. Paireau, P. Tabeling and B. Legras

paper on the adverse case which displays more interesting dynamics. All the
experiments presented here have been performed for the case of adverse shear.

2.4. Definition of the control parameters of the experiment

At any given time, an isolated vortex subjected to an external shear S is characterized
by its maximum vorticity ω

max
, the ratio γ¯S}ω

max
and the Reynolds number Re. In

our experiment, ω
max

, γ, and Re are varying parameters, since the vortex decays with
time owing to the friction of the fluid against the bottom wall, as explained in §2.2. In
order to measure the effect of the external shear, and to isolate it from friction effects,
we use the compensated maximum vorticity defined by (2.3). Applying the same
normalization, we define a compensated strain-to-vorticity ratio γ# ¯ (S}ω

!
) exp (t}τν)

and a compensated Reynolds number R ne¯ (ω
!
r#}ν) exp (®t}τν) with τν ¯ 20 s. In all

the experiments we have taken ω
!
¯ 4 s−". The compensated strain γ# increases by a

factor 3 from the beginning to the end of an experiment. Conversely, R ne decreases with
time but remains large (" 210) throughout the experiment.

Note that the eddy turnover time, which varies from about 0±8 s (π}ω
!
) at the initial

time to near 2±5 s at the end of the experiment, is small with respect to the viscous decay
time. Therefore, it will be appropriate to discuss and interpret our results at any time
as if γ# and R ne were constant. In fact, the variation of the control parameter through
the action of friction offers a convenient way to explore a substantial range of γ#
without complicating the analysis of the results, provided the quasi-stationarity
hypothesis is used.

3. Results for an isolated vortex subjected to an adverse shear flow

3.1. Results

Figure 6 shows the evolution of a vortex subjected to an adverse shear flow. The
vortex is visualized by fluorescein continuously injected in the core of the vortex, the
cell being illuminated from above with black light. The dye is vertically injected from
the bottom of the cell ; because we form a jet to inject the dye, a radial velocity
component appears and the streaklines are spiralling outwards (as seen on figure 6a).
This phenomenon is thus intrinsic to the visualization technique, not to the vortex. The
sequence of pictures illustrates a case where the evolution leads to total and fast break-
up of the vortex. At the end of the excitation period (t¯ 0, figure 6a), the vortex core
is roughly elliptic, but the exterior streaklines exhibit strong deformation. The second
and third pictures (figures 6b, 6c) show the vortex being strongly elongated under the
action of the shear and forming two arms expelled along the direction of the shear. In
the fourth picture (figure 6d ), the vortex is reduced to a thin patch which is rapidly torn
apart. It is striking to observe that the vortex preserves an almost constant orientation
during its breaking, which is at about 45° to the shear axis. During a fast decay this
situation can easily be interpreted using the elliptical theory of Kida (1981) : this
orientation corresponds to a vanishing effect of the shear on the rotation of the vortex
but to a maximum deformation effect. Therefore fast breaking during which the self-
rotation of the vortex is negligible locks the vortex along this preferred orientation.

When the external shear is varied, two successive stages of the evolution of the vortex
– erosion and breaking – emerge over the duration of our experiments. Figure 7 shows
plots of the compensated vorticity ω*(t) for different values of the shear and illustrates
these different stages of the evolution of the vortex. On figure 7(a–c), which is obtained
for S¯ 0±061 s−", the vortex is weakly affected throughout the duration T¯ 20 s of
the experiment; in particular the core of the vortex remains intact and ω$

max
remains
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A �ortex subjected to shear 9

(a) (b)

(c) (d )

F 6. Evolution of a vortex visualized by fluorescein in black light) subjected to an adverse shear
SE 0±140 s−". (a) t¯ 0, (b) t¯ 4±4 s, (c) t¯ 7±2 s, (d ) t¯ 8±4 s. The dye is vertically and continuously
injected during the experiment through a nozzle (1 mm) located on the bottom of the cell. The
injection starts at t¯®τ. Because we form a jet to inject the dye, the streaklines are spiralling.

close to 1. The number of eddy turnover times, given by (1}π) !T

!
ω
max

dt¯
(1}π)ω

!
τν(1®e−T/τν), is approximately 15. Unlike the casewithout shear, the vortex does

not retain its initial shape but is deformed and orientates itself perpendicularly to the
shear. Using the theory of an elliptical vortex in a shear flow (Kida 1981), we may con-
sider that this perpendicular orientation corresponds to a quasi-equilibrium position.
While the vortex core is only elongated as an oval, there is evidence of erosion
and expelling of the exterior layers of the vortex at the top and bottom of figures
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10 O. Paireau, P. Tabeling and B. Legras

