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Hyperbolic lines and the stratospheric polar vortex
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The necessary and sufficient conditions for Lagrangian hyperbolicity recently derived in the
literature are reviewed in the light of older concepts of effective local rotation in strain coordinates.

In particular, we introduce the simple interpretation of the necessary condition as a constraint on the
local angular displacement in strain coordinates. These mathematically rigorous conditions are
applied to the winter stratospheric circulation of the southern hemisphere, using analyzed wind data
from the European Center for Medium-Range Weather Forecasts. Our results demonstrate that the
sufficient condition is too strong and the necessary condition is too weak, so that both conditions falil
to identify hyperbolic lines in the stratosphere. However a phenomenological, nonrigorous, criterion
based on the necessary condition reveals the hyperbolic structure of the flow. Astiher
nonrigorou$ alternative is the finite-size Lyapunov exponéRSLE) which is shown to produce

good candidates for hyperbolic lines. In addition, we also tested the sufficient condition for
Lagrangian ellipticity and found that it is too weak to detect elliptic coherent structifeS in the
stratosphere, of which the polar vortex is an obvious candidate. Yet, the FSLE method reveals a
clear ECS-like barrier to mixing along the polar vortex edge. Further theoretical advancement is
needed to explain the apparent success of nonrigorous methods, such as the FSLE approach, so as
to achieve a sound kinematic understanding of chaotic mixing in the winter stratosphere and other
geophysical flows. €2002 American Institute of Physic§DOI: 10.1063/1.1480442

Transport plays an important role in the distribution of
chemicals in the stratosphere(the layer of atmosphere
between 12 and 55 km in altitudg. This fact is clearly
illustrated by, for instance, the formation of the Antarctic
ozone hole every austral winter. In the extratropical
stratosphere, chemical transport proceeds in quasihori-
zontal layers, where air parcels practically conserve en-
tropy for up to about 3 weeks. Transport, stirring, and
mixing in these isentropic layers is governed by the La-
grangian chaos generated by organized large-scale circu-
lations (of several hundred kilometers and large). The
spatial organization of chaotic stirring is described by the
main hyperbolic lines (i.e., the material lines that are lo-
cally the most attracting or repelling) forming at any
time a skeleton of paths and lobes through the flow. Gra-
dients of long-lived tracers tend to orient normal to and
intensify along strongly attracting lines, thereby enhanc-
ing the mixing process by small-scale vertical circula-
tions. At the same time, a strong vortical circulation exists
in the winter polar region. The polar vortex exemplifies
an elliptic coherent structure: its edge forms a partial
barrier to mixing. Rigorous mathematical criteria were
derived recently to characterize hyperbolic lines and el-
liptic coherent structures. In this paper, we review and
test these criteria in a case study using stratospheric
winds from the European Center for Medium-Range
Weather Forecasts. Our work shows that these criteria
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fail to pick out hyperbolic lines and elliptic coherent
structures in the stratosphere, which are, however,
readily identified with other less rigorous methods.

I. INTRODUCTION

A large number of chemical compounds in the atmo-
sphere are long-lived species. As soon as the lifetime exceeds
a few weeks, the large-scale distribution is to a large extent
governed by transport from sources to sinks, and stirring and
mixing. This observation is also valid for chemical and bio-
logical species in the ocean, and although the time scales are
very different, for the chemical and mineralogical composi-
tion of the Earth’s mantle. For a variety of reasons including
the aspect ratio, stratification, and rotation, large-scale mo-
tion in the atmosphere and the ocean is mainly smooth and
layerwise. This is particularly true in the stratosphere, the
region of the atmosphere which extends from about 12 km in
the midlatitudes and 18 km in the tropics up to 55 km. In this
region, convective vertical motion is strongly inhibited by
the stratification and radiatively induced vertical motion is
typically of the order of 10 m per day under 30 km altitude.
Smoothness is here associated with layerwise motion since it
is well known that two-dimensional and quasigeostrophic
flows are dominated by the large-scale structures. Conse-
quently the stirring and mixing is more chaotic than turbulent
in the sense that the time scales are not determined by the
smallest spatial scales of motion, unlike the condition pre-
vailing, say, in the combustion chamber of a rocket.

Two types of approaches have so far been developed to
investigate the stirring properties of such flows. The statisti-
cal approach, rooted in the seminal work of Batchélbgs

© 2002 American Institute of Physics

Downloaded 20 Jun 2002 to 129.199.72.68. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/chaos/chocr.jsp



