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Abstract

We discuss the stabilization of the inverse cascade in the large-scale instability of the Kolmogorov flow described by the
complete Cahn—Hilliard equation with inclusiongéffect, large-scale friction and deformation radius. The friction angthe
values halting the inverse cascade at the various possible intermediate states are calculated by means of singular perturbatior
techniques and compared to the values resulting from numerical simulation of the complete Cahn—Hilliard equation. The ex-
cellent agreement validates the theory. Our main result is that the critical values of fricidratiing the inverse cascade scale
exponentially as a function of the jet separation in the final flow, contrary to previous theories and phenomenological approach.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Inverse cascades are a common feature in the large-scale velocity and magnetic fields of geophysical, planetary
and astrophysical two-dimensional flows. Their halting by spontaneous formation of zonal jets has been the object
of great interest and considerable work by many scientists (see among otherELRs}js.The phenomenon of
a halted inverse cascade could play a role in the atmosphere of Jupiter and other Jovian planets which exhibit jet
streams of east—west and west—east circulation.

Frisch et al[6] showed that the inverse cascade of the large-scale nonlinear instability of the Kolmogorov flow
described by the Cahn—Hilliard equatigir-9] may be stopped by the dispersive Rossby waves, i.e. by the so-called
B-effect. We recall here that in the absence of any stabilizing effect the inverse cascade proceeds by visiting a
family of metastable states with increasing scale until the final largest scale is ré4@héd a later paper, Legras
et al.[11] have used singular perturbation techniques to calculate the range pfviddaes stopping the inverse
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cascade in one of the otherwise fif= 0) metastable state. Their result was different from that obtained by the
standard phenomenology based on dimensional argurfignighich fails because phenomenology does not take
into account the strong suppression of nonlinearities in the metastable states of the inverse cascade.

In Refs.[6,11] the forcing maintaining the basic flow was chosen parallel to the planetary vorticity contours and
there was no friction or advection. In a more realistic setup, Manfroi and Yfajrsjudied the stability of a forced
meridional flow on g3-plane pushing the fluid across the planetary vorticity contours, and including both friction
and advection by a mean flow. They obtained a complete amplitude equation for the leading order perturbation,
from which, with some formal modifications and with a slightly different interpretation of the parameters, the
amplitude equation of Ref6] can be recovered (s€ection 2.). Using this equation, but disregarding the dispersive
contribution fromg-effect, they showed that random initial perturbations rapidly reorganize into a set of fast and
narrow eastward jets separated by slower and broader westward jets, followed then by a much slower adjustment o
the jets, involving gradual migration and merger. The stabilization discussed ifbRifonly due to friction and
not due to dispersive effects.

Inthis paper we present a systematic approach to the study of stabilization of the inverse cascade in the supercritica
regime ofthe large-scale Kolmogorov flow provided both by frictiongréfect. The stabilization by effectalready
discussed ifil1] will be presented here in a greater detail and stabilization by friction will be discussed in the same
mathematical approach as for thecase. The mathematical framework is based on the kink dynamics introduced
by Kawasaki and Ohtf 2] to describe the solutions to the Cahn—Hilliard equation; singular perturbation technique
is used to study the stability of these solutions with respect to small perturbations due to frictipretiect. The
perturbative calculations are performed analytically for large wavenumbers and numerically for all cases. The results
are compared together and with direct numerical stability and time-dependent solutions of the amplitude equation.

The paper is organized as follows:$®ction 2he Cahn—Hilliard equation in itsompletform is presented; by
completdn this context we mean that friction, advection velocity and deformation terms have been added to the
standard Cahn—Hilliard equation. The perturbation to the steady metastable solution of the Cahn—Hilliard equation
by smallg and a friction term is presented 8ection 3 Section 4discusses the stability of the steady metastable
solutions and provides the main results of this w@kction 5presents the techniques used to solve numerically
the perturbation and the time-dependent problem, and compares the results of those calculations and the analytic:
results.Section 6offers a summary and conclusions.

We do not give the detailed presentation of the mean advection effect, which introduces considerable additional
algebraic complications, in order to focus here on the essential mechanisms that stabilizes the Cahn—Hilliard cascade
The main results in presence of mean advection are, however, given without demonstrappeiialix D

2. The complete Cahn—Hilliard equation
2.1. Basic equation

Our starting point is the large-scale Kolmogorov flow in its slightly supercritical regime, which is described by
the Cahn—Hilliard equation. We recall here that the basic Kolmogorov flow, (cosy, 0), is maintained by a
forcef = v(cosy, 0) against viscous dissipation. This flow exhibits a large-scale instability of the negative eddy
viscosity type when the kinematic viscositys slightly below the critical valuec = 1/+/2 [7-9].