(a) (b) (c)

(d ) (e) ( f )

(g) (h) (i)

F 7. Evolution of the compensated vorticity field for a series of experiments using different
shears. The size of the vorticity field is (4±5¬4 cm#). The arrows indicate the direction of the shear.
The grey-scale shows the vorticity levels (in s−"). (a–c) S¯ 0±06 s−" : (a) t¯ 0, (b) t¯ 5 s, (c) t¯ 16 s;
(d–f ) S¯ 0±155 s−" : (d ) t¯ 0, (e) t¯ 3 s, ( f ) t¯ 5 s; (g–i) S¯ 0±093 s−" : (g) t¯ 0, (h) t¯ 6 s,
(i) t¯ 18 s.

7(b) and 7(c). This erosion does not appear to significantly shorten the lifetime
of the vortex, which is similar to that observed under pure friction in the absence of
shear. Note that the ring of negative vorticity cannot be identified on figure 7(a®c).

In the presence of a strong shear (see figure 7d–f ), the erosion takes place only
during a short period of time after which the vortex rapidly deviates from its
equilibrium position and eventually breaks up (see figures 7 f ). The pictures of figure
7(d–f ), which are obtained for S¯ 0±155 s−", span the different stages of the breaking
process. The vortex is now immediately stretched and the compensated maximum
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A �ortex subjected to shear 11

0.4

1.2

0 5 10 15 20

t (s)

ω*
max

0.8

F 8. Evolution of the compensated maximum vorticity ω$
max

as a function of time for
several experiments. E, S¯ 0±061 s−" ; x, S¯ 0±093 s−" ; F, S¯ 0±129 s−" ; V, S¯ 0±135 s−" ;
¬, S¯ 0±155 s−".

vorticity decays much more rapidly than for the weak shear case. The orientation is no
longer perpendicular to the shear, the angle to the shear being 55° in figure 7( f ). Note
that the vortex is turned into a long thin patch of vorticity after 5 s, which corresponds
to only five eddy turnover times; this indicates that breaking is fast compared to the
erosion process.

For intermediate values of the shear, slow erosion and breaking are observed in
sequence during the experiment. Figure 7(g–i) shows the compensated vorticity maps
ω*(t) for a case where S¯ 0±093 s−". We first recover the behaviour associated with
the erosion process (figures 7a, b). The erosion takes place while the vortex remains
perpendicular to the shear. During the second stage (figure 7 i), the vortex changes its
orientation and is rapidly torn apart. The evolution of the vortex under the action of
the shear can thus be separated into two stages : the first corresponds to the
deformation and the peeling of the external layers of the vortex while the core is
preserved; the second corresponds to the stretching and breaking of the vortex
accompanied by the fast decrease of the maximum of vorticity.

Figure 8 shows the evolution of ω$
max

as a function of time, for five experiments :
those shown in figure 7 plus two other ones. As already noticed, ω$

max
remains almost

constant throughout the erosion, which means that the actual ratio γ is close to γ# . In
the cases of strong shear (S¯ 0±135 s−" and S¯ 0±155 s−"), ω$

max
decays rapidly from

its initial value as a consequence of the rapid stretching of the vortex. The parameter
γ# then strongly underestimates the actual ratio ‘ felt ’ by the vortex.

As shown in figure 8, for S¯ 0±093 and 0±129 s−", ω$
max

remains roughly constant for
a period of time, and then decreases abruptly. A critical time t

c
can be defined as the

time characterizing the cross-over between these two regimes. To give orders of
magnitudes, for S¯ 0±129 s−", t

c
is approximately 8 s while for S¯ 0±135 and

0±155 s−", t
c
is estimated as 4 s and 2 s respectively. This provides a simple way to define

break-up onset ; however, since the decay of ω$
max

requires the action of viscosity, one
may suspect that it is somewhat delayed after the onset of breaking. In order to provide
a more accurate estimate of the separation between the two stages of the vortex
evolution, we have measured the temporal evolution of the orientation of the vortex.
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12 O. Paireau, P. Tabeling and B. Legras

40

100

0 5 10 15 20

t (s)

φ (deg.)