Chaos, Vol. 12, No. 2, 2002 Lines and the polar vortex 383

recently shown considerable theoretical progrés=sading to  (which are weaker in the southern hemisphere than in the
the prediction of the probability density functions of tracer northern hemisphere, and hence the higher stability of the
gradients under a fairly wide range of physical hypothesisvortex. As a result, the vortex is continuously eroded into
This approach is relevant to the interpretation of the smallfilaments which are expelled into the surf zbhéso called
scale fluctuations that are observed from numericabecause it is the midlatitude region stirred by breaking
simulations? and from airborne measurements. Rossby waves It is generally considered, based on observa-
Unlike eddies in a combustion chamber, atmospheridions and trajectory calculations, that filament-shedding in
vortices are large, persistent, and cannot be considered ontlye stratosphere is essentially a one-way process: filaments of
from a statistical standpoint. Hence the second approach thablar air are shed from the vortex but air parcels from the
we will follow here addresses the deterministic and geometsurf zone hardly penetrate into the vortex through layerwise
ric properties of transport and stirring in the atmosphere. isentropic motion. The vortex interior is mainly fed through
A prominent example is that of the stratospheric polarslow diabatic descent. Vortex erosion is a very efficient
vortex which is a strong cyclonic circulation in the polar mechanism to generate and maintain high tracer gradients, as
region during winter in response to strong radiative coolingshown by numerical experiments and theory in two-
over the poles. This vortex is stronger and more stable in thdimensional turbulenc¥: '8 Therefore, vortex coherence and
Antarctic than in the Arctic. The Antarctic polar vortex has erosion, and relatedly the distribution of tracers, should be
gained much recognition because it provides the conditionbetter understood from the stirring properties of the strato-
necessary for massive destruction of ozone, leading to thgpheric flow.
formation of the ozone hole. The polar vortex also serves as Early attempts to characterize the stirring properties of a
a paradigm for other similar issues, like the tropical barrier intwo-dimensional flod??° were based on the eigenvalues of
the stratosphere and the subtropical jet in the troposphere.the velocity gradient tensor, distinguishing areas where par-
An important property of the polar vortex that is instru- ticle separation grows exponentially from other areas where
mental to ozone destruction is its relative isolation from thethe separation oscillates. This is the so-called Okubo—Weiss
midlatitudes: the polar air mass does not receive significantriterion. When applied to describe a particle trajectory, this
intrusions from midlatitude air mass&s Consequently, criterion relies on the assumption that the velocity gradient
very different chemical conditions prevail inside and outsidetensor is frozen during the motion of a fluid parcel, a condi-
the vortex. The boundary between the vortex and its exteriotion which is hardly met, even by the simplest flof¥<Con-
is often seen as a very sharp transition in chemical mixingsiderable improvements have been achieved recently by con-
ratios measured by aircraft transettdn this paper, we de- sidering the separation of particles in a reference frame
fine the vortex edge to be at the location of the sharpestotating with the strain axe€-2* This is a significant step
gradient in the mixing ratio of certain chemicals, e.g., nitroustoward a Lagrangian description which is needed since
oxide, surrounding the polar vortex. Another tracer, the postretching of a fluid parcel results from the history of strain
tential vorticity (PV, see the definition in Sec. IV)Amay be  along its trajectory® Other techniques are based on the elon-
used in place of chemical mixing ratios to define the polargation of a contour line, usually chosen as a contour of po-
vortex edge.(The definition of the vortex edge based on tential vorticity*
tracer gradients usually requires further refinement to be The theory of Hamiltonian dynamical systems indicates
fully operational but we do not need to enter into such com+that stirring in a smooth incompressible flow is best de-
plications here.PV is not measured directly but is calculated scribed by the knowledge of hyperbolic points and the intri-
from high-resolution simulations where an initial PV distri- cate tangle of the associated stable and unstable manifolds.
bution is advected passively,assuming that PV is materi- Most of the applications have been devoted to the study of
ally conserved, an approximation that is generally valid ovemperiodic flows where powerful methods like the Poincare
time scales of one to three weeks. These simulations all shomap can be use:2¢?’|t is only recently that the quasiperi-
that sharp PV gradients are often co-located with the sharpdic and the aperiodic situations have been consid&réd.
chemical tracer gradients observed from aircraft or balloorin the aperiodic case, which is obviously more relevant from
data. These findings have led to the idea that a dynamicdhe perspective of transport and stirring in geophysical flows,
barrier exists around the polar vortex which inhibits ex-the hyperbolic invariant manifolds may or may not cross; if
change with the midlatitudes. they cross, they may only have a finite number of crossings;
In the standard context of dynamical systems, a barrier igand the hyperbolic trajectories may be of finite duration.
an invariant torus on which trajectories do not disperse exSeveral techniques that have been used in the aperiodic case
ponentially like in the surrounding chaotic regidisn prac-  try to map the hyperbolic structures from various estimators
tice, studies have diagnosed the barrier effect of the polanf stretching like the finite-time Lyapunov exponefitsr
vortex in terms of minimum Lyapunov exponéitninimum  patchiness® In the following we will use a method called
stretching of material line¥ and minimum effective the finite-size Lyapunov exponent which shows some high
diffusivity.'® These minima are, however, much broader tharskill at detecting the hyperbolic structute.
the actual width of the high-gradient region between the vor- A particularly interesting approach is a series of recent
tex and the exterior, which can be as small as 3 km accordingorks by Haller?33383%yho has obtained rigorous results
to aircraft data® on the characterization of attracting and repelling hyperbolic
The dynamical barrier around the polar vortex is notmaterial lines over finite-time intervals. Such lines are the
perfect, as it is constantly disturbed by planetary wavedinite-time generalizations of unstable and stable hyperbolic
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manifolds which they approach as time goes to infinity. The P

mathematical results of Haller, which are described in more C= 9¢" 3
detail in Sec. lll, provide necessary and sufficient criteria for

a material trajectory to belong to a hyperbolic line. Unfortu- 1 I IN

nately, the necessary and the sufficient criteria are still dif- QEE (COS<P)_15—COS<P ol (4)

ferent and do not provide a narrow bracketing of the hyper-
bolic lines in all cases, although they perform very well in () is the rotation rate relative to the basis skt&), which

some idealized problems. o itself is rotating at a rate ok sing in the tangential plane.
The goal of this paper is to present the application of the-q; the rest of this paper, we shall assume that the flow is

most recent version of Haller’s restiftsvithin the context of nondivergent so thai= —c.

the polar vortex flow. o The sign of deWv characterizes the flow in the neigh-
In Sec. Il, we review the existing criteria for local hy- porhood of particle A, assuming th&v is quasiconstant

perbolic and elliptic properties. In Sec. lll, we summarize ity time 1920 Thus, the flow is separated into elliptic, para-
and interpret Haller's results for Lagrangian hyperbolic andygic and hyperbolic regions:

elliptic structures. Section IV presents our computational

methods and data. Section V presents and discusses the re- . >0 elliptic
sults of applying Haller’s conditions to the polar vortex. Sec-  detVv=(\ sing+Q)%2—a?—b?{ =0 parabolic, (5)
tion VI compares those results with results from the finite- <0 hyperbolic

size Lyapunov exponenfSLE) calculations. Section VII

states our conclusions and offers further discussions. Equation(5) is sometimes called the Okubo—Weiss criterion.

Note that deWv is not invariant under rotation of the
frame of referencex— \ + constant, due to the presence of
the \ sing term in Eqg.(5). Hence, the results obtained from
ll. LOCALLY HYPERBOLIC AND ELLIPTIC REGIONS applying the Okubo—Weiss criterion in two differently rotat-
A. Okubo—Weiss criterion ing frames will not agree. Thus, one has to decide in which
frame the Okubo—Weiss criterion is to be applied. For ex-
ample, should the Earth’s frame be used? Or perhaps a frame
moving with some average flow velocity is more suitable? In
general, it is difficult to choose any one reference frame over
another based on the flow kinematics alone.

