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Dispersive Stabilization of the Inverse Cascade for the Kolmogorov Flow
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It is shown by perturbation techniques and numerical simulations that the inverse cascade of kink-
antikink annihilations, characteristic of the Kolmogorov flow in the slightly supercritical Reynolds
number regime, is halted by the dispersive action of Rossby waves ia-fflane approximation. For
B — 0, the largest excited scale #sIn1/8 and differs strongly from what is predicted by standard
dimensional phenomenology which ignores the depletion of nonlinearity. [S0031-9007(99)09281-9]

PACS numbers: 47.35.+i, 05.45.Yv, 47.27.Ak, 92.60.Ek

Planetary-scale flow is subject to the competing effects v = 302U (v) — 30%v — Balv. (1)
of quasi-two-dimensional turbulence and Rossby waves
(B effect). Itis known from phenomenological argumentsHere, U(v) = s*[v*/(2I'?) — v?] is a quartic potential
and numerical simulations that the inverse cascade whicand 9! denotes spatial integration for zero-average
characterizes the large-scale dynamics of two-dimensiondilinctions in the interval0, L] over which periodicity is
turbulence in planetary flow can be halted by Rossbyassumed. (In the original setup of Ref. [7], the constants
wave dispersion and that the ensuing flow exhibits alterares = 1/y/3, T’ = /3/2, andA; = 3//2.)
nating jets [1-5]. The standard argument of Rhines [1] We begin with qualitative considerations illustrated by
rests on a comparison between the local eddy turnovesimulations. FopB = 0, the solutions to this equation live
time and the period of Rossby waves. More generallygssentially within a slow manifold of solitonlike solutions
the interaction of waves and turbulence is a subject with avith an alternation of plateaus at the zetos= =TI of the
wealth of applications in astro- and geophysical flows angotential, separated by alternating kinks and antikinks [12].
plasmas (see, e.g., Ref. [6]). The corresponding fixed points, haviNgpairs of regularly