Taking further into accoung effect, frictionr, external deformation radiug/$* and advection effect due to a
nonzero mean velocity, we obtain by multi-scale technigues the following adimensional equation for the leading

! The external deformation radius accounts for the inertial large-scale effect of a free surface in geophysigEBflows
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order large-scale perturbation:
3 (L— 82972 (v —y) = A92W'(v) — 20t — B w —y) —r(v —p), (1)

whered ! denotes the integration indefined for the family of functions with zero average over the interval [0
The potentiaW (v) is
2

_ S 4 22
W(v)—ﬁv —s“v (2)
and the constants if1) and (2)are
1 3 3
s = —, I'=,/=, A= —. 3
Ve Vs N 3)

Eq. (1)was derived if6] with S = r = y = 0. In this derivation, the Kolmogorov basic flow is oriented in the
zonal direction on thg-plane and therefore the large amplitude flow develops in the meridional direction. Using
a more realistic setting where the Kolmogorov basic flow is oriented in the meridional direction as an idealized
baroclinic perturbation, and introducing friction and mean advection velocity, Manfroi and Yélidgrived the
following amplitude equation:

BcA = —r*A—(2—y*)32A - 300A + 27%9,(3,A) + 20,(3,)° — B3, 1A, 4)

wheret andn are the temporal and spatial variables, respectively. In their study, the last term on the right-hand
side, which is the only dispersive term in the equation, was set tc’28yahe change of variablg, A = w — y*
and the rescaling = at, n = bx, w = cv, r* = r/a, B* = B/(ab) andy* = cy wherea = 12s*1/(2 + y*z)z,
b= (6s2/2+ y*)Y2 ande = (32 + y**)/(2I'?))Y2, this equation is easily transformed ir{d) up to the term
in S which is only a trivial modificationi13]. We see that the quadratic term(#) disappears in this transformation.
They term represents the net advection velocity (&¥and is also the average valuewf

In a recent worK14], it is claimed that the Kolmogorov instability exhibits a singular limit whr> 0. This
result is established for a very special situation which does not arisg1igreA more general approach for the
stability of Rossby waves is given by Lee and Snjit6].

2.2. Kinks and antikinks

The pure Cahn—Hilliard equation, is recovered fr@inby setting8 = r = S = y = 0. It admits a variational
formulation in terms of a Lyapunov functiongd]:

SF
sy

wherey = 3-1v and F the Lyapunov functional with

L/
/ (—(axv)2+AW(v)) dx.
o \2

Consequently, the pure Cahn—Hilliard equation is integrable and all solutions tend to final steady states that locally
minimize F.

Y (x, 1) =—

2 The coefficient in the last term of the right-hand side @) is the product of the planetary vorticity gradient per the small angle between
the Kolmogorov flow direction and the planetary vorticity gradient. Therefore it can be either positive or negative unlike in the derivation of Ref.
[6] where it is always positive.
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Fig. 1. Kink—antikink annihilation in a numerical simulation of the pure Cahn—Hlilliard equationinith76.95.

This property is preserved in the presence of friction Seetion 5.5 but is lost in the presence @3 The
solutions to the pure Cahn—Hilliard equation live essentially, albeit some initial transients, within a slow manifold
of soliton-like solutions with an alternation of plateaus= +1I", separated by alternating positive and negative
kinks, that we will call, respectively, kinks and antikinks] in the following. For large enough separation between
adjacent kinks, the kink centered.in= x; is locally given by

M;(x) =€;M(x —xj) = ¢;I" tanhs(x — x;), (5)
wheree; = 1 for a kink ande; = —1 for an antikink[12]. This solution satisfies the equation
—32M; + W' (M;) = 0.

Within anx periodic domain of period., the Cahn—Hilliard equation exhibits stationary metastable solutions of
periodA = L/N with N pairs of alternating and equally spaced kinks and antikinks. These fixed points are unstable
saddle points of the Lyapunov functional, exceptfbe 1 which corresponds to an absolute stable minimum. The
temporal evolution characterized by a growing total energy is a cascade of annihilations of kink—antikink pairs (see
Fig. 1) leading eventually to the gravest modfe= 1 [12]. It is shown inAppendix Athat the local solutioii5) is
modified by terms of order exp-s A) when the periodicity is taken into account.

3. Perturbation of stationary solution under the action of 8 and friction

In order to study the modification of the stationary solutions to the pure Cahn—Hilliard equation under the effect
of a smallg or friction, we multiply both terms by a small control parametekeeping8 andr as 0(1).

We puty = 0, leaving the casg # 0, which is technically much more involved, fappendix D. We only notice

here thaty # 0 breaks one symmetry and generates narrow intense westerlies and broad narrow d&gterlies

3 A Lyapunov formulation for the approximated equation is recovered, however, in the limit ofAdfje
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It is convenient to integratél) twice inx to obtain
1 r
—Xa;z(l — 5237200 — ega;% — exa;zv = 3% — W' (v) + h(1), (6)

whereh (t) arises from integration in. Then the perturbed solution is definedias 7@ + @ +£25@ + O(e3),
where© satisfies the stationary CH equatie?s©@ + U'(»@) = 0. We will distinguish two cases fdf: (i)

S = 0, associated with synoptic and subsynoptic dynamics, anf @) O(1), associated with planetary motion
(cf. [13]). When B # 0, we introduce the phase velocity= sc1 + s2c2 + O(£3) of the traveling framework in
which v is stationary.