In a two-dimensional velocity field, the time evolution
of the displacement elemeidts from particle A to a close
neighboring particle B is given by

D

Dt 65= 65 Vv,

where Vv is the velocity differential matrix of the vectar. _ ) i
In stratified geophysical flows, the two-dimensional spatialB:- USing strain coordinates

domain is a spherical surface labeled by longitude—latitude Dresselhaus and Tatiérsuggested the use dftrain
coordinates\,¢). We may considebs andv to exist in the  coordinates—i.e., a local frame moving with the eigenvec-
tangential plane spanned by the unit vectoxsg) at the tors of the strain matriS—in analyzing the kinematics of

location of particle A. Thugcf. Appendix 2 of Ref. 4D material elements in a flow field. As the set of eigenvectors
: of Salong every trajectory in the flow rotates at its own rate,
_ R cose 5)‘) E( Rcose )\) each particle in the flow is really analyzed in its own frame
R 6o )’ R ¢ ’ of reference. Thus, the question of an overall frame of refer-
: ence for the flow is circumvented.
—¢ptane+ ﬂ — X\ sing+cose ﬁ The strain_ matrix$ has orthonormal eigenvec.tolé+
_ I\ de andE_ belonging to eigenvaluaes and — o, whereo is the
Vv= PP ' rate of strain:

- de
A sing+(cose) t—

P 70 o= JaZH 2. (©)

whereR is the Earth’s radiusVv may be split asVv=S g makes an angle)(t) e [ — m/2,7/2] with the unit vector
+ O where the strain matri$ is the symmetric component, 5 where § is given implicitly by a=ocos29 and b

and the rotation matrif is the antisymmetric component: = sin 29. In strain coordinates, the rotation rdte; of the

( a b ( 0 —Asing—Q local flow—coined theeffective rotation raten Ref. 41—
S= , =| . , appears as
b c A sing+Q 0 _
Qeff: O- 19! (7)
where - X
. ) where ¢ is the rotation rate of the strain axes relativexto
a=JNd\—etang, (D along a particle trajectory:
b=~ 19, N 2 9=y (ab—ab 8
= 5| (Cosp) " —-+cosp ol 2 = 5,2(ab—ab). (8)
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Note that the “EPH” partition of Hallet® is actually
equivalent to the HKOW criterion, but instead of using the
parameter, the EPH partition is defined in terms of fluid
fluxes across the zero-strain set.

Ill. LAGRANGIAN HYPERBOLICITY AND ELLIPTICITY

As r changes nontrivially along a particle trajectory ow-
ing to variations ofr, ¥ and/or(}, a particle may experience

y SRR /RSN different local flow at different times: sometimes hyperbolic,
8 ! et sometimes parabolic, and sometimes elliptic. So how does
T 1 \ one ascribe the notions of Lagrangian hyperbolicity and el-
N / \ lipticity to a particle trajectory? The approach adopted in this
=ollftre 1 co paper to answer this question is reviewed in the following. A
A \\ j different approach, V\_/hich yields results that are not invariant
- ! 1 5 / to the transformatiom — A + constant, can be found in Ref.
g ¢ 42.

FIG. 1. The streamfunctiogh asr = /o varies.[Let ¢ and % be nondi- We quote from Hallef’ the foIIowmg definitions: over a

mensionalized infinitesimal displacements from a particle A in the zonal andinite time intervall,
meridional directions, respectively. Thafi= (1+r2) " Y2(ys+r r), where o L o
b= (82— )12 and = (£2+ 7°)/2, wherer is parameter in the Hkow (1) A material line isrepelling if all infinitesimal perturba-
criterion. Note thaty is contoured at intervals of 0.1. Key: dotted line tions transverse to it strictly increase throughduas
=<-0.3, —0.2< dashed line<0.2, and solid line=0.3.] time flows forward.
(2) A material line isattracting if all infinitesimal perturba-
tions transverse to it strictly increase throughduas

More recently, Hua and Kleff and Lapeyreet al?*2* time flows backward.

applied the Okubo—Weiss criterion in strain coordinates, an§® A hyperbolic material fine is either an attracting or a

distinguished three regions of flow according to the param- repe”?”g materigl Iipe. ) _ )
(4) An elliptic material line is not hyperbolic, and stays in an

eterr:
elliptic region throughout.
r=Qe¢xlo, ©) In this paper, we shall say that a trajectory is hyperbolic
overl if it is contained in a hyperbolic line througholytand
>1 elliptic that it is elliptic overl if it is contained in an elliptic line
|r| =1 parabo”c . (10) throughoutl .

A notable contribution in Halléf is that separate neces-
sary and sufficient conditions for hyperbolic and elliptic tra-

The above is sometimes called the Hua—KIein—Okubo—JeCtones were derived. We paraphrase these conditions be-

Weiss criterion, which we abbreviate as tHKOW criterion low for a T'mte t'me. !ntervall ’ . .
i _ T Sufficient condition for Lagrangian hyperbolicit$up-
As o and Q. are invariant to the transformation— \

TR pose a trajectorys(t) does not leave a hyperbolic region
+constant, the HKOW criterion is independent of the r°ta'(where|r|<1) for tel. Then the trajectory is hyperbolic

tion of the reference frame. overl.
Figure 1 depicts the morphology of the local flow field in Necessary condition for Lagrangian hyperbolici§up-

strain coordinates as a function af The strain eigenvectors pose a trajectorg(t) is hyperbolic ovell. Then, the follow-
E. are*45° lines in Fig. 1. Two significant features about ing are true.

the local flow in strain coordinates must be highlighted for (1) The trajectory can only be in parabolic regions

the arguments in Sec. Ill. (where|r|=1) at isolated time instances.

(1) For|r|>1, the minimum angular speed around a trajec-  (2) If 1eCI denotes any time interval over which the
tory occurs along the major axis of the elliptical flow trajectory stays in an elliptic regiofwhere|r|>1)—there
pattern. It is readily shown to have a value of can be more than one such time interlig+then
|Qeff|_0'- T

(2) Even as changes with time, the horizontal and vertical f | po(s(t),1)] dt<5, (12
axes in Fig. 1 always experience no extension or com- 'e
pression. They constitute theero-strain set® The zero  where
strain set divides the local flow field into four quadrants.