The case of strongly dispersive waves is reasonablgpaced kinks and antikinks, are all unstable saddle points
well understood through the theory of resonant waveof a Lyapunov functional, except fof = 1 which gives a
interactions (Refs. [6,7], and references therein). It isstable absolute minimum. The temporal evolution is a cas-
however, inapplicable to a rotating planet, where thecade of annihilations of kink-antikink pairs, leading even-
dispersive action of Rossby waves (with a frequencytually to the gravesV = 1 mode [13]. This is illustrated
B/k) is felt only at the very largest scales (small wavein Figs. 1 and 2(a) obtained by numerical simulation us-
number k). For the case of weakly dispersive waves,ing the method described in Ref. [7]. In the Fourier space
the nonlinear dynamics in the absence of waves musin inverse cascade is observed with the dominantly ex-
be understood in detail before we can find how they areited wave number shifting roughly to smaller and smaller
affected by the presence of the waves. We cannot resontave numbers [see, e.g., Ref. [14] and Fig. 1(b)]. Ex-
just to dimensional arguments which ignore the depletiorcept for the short kink-antikink annihilation episodes, the
of nonlinearities, an effect which is very common in motion of kinks is described by simple ordinary differen-
turbulence [8] and which can take extreme forms in someial equations (ODE’s) to be derived below. They involve
situations, as we shall see. Our present study deals wittixponential couplings between adjacent kinks, so that the
the Kolmogorov flow [9] for which the inverse cascade istypical duration of the plateaus increases exponentially as
understood rather well in terms of kink-antikink dynamics N decreases.
[10]. The basic Kolmogorov flow isu = (cos,0), For B # 0, the dispersive action of the waves modi-
obtained by applying to the two-dimensional Navier-fies the cascade. For small values@fthe solution re-
Stokes equation a forde= v(cosy,0). The Kolmogorov tains the characters of kink dynamics with superimposed
flow has a large-scale negative eddy viscosity instabilitypropagating waves which are expected to predominantly
when the kinematic viscosity is just below the critical modify the dynamics at large scales, where the Rossby
valuer, = 1/+/2[9]. The large-scale dynamics are then,wave period is the smallest. As the destabilizing cou-
to leading order, one dimensional [7,11]. Closestcand  pling between the kinks decreases exponentially with the
in the presence of Rossby waves, the large-scale dynamitgpical separation of adjacent kinks, the stabilizing effect
are governed by the one-dimensiong—Cahn-Hilliard”  of dispersive waves can dominate for solutions of suf-
(B-CH) equation with cubic nonlinearity, derived by ficiently large wavelengths, thereby halting the inverse
multiscale techniques in Ref. [7] (see also Ref. [11] forcascade at an intermediate wavelendth= L/N with
the caseB = 0), which reads integerN > 1. This is illustrated with a simulation for
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ﬁj(x,t), WherEMj(x) = EjM(X - Xj) with €j = (—l)j
and an exponentially small remaindés(x,7). Hence,
the time derivative is, up to exponentially small terms,
dv(x, 1) = — Yo xe(1)d,.Me(x). Substituting into (1),
0-210 T 1900 o000 100000 mtegratlng twice in space, multlplylng by M;, an_d inte-
- grating over the periodicity interv@0, L], we obtain
o 0.4 T T T T k=3 1 2N—1 L L
= Z X¢ f f 3y M;j(x)Ga(x — x")a M(x') dxdx’
(b) k=8 : 3 =0 0 0
03 . L 2s2 )
: = ﬁﬁj(ij + ﬁj)axdex —ZEij(l‘), (2)
0
o2 L i whereh(z) is a time-dependent integration constant which
' can be determined by the constraint of momentum conser-
vation. Carrying out the integrations in (2), we obtain the
o1 b i ODE's for kink motion :
I -1(;0 . 1.oloo . lejex'e = o S0mx-)  pmslni—x)) (3)
t Here, x; is the location of thejth kink and A, is a
FIG. 1. Simulation of the Cahn-Hilliard equation wih= 0.  Symmetric matrix given by
(a) Evolution of the total energy. (b) Evolution of the energies 1 2
of various Fourier modes (as labeled). An inverse cascade Aje = —1€j—t| Golx; — x0) + ——
is observed fromV = 8 to N = 3. Eventually, the dominant 8352 12Ls2
mode becomed’ = 1 (not shown in the figure). |
- 5o 5j€’,
B = 1073 shown in Fig. 3, where the cascade is found to 25

halt at wave numbe = 4, corresponding to a wavelength whereG,(x) is the L-periodic Green’s function satisfying
A =L/4. 92Ga(x) = —8(x). WhenL — =, Gy(x; — x¢) reduces
We now turn to a more systematic theory, beginningto —|x; — x¢|/2 and A is easily inverted [13]. Although
again with 8 = 0, the case for which we mostly follow the dynamics described by (3) borrows most of its char-
Kawasaki and Ohta [10]. The (pure) Cahn-Hilliard equa-acter from the heteroclinic connection between unstable
tion admitsM (x) = =TI tanhsx as stationary solutions of fixed points, the trajectory in phase space does not gen-
d2M; — U'(M;) = 0. When the typical separation be- erally proceed from the vicinity of one fixed point to an-
tween Kinks is large, a solution withi kink-antikink pairs  other. Fast jumps from one slow manifold to the next may
may be written, near thgth kink, asv(x,7) = M;(x) +  occur at a distance from the fixed points. Thus, as the
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FIG. 2. Solutions with four kink-antikink pairs. (a) Snapshot ¢

of velocity v(x,t) in a slowly evolving state forg = 0.