50

30

60

70

80

90

F 9. Temporal evolution of the vortex orientation φ for several experiments.
-, S¯ 0±093 s−" ; F, S¯ 0±129 s−" ; V, S¯ 0±135 s−" ; ¬, S¯ 0±155 s−".

Figure 9 shows the evolution of φ, the angle of the vortex to the direction of the shear.
As the vortex is created in the presence of the shear, φ fluctuates and increases during
the first few seconds in all experiments. For S¯ 0±129 and 0±093 s−", φ approaches and
overshoots the equilibrium position – which corresponds here to an orientation of 90°
– and, after that, suddenly decreases. For S¯ 0±135 and 0±155 s−" the vortex does not
reach an equilibrium but the abrupt decrease of φ is still observed. This sudden change
of orientation can be explained as the beginning of the breaking phase. It is known
that, for a distributed vortex, breaking is preceded by a sudden rotation of the vortex
towards the axis of extensional strain. During the final step of the erosion, φ rapidly
decreases until the total breaking of the vortex. Notice that an orientation of the vortex
at 45° corresponds to a position of maximum deformation effect. We considered the
different instants tφ where φ decreases and compared them with the critical times t

c

previously determined from figure 8: in all the experiments, the times tφ we get are quite
close to the critical times t

c
defined previously.

The temporal evolution of A(t)}A
!

where A(t) is the area of the vortex and A
!

the
area at t¯ 0, is reported in figure 10. This quantity is obtained by fitting a particular
contour of the vorticity map by an ellipse; in order to characterize the vortex core, the
chosen level is such that ω*¯ 0±3 (see §2.2). The area A of this ellipse is then
determined. In the case S¯ 0±06 s−", the area is conserved until tE 5 s, and then
slightly decreases to A}A

!
¯ 0±8 at t¯ 20 s. This illustrates the weak erosion process

which is observed in figure 7(a–c). For S¯ 0±129 s−", A}A
!

continuously decays
throughout the experiment. Since the maximum compensated vorticity retains its
initial value between t¯ 0 and 9 s (see figure 8), this stage is clearly an erosion of the
vortex. Similarly, for S¯ 0±093 s−", A}A

!
is conserved until t¯ 4 s and decays

afterwards while ω$
max

remains constant until t¯ 12 s. In the other experiments (S¯
0±135 and 0±155 s−"), characterized by early breaking, A}A

!
decreases abruptly as soon

as the system is quenched. Notice that, for S¯ 0±135 s−", γ# is increased by a factor 2
from t¯ 0 to 10 s while A}A

!
decreases practically from 1 to 0 over the same period.

This illustrates that vortex breaking develops on a faster time scale than the one
corresponding to the control parameter γ# , which somewhat justifies the assumption of
quasi-stationarity made previously.
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A �ortex subjected to shear 13

1.2

0 5 10 15 20

t (s)

0.4

0.8

A
A0

F 10. Temporal evolution of A}A
!

(the area A is divided by the initial area A
!
) for

the experiments of the previous figures. E, S¯ 0±061 s−" ; x, S¯ 0±093 s−" ; F, S¯ 0±129 s−" ;
V, S¯ 0±135 s−" ; ¬, S¯ 0±155 s−".

0.10

0.08 0.12 0.16 0.20

S (s–1)

0.02

0.08

0

0.04

0.06

γc
ˆ

F 11. Critical value γ#
c
as a function of the imposed shear S. The error bars indicate the 25%

deviation due to the estimate of S. The solid line indicates the mean experimental value γ#
c
¯ 0±045.

3.2. Critical parameters

We shall now discuss the experimental values of the parameters defining the threshold
between erosion and breaking. This threshold is associated with varying values of t

c
:

the larger the shear, the smaller t
c
. However, the critical values of γ# – denoted by γ#

c

– corresponding to the onset of breaking, when ω$
max

becomes smaller than 1, are the
same for all the experiments. This is shown in figure 11, where we have plotted the
critical value of γ# as a function of the shear S. γ#

c
is constant within the error bars

inferred from figure 5. The estimated value is γ#
c
¯ 0±045³0±011. Assuming the
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0.2 0.3 0.9

S/(γc ω0)

10

25

0

15

20

5

tc (s)

0.4 0.5 0.6 0.7 0.8

F 12. Critical time t
c
as a function S}γ#

c
ω
!
.