In two quadrants, particles always recede from the ori- | b0l =[Qerl — (12
gin, while in the other two quadrants, particles always(The expression forp, in Ref. 39 is actually more compli-
approach the origin. cated, and is based on a different physical notion than the

<1 hyperbolic
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one described in the following. Nevertheless, Hall¢gg| is  noses of hyperbolic and elliptic trajectories, is the curl of
equivalent to the above-given expression, as demonstrated the nondivergent wind along isentropic surfaces, written for-

the Appendix). mally as

Sufficient condition for Lagrangian ellipticitybuppose a o 5U
trajectory s(t) stays in an elliptic regionwhere |r|>1) Zp=[R(1— )] ! (_ —(1-pu?) (_) (14)
throughoutl and o=l rITT 9 , K ou ,

whereu=sing, U=u cose andV=uv cose. In contrast, Er-
f|¢o(s(t),t)| dtzg, (13)  tel potential vorticityP is given by
|
a0

P=—0¢s——.
Then the trajectory is elliptic ovdr. ggaﬁp

The reader is refgrred to R.e.f' 39 for the mathematlcalp contains additional information on the vertical potential
proofs of the above-given conditions. In the present paper,

we provide a simple geometric understandinge and the temperature profile, which is not considered in our work with
integral constraints in inequalitigd1) and (13). the two-dimensional nondivergent wind field. Hengg,is

From the end of Sec. Il Bigo| in Eq. (12) is evidently more useful for understanding the relation between vortex

- . : . tructure and the wind field, whil® is the actual dynamical
the minimum angular speed of neighboring particles abou . . .
. : . racer that is conserved on a time scale of a few weeks in the
the trajectory s(t) at time t. Hence, the integral

I3l po(s(t),1)] dt is the minimum angular distance that any lower stratosphere.
neighboring particle travels around the trajects(y) over
the time intervall.

Thereforef ;| ¢o(S(t),t)|dt= /2 means that, during the B. Calculation of r

interval J, all neighboring particles arourglwould at some The isentropic nondivergent windsi¢) were used to

point leave their original quadrant that is demarcated by th%dvect a grid of particles initially placed one degree afiart

zero strain set. So_ no neighboring particle approaches or "%oth north—south and east—west directjosnsd spanning the
cedes from the trajectorymonotonically oved. Hence, by region south of 25°S. This was done by solving advection
definition, the trajectorg cannot be hyperbolic over. Thus, equations, written formally as

(1) for the trajectorys staying in an elliptic region over time

intervall, the inequality(13) implies that the trajectorg \ = w = V(Mt)"”gt)l';[) ,
is not hyperbolic and hence elliptic over R(1-u%) R(1-u%)

(2) violation of inequality(11) for anyleCl implies that the  sing the fourth-order Runge—Kutta method with a time step
trajectorys is nqt hyperb_olic pver_. By cqntrapositions of 30 min. The U, V) at each particle’s position\(t), ¢(t))
being hyperbolic ovet implies inequality(11) for all 4t {imet were obtained using bilinear interpolation from the
leCl. values of (J,V) on the ECMWF Gaussian grid.

To compute the rotatiof) relative to then axis, we
rewrite Eq.(4) as

1
A. Treatment of the stratospheric flow 0= —ZR(l_/.LZ)

IV. COMPUTATIONAL METHODS oV

o

(1- 2)ﬂ—z u (15)
SRl
Analyzed winds in the lower stratosphere from the Eu-

ropean Center for Medium-range Weather Forecast

(ECMWF) were interpolated onto isentropic levels using a

To compute the strain ratefrom Eq.(6), we need to rewrite
IQEqs.(l)—(3) for nondivergent flows as

smooth interpolation scheme, the Akima schéfeyhich 1 1 ouU , OV
minimizes spurious over- and under-shoots, unlike the cubic a= (8= C)= 5o=——5 | 7~ (1— ") 57— —2uV|,
. ; 2 2R(1—pu) | I\ m
spline. Subsequent work was focused on the 500 K isentro- (16)
pic surface, which lies in the lower stratosphere.
Next, the irrotational wind component was put to zero to B 1 ﬂ+ 1— 2 &+2 U 1
yield the nondivergent wind fieldu(v). This procedure is ~ 2R(1—pu®) | on (1~-p )a,u, KT (17

necessary because the above-mentioned theoretical analyses ) ]
assume two-dimensional nondivergent flow. We are assunf20th {2 ando were calculated on the same Gaussian grid as
ing that the irrotational windon isentropic surfaceplays a  (U:V), with the gradients of ,V) evaluated spectrally

minor role in the chaotic dynamics of tracer filaments in thefirst: Bilinear interpolation was used to obtain valy@sand

stratosphere over a period of 2—3 weeks. o at each particle’s positiora andb were calculated by a
The absolute vorticity’, normal to isentropic surfaces backward-difference scheme using values@ndb along a
was also computed from the ECMWF analyzed wind dataparticle trajectory over consecutive time steps. The rotation
The distribution ofZ, was used to elucidate the position andrate 9 of the strain axes relative to the axis was then
internal structure of the polar vortex, because it is directlycomputed using Eq@8). Finally Q.4 andr were computed
related to the isentropic nondivergent wind used in our diagfor each particle at every time step using E@&. and (9),
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respectively. The HKOW criterion in Eq10) was used to that inequality(13) is satisfied.7; and 7, are computed, re-

determine if each particle was in an elliptic, parabolic, orspectively, via forward- and backward-time advection of the

hyperbolic region. particles. Therefore, for each particle in an elliptic region at
time T, we compute

C. Evaluation of Haller’s conditions (1) the length of time ,+ 7;) for which the particle stays
- " , ) ) in an elliptic region;

From the sufficient condition for hyperbolic trajectories, (2) the “strength” of the ellipticity, as measured by the in-
we see that any particle that is in a hyperbolic region at time tegral J||do| dt where | =[T—7,,T+7]. Then, we
T must be hyperbolic over the time interval —7,, T pick out those particles for whict|po|dt=/2, i.e.,
+7¢], whereT— 7, is the time it enters the hyperbolic region ik satisfies the sufficient condition for elliptic trajec-

(i.e.,|r| changes from=1 to <1), and T+ 7 is the time it tories. These are the known elliptic trajectories.
leaves the hyperbolic regiofi.e., |r| changes from<1 to