(b) Final stable asymptotic state fg#@ = 1073 with N =4 FIG.3. Same as Fig. 1 but foB = 1073. Propagating
exhibiting distorted plateaus between the kinks (this is actualljRossby waves accelerate the cascade and, eventually, halt it
a traveling wave measured in a suitable moving frame). when it reache®V = 4 (four pairs of kink-antikinks).
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number of kinks and antikinks decreases with time, the dio = L o, Qo = a;lév,

dominating wave number does not necessarily decrease _ 2 1 -1

monotonically as happens in the “arithmetic” inverse cas- L= =M0.000 = UI@)]ox + cor = Ba. (6)

cade of Ref. [14]. This may be seen in Fig. 1(b), whereunlike the case with3 = 0, the perturbation to the sta-

the dominant mode goes from wave number 8, t0 5,  tionary solution of the3-CH equation does not reduce

and then to 6. simply to a change in the kink locations. We must also
The stability of a given fixed point® of (1) with  consider the dispersive effect of tiseterm which modifies

respect to kink motion is obtained by differentiating the shape of the slow modes and contributes to stability.

(3). Itis convenient to define the Fourier ComponentSSubstltutlon in (6) of the expansions efndv in powers

Y, of kink displacementséx; as ¢, = (2N)~! of B8 leads to an expansiai = Ly + L, + B> L, +

Syl Sxjeimmi/N) - After some algebra, we obtaln 0(B%). The unperturbed eigenvalug, becomeso =

Y = ao¢m for m < N, with the eigenvaluery givenby 00 + iBui + 2oy + iB*us + O(B?). Similarly, the

eigenfunctionsp, = 9, 'v, ande, = 9, 'v, are, respec-

3 —sA _ -1
oy = 12857 Ase 7 sin20m<l — w) , tively, modified ase, + Bea + B¢ + O(B3) and
A sA e» + Bept + B2er0(B%). Ahierarchy of equations is
(4)  then obtained fok,, @5, ©als Pb1, Pazs--.. Asis usual

with 6,, = 7m/N and A = L/N (the subscrip0 refers in such singular perturbation problems, the corrections to

to B =0). The correspondmg eigenvectors for a giventhe eigenvalues are obtained from solvability conditions.

m are v,(x) = o (1) cogif,,0.M(x — x;) and  This gives (with(f, g) = L™! fo fg dx)

vp(x) = 3N 1(—1)/ sinjf,,0,M(x — x;). The leading

order of (4) corrects a factor 2 error in Ref. [10] in which

the exponential variation of; nearx;;; andx;—; was (®a L1@a1) + {(@a: L20a) = 02(@a, @a) = L1{Pa, P11 -

neglected. Note that our result is consistent with Ref. [15] 7)

and agrees with our simulations. For large all of the

eigenvaluesr, [actually o(m)] for m > 0 are positive, The coefficienu; gives only the shiftin the imaginary part

thereby demonstrating the instability of multi-kink-pair of the eigenvalue. For the real part, the second-order term

solutions. o, is needed. It is obtained from (7); limiting ourselves
We now turn to the case of nonvanishing smgll  to leading-order largéx contributions, we obtain, after

which is studied by a singular perturbation method that weconsiderable algebra,

(b, L1@a) = —mwi{@p, €b)s

outline. The stationary solution goes over into a (slowly) A? 24 + 97
traveling wave solution which, in a suitable frame mov- oy, = ~ 69 120524 5 a2 + O(AY), (8)
ing with the velocity c = Bc; + B%ca + 0(B3), may A3 (1 + ¢%)
be written in the time-independent forrm = 7@ +
Bv) + g% + 0(B3). Here, 7'V and 7@ satisfy g =tan 22 9)
Fo) =00 and Fv@ = 90U, with F = 9% — Uy, 2N
00 = A (e 07190 — 57350 Note that the correction is negative and, herstabilizing
3 " “‘ ’ Though the effect is small, it increases algebraically with
and A, while the nonlinear coupling of kinks decreases expo-
oW = /\3—1(013;17(1) _ 3;33(1) + 207 150 nentially in (4). There_fore, stablllgathn of thﬁ—mode
perturbation to the stationary solution is obtained at lead-
+ %U(’)”(U“))z, ing order for largeA whenoy + 0,82 < 0, that is,
whereU, = U@©). At first order,¢; is obtained from = 1
the solvability condition/; 0©9,5@dx = 0 as 1Bl > B = 4/35389440 e s3A3 1192 10
A? a? A 4 - !
cp=—|—-— - + —||1—--—] , (5) The condition is the most restrictive fer = 1, that is
48 1252 As3 As g = tanm/(2N).
whereA = 2.404113.... Like og in (4), ¢, is given in When A is only moderately large, an accurate estimate