–30 30

0.4

1.2

0

0.8

ω* max

–20 –10 0 10 20

t*

F 13. ω$
max

as a function of t*¯ (t®t
c
)S}γ#

c
; E, S¯ 0±061 s−" ; *, S¯ 0±087 s−" ; x, S¯

0±093 s−" ; F, S¯ 0±129 s−" ;V, S¯ 0±135 s−" ; , S¯ 0±150 s−" ; ¬, S¯ 0±155 s−" ; ^, S¯ 0±184 s−".

existence of a critical value for γ# one can deduce the expression for the critical time t
c

and finds t
c
¯®τν ln(S}γ#

c
ω
!
). This shows that as S increases, t

c
decreases, as shown in

figure 12.
To compare with theory, it is appropriate to use the actual vorticity in the core of

the vortex instead of the compensated vorticity. We have thus determined the value of
γ¯S}ω

max
at time t¯ t

c
. The mean value is γ

c
¯ 0±051³0±017 which is larger than

but close to γ#
c
. The small difference is explained by the fact that ω

max
remains close to

ω
!
exp (®t}τν) during the erosion stage. Below, we shall compare this experimental

value γ
c
with the theory.

The decay phase for t" t
c
is of interest : we have found a way to collapse the set of

curves of figure 8 onto a single one, by introducing the following variable : t*¯ (t®t
c
)
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A �ortex subjected to shear 15

S}γ#
c
. From the definition of γ# , the time (γ#

c
}S ) is the turnover time of the vortex at t

¯ t
c
. There is some scatter, but the collapse can be considered as fairly good (figure 13).

The universal curve can be roughly fitted, for t*& 0, by a relation of the form ω$
max

¯ 2®exp (αt*) where αE 0±03. This collapse may be considered surprising: it means
that the time taken for the core vorticity to decrease to zero, under the action of a
shear, depends only on S and γ# and suggests that it depends only weakly on the fluid
viscosity. This is in agreement with the results of Mariotti et al. (1994) who found that
the fast exponential decay leading to complete destruction does not depends on Re. A
first reason is that after t¯ t

c
, the vortex soon becomes very thin, its width decaying

exponentially with time. Therefore the dependence of ω$
max

on the Reynolds number is
expected to be logarithmic at most. Also, before being dissipated by viscosity, the
vortex becomes so thin that its core ceases to be spatially resolved by our analysis. The
quantity which is measured is then a coarse-grained vorticity and it is no longer
paradoxical to find that it decays on an inertial time scale.

4. Discussion and conclusion

It is worth commenting on the critical value of γ. The numerical value found for a
continuous distribution of vorticity is γ

c
¯ 0±0675³0±0025 (Mariotti et al. 1994). This

value does not depend significantly on the particular vorticity distribution that is
considered, and is independent of viscosity (provided the Reynolds number, based on
the vortex size, is large). It is thus meaningful to compare this value to the experimental
estimate we get, which is γ

c
¯ 0±051³0±017. Taking into account the sizes of the error

bars (which unfortunately are quite large), it is fair to say that the two estimates are
consistent.

In conclusion, the present experiment shows excellent qualitative agreement with the
theoretical expectations for the erosion and break-up processes. We also show the
existence of a critical parameter governing the onset of break-up, as expected from the
theory. On the quantitative level, the fact that the threshold values we get are consistent
with the numerical findings reinforces the good correspondence between experiment
and theory.

Finally, recall that one of the goals of the present study was to determine to what
extent the theoretical approach and the numerical studies of an elementary process
(e.g. a vortex subjected to a uniform shear in two dimensions) are realistic enough to
interpret laboratory experiments. Our conclusion is that the theoretical framework
applies well to the real world, both at qualitative and (to a lesser extent) quantitative
levels. We thus propose that a complete, consistent, description of a particular
phenomenon (vortex stripping and vortex break-up under the action of a shear),
including theoretical, numerical and experimental approaches, is now available. This
may be useful for analysing more complex situations, such as two-dimensional
turbulence, where such a phenomenon is believed to play an important role.

Image processing and analysis of velocity and vorticity fields are based on a software
developed by O. Cardoso and D. Marteau who gave us very useful guidance. This
work has been supported by Centre National de la Recherche Scientifique, Ecole
Normale Supe! rieure, Universite! s Paris 6 et Paris 7.
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