=1). 7y and 7, are computed via forward- and backward-
time advection of the particles, respectively, from tiffie
Therefore, for each particle in a hyperbolic region at time
we obtain Figure 2 shows the distribution of potential vorticiy
and absolute vorticity, on the 500 K isentropic surface in
the southern extratropics on 11 October 1996 at 12UTC. The
500 K surface was chosen because it lies in the lower strato-
(2) the “strength” of the hyperbolicity, as measured by the f’rg?esrsr_"lfl’ger:n?”ﬁ:n‘;zo”igfeplﬁ;?Trgﬁggf‘rtdzzggn?arggagf&
. T+, _ 2 7. ., | , W 1XI1
mtegraIfoTLA dtwhereA=o"~ Q¢ is the positive ozone-poor and ozone-rich air is very significant. The poten-
eige_nvalue _of the velocity differential matri¥ves in - g vorticity field shows a strong austral winter polar vortex
strain coordinates. south of about 60°S, with a well-mixed surf zone in the
midlatitudes. Shedding of a filament is seen around 90 °E in
the P field (cf. the — 25 PVU contouy. Filament shedding is
the hallmark of chaotic stirring in the stratosphere. The ab-
solute vorticity field reveals that the polar vortex has a rich
internal structure, as far as chaotic kinematics in the strato-
spheric flow is concernedecall the direct relation between
¢ and the wind field in Eq(14)]. There are two ridges of
trong cyclonic absolute vorticity near the vortex edge,
flanking a less cyclonic plateau at the vortex center. The
ridged feature of the polar vortex will be seen to have im-
portant consequences on chaotic stirring within the vortex.
I Let us examine the known elliptic trajectories on the
500 K surface first. These are the trajectories that satisfy the
sufficient condition for Lagrangian ellipticity for some time
interval that includes 12UTC 11 Oct 1996. Figure 3 shows
these trajectories obtained from 9-day advections from
12UTC 11 Oct 1996 both forward and backward in time. The
plot on the left shows the total time-{+ 7;) for which these
trajectories stayed continually in an elliptic regiom|¢1)
straddling the time 12UTC 11 Oct 1996. The longest that the
trajectories ever satisfy the sufficient condition for Lagrang-
ian ellipticity is only 2.6 days. However, this doast mean
that the trajectories are only elliptic for up to 2.6 days, but
that the sufficient condition is too strong to detect the ellip-
ticity beyond this time. A prominent streak of elliptic trajec-
tories is present just outside the polar vortex in the sector
\/m it |rj<1 (0 °E,60°E). A smaller streak is also present on the dia-
. (18)  metrically opposite side of the polar vortex. These elliptic
coherent structures, as Hafletabels them, are aligned par-
From the sufficient condition for elliptic trajectories, we allel to the strong absolute vorticity ridges in the vortex.
see that any particle that is in an elliptic region at tilme They survive for at least about 1 day, as far as we know from
must be elliptic over the time intervdl=[T—7,,T+ 7¢], the presentrather strongsufficient condition for Lagrangian
whereT— 7, is the time it enters the elliptic regioie., |r| ellipticity. Elliptic coherent structures are barriers to trans-
changes from=1 to >1), andT+ 7; is the time it leaves the port and so we estimate that the barrier to cross-edge trans-
elliptic region (i.e., |r| changes from>1 to <1), provided port in the polar vortex has a minimum leakage time=f

V. RESULTS

(1) the length of time {,+ 7;) for which the particle satis-
fies the sufficient condition, i.e., for which it is known to
be hyperbolic;

As regards the necessary condition for hyperbolic trajec
tories, the integral on the left-hand side of inequalityl)
clearly increases monotonically with, for |g=[T,T+t,]
or [T—t,,T]. Thus, a particle that is in an elliptic region at
the initial timeT will satisfy the necessary condition until the
time T+ 7, in forward-time advection, or the timé— 7, in
backward-time advection, when the integral reaches th
value of 7/2. If the integral does not reach/2 before the
particle leaves the elliptic regiofi.e., |r| changes from>1
to <1), or if the particle is not in an elliptic region at the
initial time T, then the necessary condition is satisfied unti
the integral eventually does reaeh2 at a later or earlier
time (for forward- and backward-time advection, respec-
tively) when the particle is in an elliptic region agaiiNote:
The value of the integral is reset to zero every time the par
ticle leaves an elliptic regiopnHence, forall particles at time
T, we separately obtain the following for forward- and
backward-time advection.

(1) The length of timer, for which the necessary con-
dition is satisfied, i.e., for which the particle may possibly be
hyperbolic.

(2) The “strength” of the hyperbolicity, as indicated
roughly by the integralf,Adt, where|=[T,T+7,] (for
forward-time advectionor |=[T—7,,T] (for backward-
time advection and

0 otherwise
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Ertel PV /pvu Abs. Vor. normal tog-surface /per day

-4ms | -

-85 -75 -65 -55 -45 -35 -25 -15 ‘ -20-18-16-14 -12-10-8 6 -4 -2

FIG. 2. (Color) Distribution of potential vorticityP (left) and absolute vorticity , (right) on the 500 K isentrope on 11 Oct 1996 at 12UTC. Here and in Figs.
3-6, the 0° meridian is denoted by a straight black line, the latitudes 30 °S and 60 °S are demarcated by closed circles, and stereographicreregections a

Potential vorticity units are in PVU (1 PVE10 ¢ Kkg ' m?s7?).

day, which is undoubtedly an excessively low bound basegortex, [ poldt= (or logio(f|ho/dt)~0.50 means that
on our current knowledge of the polar vortex. neigboring particles in these structures vascillate toward and
The plot on the nght-hand s-|de of F|g. s Sh‘?WS away from one another at least once. Other patches of elliptic
log,o( | ¢o|dt) over the period for which the particles satisfy . . . - N .
T ” . L trajectories are seen in Fig. 3, but it is difficult to see if they
the sufficient condition for Lagrangian ellipticity. Recall that . . . .
are definitely associated with dynamical flow features such

the integralf| ¢,| dt denotes the lower-limit estimate of the ; > i
as cyclonic vorticity patches because of the noisy nature of

total angular rotation of the local flow around an elliptic -y ) i

figures is in order to reflect the wide range of plotted values.at around 30°S is associated with the subtropical transport
For the two elliptic coherent structures just outside the polabarrier™

Known elliptic trajectories: I:'l:h+'l:r]| /days Known elliptic trajectories: log 5 ﬂtJI_'l I¢-DI dt)
- il e ™
5 LY b R

1 )
)\ / j
) -

- \ _\___,..-# f i /,/ /
\ ff : /
w = g

‘ F\\.“i\ : d ol \:’/
1 il _,--*"":" s
0 2 4 6 8 1. 1214 2 3 4 5 6 7 B 8

FIG. 3. (Color) Trajectories satisfying the sufficient condition for Lagrangian ellipticity for some time interval including 12UTC 11 Oct 1996. Left-hand panel:
period (r,+ ;) for which the elliptic trajectories stay in an elliptic region; right-hand panel;dd¢,|dt) for this period.

Downloaded 20 Jun 2002 to 129.199.72.68. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/chaos/chocr.jsp



Chaos, Vol. 12, No. 2, 2002 Lines and the polar vortex 389

Known hyperbolic trajectories: (1 +1) /days Known hyperbolic trajectorias: log MEJI_':_ A dt)

2 4 6 B 10 12 14 15 0 2 4 6 8 1. 1214

FIG. 4. (Color Trajectories satisfying the sufficient condition for Lagrangian hyperbolicity for some time interval including 12UTC 11 Oct 1996. Left-hand
panel: time spent in hyperbolic regions;, @ 7;); right-hand panel: strength of hyperbolicity over this time, measured by(lb§ dt).