(5) up to exponentially small terms (for large = L/N)  of B. requires, in principle, a careful determination of
and has excellent agreement with numerical simulationsp;,; and¢,; by matching solutions near to and away from
(Note that, at next orders; vanishes.) The first-order the kinks. We have used an alternative seminumerical
perturbatiorz") of the traveling wave profile can also be approach, which works for all values df, in which the
obtained perturbatively in a largk-expansion (not given auxiliary equations stemming from the perturbation theory
here). This leads to a distortion of the plateaus, as seen sre solved numerically with a discretization over a

Fig. 2(b). quarter-wavelength ofp, and ¢,, using a procedure
The equation governing the perturbatidv(x,7) =  written with MATHEMATICA, available from the first
v(x + ct,t) — v(x) can be written as author (B.L.). The eigenvalues are obtained from the
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TABLE I. Comparison of the perturbation theory in both its asymptotic and numerical forms
with the direct stability calculation. The calculation is done for= 76.93 (ten unstable
modes wherB = 0) and several values o¥.

Direct Perturbation Perturbation
calculation (seminumerical) (large A-asymptotics)
N Cl BC Bc Cl IBC
2 —35.002 2.358 X 107° 2.358 X 107° —35.002 1.45 X 107°
3 —16.067 4.965 X 1074 4966 X 1074 —16.067 220 X 1074
4 —9.2073 1.069 X 1072 1.067 X 1072 —9.2090 32 X 1073
5 —5.9507 8.96 X 1072 10.28 X 1072 —5.9637 1.8 X 1072

solvability conditions of the discretized problem, wherestructures (vortices, filaments, sheets, etc.) also exhibit
degeneracies are lifted by imposing symmetries withstrongly depleted nonlinearities which dimensional argu-
appropriate boundary conditions for each linear problemments fail to capture. It would be of interest to study
to be solved. We have also solved directly the stabilitydispersive stabilization for a strongly nonlinear high-
problem by differentiating a Galerkin-truncated expansiorReynolds number inverse cascade of the kind considered
of (1) in Fourier modes. Newton’s algorithm is used by Kraichnan [16]. So far, no systematic theory can
to obtain the traveling solution and its phase velocity;handle this, although some progress has been made
eigenmodes are then calculated with a QR algorithm. Theecently on a related passive scalar problem [17].

latter procedure provides both the fast and slow modes Finally, we mention that in recent work, devoted to
with exponential separation of the eigenvalues. As theonal jets in planetary flow, Manfroi and Young [18]
problem becomes very stiff wheh is large, we are, in studied a closely related problem in which stabilization
practice, limited to values df less than a few hundreds. is provided by a friction term—rv added to the right-

Table | compares the asymptotic and the seminumericdland side of (1). We find that a suitable adaptation of
solutions of the perturbation theory with the direct solutionthe analysis for the dispersive case gives stabilization for
of the stability problem. There is excellent agreement ber > r. ~ ¢ A /A.
tween the direct calculation and the seminumerical solution We are grateful to Joanne Deval for careful checking of
of the perturbation problem fav < 5. It breaks down all of the calculations.
when the approximation of separated kinks is no longer
valid. The asymptotic result (10) then provides the cor-
rect order of magnitude but is wrong by a factor of 2 or  +gmajl address: legras@Imd.ens.fr
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