Figure 4 shows the trajectories on the 500 K surface thaity all lie within the polar vortex. This indicates persistent
satisfy the sufficient condition for Lagrangian hyperbolicity and strong stirring within the polar vortex that we attribute to
for some time interval that includes 12UTC 11 Oct 1996.the presence of the two strong cyclonic absolute vorticity
Again, results from 9-day forward- and backward-time ad-ridges within the polar vortex seen in Fig. (Bight-hand
vections from 12UTC 11 Oct 1996 have been combined. Thelot). As for the filament-shedding seen in Fig(I&ft-hand
left-hand plot shows the total timer{+ 7¢) spent in hyper- plot), we expect to see the hyperbolic trajectories responsible
bolic regions(i.e., |r|<1); the right-hand plot shows the for this event to lie outside the polar vort%!> However, it
strength of the hyperbolicity, denoted by iggf A dt) com-  appears that the sufficient condition is too strong to detect
puted over this timdcf. Eq. (18) for the definition of A].  these hyperbolic trajectories.

Evidently, the trajectories that satisfy the sufficient condition ~ Next, we examine the trajectories satisfying the neces-
for the longest time and experience the strongest hyperbolisary condition for Lagrangian hyperbolicity. In Fig. 5, all

Candidate hyp traj: Forw 1 =8days. log 10{'[11}9 A dt) Candidate hyp traj: Back -:nzgdayﬁ, log s ﬂ{_f:rr_ g N dt)

FIG. 5. (Color) Trajectories satisfying the necessary condition for Lagrangian hyperbolicity,fe® days in forward-timegleft-hand sid¢ and backward-
time (right-hand sidg advection from 12UTC 11 Oct 96. The colors indicate;f9fAdt) over the 9 days.
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particles plotted satisfy the necessary condition for the fullrestore the equatorward reach of the polar vortex to accom-
9-day duration of forward-time(left-hand ploi and plish a quasiequilibrium situation with intermittent filament
backward-time(right-hand plox advections from 12UTC 11 shedding.
Oct 1996. Some subset of these particles is the set of all In contrast to attracting lines, the repelling lines in Fig. 5
hyperbolic trajectories for the 9-day period of forward-time (left-hand plo} are not associated with any obvious tracer
(left-hand plo} and backward-timéright-hand plot advec- features in Fig. 2left-hand plo}. This is not surprising, as
tion. To estimate the location of this subset, we color-codedepelling lines represent well-mixed surf-zone air that will be
each particle with the value of lgg{f A dt) computed along entrained into the vortex-edge region, also called st
its trajectory for the 9 days in forwardeft-hand plo; and  chastic layerin Ref. 37. As such, identification of repelling
backward(right-hand plot time, whereA is given by Eqg. lines in the surf zone using dynamical-system methods is all
(18). The particles with higher lag(f A dt) (i.e., warmer the more significant, as they locate the otherwise unmarked
colors in Fig. 5 are good candidates for hyperbolic trajecto- sources of surf-zone air for the vortex-edge region.
ries, as they experience strong local hyperbolicity during the ~ We repeated the computations of candidate hyperbolic
9 days. However, we still cannot identify these candidatdrajectories for shorter and longer advections to test the sen-
hyperbolic trajectories as hyperbolic trajectories proper, besitivity of [;A dt to the length of time interval, and hence
cause they only satisfy the necessary condition. Nonethelesgauge the suitability off| A dt as a marker of hyperbolic
the clustering of candidate hyperbolic trajectories within thelines in stratospheric flow. Figure 6 shows the trajectories
polar vortex is consistent with the same clustering of hypersatisfying the necessary condition for Lagrangian hyperbo-
bolic trajectories in the polar vortex detected by the sufficienticity for 5-day (left) and 18-day(right) forward-time advec-
condition in Fig. 4. Moreover, the cyan-green regions in Fig.tions from 12UTC 11 Oct 1996. The colors denote
5 provide convincing indications of hyperbolic lines in the 10gio(S A dt) for the corresponding 5-day and 18-day peri-
stratospheric flow: two repelling linedeft-hand plot and  0ds, using the same color scale as Fig. 5. The left-hand plot
two attracting linegright-hand plot are located on diametri- Shows that 5 days is too short for lgff A dt) to pick out
cally opposite sides of the polar vortex. We explain next howthe hyperbolic lines. This signifies that the time scale for
we know that the hyperbolic lines picked out in Fig. 5 arechaotic stirring in the stratosphere is longer than 5 days.
repelling in the left-hand plot, and attracting in the right- Comparing the right-hand plot of Fig. 6 and the left-hand
hand plot. plot of Fig. 5, we see that both 9-day and 18-day advections
Because fluid volume is conserved in nondivergent?ick out practically the same hyperbolic lines. Hence, we
flows, repelling lines shorten as they repel the surroundingleduce that th¢ A dt statistics have probably converged for
fluid away from them(This process is analogous to flatten- 7n=9 days and the hyperbolic lines thus picked out by high
ing a ball of putty: the putty becomes short as its circumfer-/ A dt values are robust features of the stratospheric flow.
ence expands outwardisThe shortening of the repelling In addition to gbove-mentioned case study surrounding
lines in the left-hand plot of Fig. 5 brings the particles on thethe filament-shedding event of 12UTC 11 Oct 96, we per-
lines closer to the polar vortex, where there is stronger locaformed a similar case study using 5-, 9-, and 18-day foward-
hyperbolicity. Therefore, repelling lines show up with high ime and backwa_lrd-tlme integrations from 12UTC 21 Oct 96.
values off A dt. In contrast, attracting lines lengthen as they_The _results obtained were similar to the presented case study
attract the surrounding fluid, and so carry the particles odn this paper.
them away from the polar vortex. Thus, the valued af dt
remain low on attracting lines, making attracting lines unno-
ticeable in the left-hand plot of Fig. 5. However, attractingv|. FINITE-SIZE LYAPUNOV EXPONENTS
lines shorten in reverse time, and therefore, tf@yd not the
repelling lines show up with high values of A dt in the In order to compare the results of rigorous Haller’s con-
right-hand plot of Fig. 5. Beware that the attracting and re-ditions with that of other, nonrigorous, methods, we present
pelling lines revealed in Fig. 5 apply to different time peri- here calculations of thefinite-size Lyapunov exponent

ods: 9 days before and 9 days after 12UTC 11 Oct 1996(FSLE) first used for dispersion by Artakt al.46 and already
respectively. applied to the polar stratosphere in Refs. 37 and 47. The goal
One attracting line in Fig. Fright-hand plot is colo-  Of the various methods mentioned in Sec. | of this work is
cated with the filament breaking in Fig. (Bft-hand ploj. either to estimate the local stirring properties of the fluid or
But paradoxically, there are no filaments associated with thé& draw the skeleton of the hyperbolic properties of the flow,
other attracting line in Fig. Fright-hand plot. This point  thatis to find the main stable and unstable hyperbolic lines.
illustrates the complex relation between tracer filaments ands we shall see in the following, the FSLE provides infor-
attracting lines: on one hand, attracting lines encourage tra¢nation on both aspects by varying a unique internal param-
ers in the polar vortex to break outward via the mechanisn@ter.
of lobe dynamic¥**thereby forming filaments. On the other =~ The FSLE is based on the finite dispersion of particle
hand, filament-shedding erodes the polar vortex, causing thairs. For a given finite initial separatiof(x,t,0)=J, at
vortex edge to retreat polewards. Thus, the tracers in thémet and a growth factop, the FSLE is
vortex eventually get beyond the reach of the attracting lines,
preventing further filament-breakingOf course, on longer N (X1, 89) = Eln (19
time scales, vertical advection and tracer sources will have to  °*" %0/~ 1P
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T+18

Candidate hyp traj: Fl:urw*:n:Edays. Iu;}gm[q+E A dt) Candidate hyp traj: Forw T =18days, H:ugm{_T A dt)

FIG. 6. (Color) Trajectories satisfying the necessary condition for Lagrangian hyperbolicity, fob days(left-hand sid¢ and 7,= 18 days in forward-time
advection from 12UTC 11 Oct 96. The colors indicate, oA dt) over ther, days.

where 7 is such that the separation at tihe 7 is 5(x,t, 7) and backward in time from time and we measure the pair
=pdp. Hencer is the required time to increase the separa-separation at time+ 7 corresponding to poink; as the
tion by a factorp. Whenp is of the order of a few unitsy maximum arc-distance among the two pairs initialized
describes the stirring properties at scajeand can be inter-  aroundy; at timet. We check the times;; at which this pair
preted as the inverse of a local turbulence tfh& One  separation first crosses predefined threshold distances given
expects this time to be highly scale dependent in threepy §,=p,5,, wherep; is chosen amon{p,10,20,50,75,100
dimensional turbule.nce.but its scalg depeqdence should behen, we use Eq(19) to define the FSLE?\pi(Xj t,80)
weak, at most Ic_;ganthmp, for layerwise motion governed by_ logp; /7. If a threshold distance is not reached by the
quasigeostrophic dynamit$When p>1, the unstable and particle in the finite-time of consideratiof20 days in our
stable hyperbolic materlgl lines are obtained by plottlng thecalculationﬁ;, FSLE values are zeroed out for such least
extrema of\ for, respectively, forward- and backward-time stretching points and this threshold. Finally, we map the

advections. Here.the resolutm?@ 'S “m'te.d by the negd 0 ESLE values onto the initial locations of points in the refer-
grow the separation to synoptic scale within a duratiosf .
. ence distribution.
the order of the integral scale. . .
: . . Figure 7 shows the FSLE chart for a growth ratio

The advantage of using the FSLE instead of the plaln_100 Here only the points with largest - are plotted
dispersior{ proposed by Bowmafi and obtained by letting 'Fh -re distrib )t/ 4 Ip -def g I.loo tp hich
be fixed and measuring(x,t,7)] has been discussed in Ref. €y are distributed along wetl-detined alignments which are

37. The basic reason is that plain separation is liable to sa‘ui100d candlda_tes for_the main h_yperbohc I|nes_ c_)f the flow.
ration effects and provides a “fuzzy” view of the hyperbolic They agree with the lines of maximum hyperbolicity strength

structure compared to FSLE. It has been shown in severérl‘ Fig. 5. The stable and unstable lines intersect many times

examples of dynamical systems that FSLE maps the staplf Particular within the collar around the vortex, generating a
and unstable hyperbolic manifold. number of lobes. It was shown in Ref. 37 that the lobes
Our implementation of the FSLE method is as follows. Within the collar are associated with the turnstile mechanism

First, we initialize a quasiuniform grid of particles in the of qui_d going in and out the collar along the hyperbolic lines.
flow domain, which is the 500 K isentropic surface from  Figure 8 shows FSLE charts for 20 days forward and
25°S to the pole. Considerig= 260 equally spaced paral- backward integrations from 12 UTC 11 Oct 1996 and a
lels in this latitude range separated Ayp=0.25°, we put 9rowth ratio p=5. The white patches show the regions
(27/ A ¢)cose regularly spaced points on each circle of lati- where the separation has grown over less than a factor 5 over
tude ¢, resulting inM = 191074 points to cover the latitude 20 days. Sinces=0.179 day ! for 7=9 days, we see that
range with a resolution of 26 km. Then, we consider for eaciihe pairs separating between 9 and 20 days are shown by the
point of the reference distribution four perturbed points atlowest colors in each chart. Therefore, the main patterns of
arc-distance 1/8,=0.05° in the four cardinal directions. Fig. 8 are obtained for<9 days, that is over the optimal
This generates two pairs separated by 11 km in the merididuration found for the necessary hyperbolic condition in Sec.
onal and zonal directions around each poiptof the grid. V. Integrating over 20 days only add details in the weakly
Then, we calculate the evolution of the four particles forwardstretched regions. In both forward and backward directions,
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PV & FSLE (+/- 10 d), 500 K, 11/10/96, r=100 extends along the PV filament being expelled from the vor-

o N o tex. This arm and the others agree with the locations of the
hyperbolic lines detected in Fig. 5. These results suggest that
mixing in the extratropical winter stratosphere is maximal
within a collar surrounding the polar vortex and in a broad-
band along the hyperbolic lines connecting this collar to the
surf zone. It was shown in Ref. 37 that fast two-way ex-
changes occur between the surf zone and the collar along the
hyperbolic lines, with time scales of the order of 2—3 days. It
is clear here that this mechanism is to a large extent discon-
nected from the exchanges across the vortex edge which oc-
cur over much longer time scalésee Sec. Vi)

VIl. CONCLUSION AND DISCUSSION

We have shown that the application of rigorous Lagrang-
ian hyperbolicity criteria provideper selimited insight on
the dynamics of the Antarctic stratospheric polar vortex. This

EE———— . is not totally surprising since the proofs of these criteria con-
tain severe approximations of the hyperbolic properties of
FIG. 7. (Color) FSLE for growth ratiop=100 at 12UTC 11 Oct 96 for  the flow (see Ref. 32 The mere existence of such criteria
backwarq(red) and forward(t_;lue) time ad_vectlc')n.' The selected points are which can be applied and tested with real observed winds is,
those V\_/hlch reach the required geparatlon within less than 10 days. PV lﬁ L . . _
shown in the background according to the color scale. owever, a significant result. In practice, improved phenom
enological criteria can be derived by measuring the strength
of hyperbolicity or from the properties of pair separation.
the vortex edge is visible as a well-defined minimum\inn The apparent success of these nonrigorous methods in re-
that follows approximately the location of the maximum PV vealing the hyperbolic structure of the flows, here in the
gradient on the vortex edge, revealing a thin continuous bamtmosphere, but also in numerical and experimental turbulent
rier around the vortex that the sufficient ellipticity condition flows3®*clearly calls for further theoretical development to
failed to capture(There is also a region of smalk sitting at  explain these results. One possibility is to improve the nec-
the core of the vortex indicating weak mixing in this region essary and sufficient conditions for hyperbolicity and ellip-
in agreement with the results shown in Fig) 5. ticity. Another possibility, recently considered in Ref. 52 is to

The vortex is surrounded by a collar with large values ofprovide a rigorous way to test the hyperbolic nature of a
\s, the largest values being located near the tips of the voreandidate hyperbolic line once it has been found by any con-
tex from which arms detach and expand within the midlati-venient method. It would be very interesting to apply such
tude surf zone. In Fig. &ight-hand sidg the broadest arm tests to FSLE.

FSLE (+20 d), 500 K, 11/10/96, r=5

ra

FSLE (-20 d), 500 K, 11/10/96, r=5

]
00B0S 021 0483 OZ76 0416 D27 D046 143 00BDS D2 0184 D278 0422 0639 O06E 145

FIG. 8. (Color FSLE for growth ratiop=5 at 12UTC 11 Oct 96 for forwardeft-hand sid¢ and backwardright-hand sidgtime advection. The colors
indicate\ 5 with logarithmic scaling. PV contours 25, —55 and—75 PVU are plotted in dashed lines. The projection is the same as in previous figures.
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The determination of the hyperbolic structures leads inyhereS, ,qis the apparent rate of change that arises from the
principle to the possibility to calculate isentropic transport i“rotating basis setX, ) along a trajectory. Hence,
the stratosphere using lobe dynamics. A first complication is o
that one has to distinguish not only the vortex and the surf M=2SVv+S— S s (A4)
zone but also a collar surrounding the vortex. A second com- . . . ~ - .
plication is that stable and unstable material lines are almos First, co.n3|der that the unit vegtmrrotates by &. n
parallel within the collar region, hence many lobes are ver)} € tangent.|al plane of the sphencgl surface over tkiip,e
elongated and difficult to identify owing to humerical inac- WhereME§|q¢. Hence, the change I8 due to the rotation
curacies. A third difficulty is that the finite-time hyperbolic °f the basis is
material lines do not necessarily need to cross and form §S ,=€Se 1S, (AB)
lobes in aperiodic flows. In practice it seems that this tech-
niqgue may apply to the calculation of the exchanges betweeWhere
the collar and the surf zone but is hardly applicable to the ( cofuh St)  sin(uN o)
much weaker exchanges between the polar vortex and its e= : :
exterior’"4 —sin(uh 6t) coguh ot)
Another possibility to derive exchange coefficients is t0Tg first order inét,
interpret the FSLE for sma as the inverse of a local mix-

ing time. The findings provided by Fig. 8 are indeed similar 1 MmN Ot
in several respects to those obtainedefgctive diffusivity> Vi st 1
In particular, effective diffusivity identifies the vortex edge H

barrier as a minimum, and there is a maximum located just 1 —u\ St
equatorward of it. The advantage of effective diffusivity is e =~ .

that it is based on a rigorous equation obtained by averaging KA St 1

the advective diffusive equation along a tracer contéiits Substituting the above into EGA5), we get
drawback is to assume that a single value of effective dif-

fusity is valid all along a tracer contour, however the tracer So —lim 550asis:2 )-\( b -a (A6)
contour deforms. In contrast, the FSLE is defined indepen- s o Ot FM —a —b/)

dently of the tracer concentration and its contours are clearly ) )

crossing the PV contours in many instances. The tendency of Next, we substitute EqA6) into Eq. (A4) to get
tracer cpntours to align with hyperbolic lirfésnduces, how- 252+ 2bQ) +a —2a0+b

ever, alignment of FSLE contours and tracer contours at the = ) . (A7)
vortex edge and the surrounding collar. Normalkg is —2aQ+b  20°-2bQ-a

partly due to the effect of the shear along tracer lines whicrNOW the vectors:® making up the zero strain set make an
results in practically no mixing. So, X4 is usually a lower angle of T 7/4 with the strain axisE*. Let E* make an

bound of the mixing time. But at the vortex edge, the ef'fectan led with the & vector. Hence
of the shear is limited because the edge is also close to a 9 ‘ '
cog O F w/4)

maximum of the horizontal wind. The FSLE indicates that .
sin( 9=+ m/4)

the exchange time between the interior and the exterior of -
the vortex is of the order of 3 ks at least. N .
€ vortexis ot tne order of 5 weeks at leas Substituting Eqs(A7) and (A8) into Eq. (A2), and then us-
ing the identities:a=o cos 29, b=osin 29, and recalling
Egs.(6) and(8), we get

. (A8)
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1S&|=0

APPENDIX: THE EXPRESSION FOR ||

Haller®® defines =¢ =0 (Q-9).

bo=min[¢*, ¢ 1, (A1) And usingQ . defined in Eq(7), Eq. (A1) becomes

¢i£1<§i,M§i> A2) ¢0:mm(0'+ﬂeff!0'_ﬂeff):m|n(0'+|Qeff|aO'_|Qeff|)
2 [¢&7|[s¢7]” =0 Qe

M=2SVv+ S0 In an elliptic region,|Q¢4|>0 so that

where ¢*,£7) is the zero-strain set ar,, is the rate of | G0l =|Qerl — o

change of the strain matri® in a nonrotating frame of ref- )
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