3.1. Order 1 perturbation

We first treat the cas& = 0. The first-order perturbatioff? satisfies the linear equation
FoDy = 0© (7)
with
Flg) =2 —Wg, Wi=w'?), 09= %(cla;la“’) — 0300 —r525@).

3, 7@ belongs to the kernel of: this can be easily verified by multiplyin@) by 3, 9© and integrating within the
domain. After integration over the spatial period, the solvability conditiorf#pgives the first-order contribution
to the phase velocity

J3 @7 1%5©@)2 dx

8
foL(l_)(o))2 dx ®

c1 =

The symmetry of the stationary Cahn—Hilliard equation with respectraversal is inherited by®. The solution
is antisymmetric with respect to kinks locations and symmetric with respect to the middle of the plateaus. The
perturbations® is the sum of two parts

0@ = iy +ro®,

Wherez‘),(l) has the same symmetry &’ andﬁfgl) has opposite symmetry.

It is shown inAppendix Athat, up to errors of @ *4/2) the basic solution® can be approximated by a series
of jumps locally described bgp). Over each intervald; — A/4, x; + A /4] centered on a kink in; (see(5)), we
have

_1- r coshsx
0 11)(0) = €;— In _———
x I cosh(1/4)s A

from which the velocity; is readily calculated using). After some algebra, we get

A2 2 133 4\1 .
C1=—ﬁ<4—8—1n—292+ 3§(>)(1——) +0(e*4/?), 9)

> +O(e %472,

8As3 As

where¢ is the Riemann zeta function. The phase velocity is directed to the left /he® and increases with the
wavelengthA. The fact that the error i(®) is exponentially small makes this expression very accurate even for not
so large values oft as we shall check below. By straightforward algebra, one gets

r (x? 1 1 rr 1
0 = —%|x| <§ - ZAlI+ ZlA2> - 5l <|x| - EA) + O(BA% +rA). (10)
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Far from the kinks the ratio between the derivative and the potential teffisiD(1/42). At leading order in 1A:

W T 1 1

i = Sa <|x| - zA) (|x| - ZA) , (11)
r 1

SO _ 1

TP (M 2A> ' (12)

These expressions are valid in the intervald/2, A/2] far from the kinks. It can be shown that at1) distance
from the kinks,z‘;fgl) is O(A2), while 7Y is O(A).

For § = O(1), the leading contribution of friction is unchanged, but the effeqs i$ deeply affectedQ© is
modified as

1 _ _3- -
ng) — X(Clax—lv(o) — (ﬂ + C]_SZ)BX 31)(0) _ rax 2U(O)).

Therefore, the phase speed is now

o =P
Is = S2c1+ B’
wherec; is given by(9), i.e.:
B | 488 B
Cls:_§+A254+O A3 ) (13)

Unlike the infinite radius case, the phase speed varies weaklyAvieporting(13) in Q(So) and solving forﬁél),

we obtain

w_ T YN
Ug _szSZAA|x|<|x| 4A> (1 2A + 01 (14)

at large distance from the kinks. The correction to the stationary solution scatearad is considerably reduced
with respect to the case= 0, for which it scales as13.

4. Stability
4.1. Stability of the Cahn—Hilliard equation

The stability of the solutiom = 0 is easily obtained by linearizing.) in the Fourier domain. When = 0, the
solution is unstable to all Fourier modes with wavenumbet @ < k,, = /25 = /2/3. This result does not
depend on the values gfandS. Whenr > 0 the modes nedr = 0 andk,, are stabilized and the instability band
in k-space shrinks asgrows. The solution = 0 is stable for > ro = As* = (3v/2)~L. The vicinity of this value
has been studied i®]. We are here interested in the limit of small

The stability of the nonzero stationary solutions to the Cahn—Hilliard equation can be studied using the equation
for kink motion derived inAppendix B For an arbitrary perturbation, fast transients dissipate rapidly, leaving only
after a short time the part of the perturbation that projects onto kink displacemengttrkiak being displaced by
8x;, the perturbation ta@ is

2N-1

Sv = — Z 9, Mydxp. (15)
=0
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Then usingB.14), the equation for the displacements is

4221 . |
S, —1)/¢ - 1)/t — =85 ) sk
n L (( ) T Ga(xj — x¢) + (=1 L2 2% e) X¢
= 64532 e [28x; — 8xj41 — 8xj_1] — 2[¢;8h. (16)

It is convenient to use Fourier components defined as

2N-1

Sxj = Z VUm g (mi/N)

m=0

withm € [0, 2N — 1] andyay_,, = V. The equation foty,, is obtained by multiplying16)by (1/2N) e~ (Mi/N)

and summing over thgfrom 0 to 2V — 1. Taking into account the regular alternation of kinks and antikinks separated
by intervals of lengthl. /2N in the basic solution and using the Fourier transform of the Green function given by
(C.2), one obtains after some algebra:

1 A 2\ . N
S — =) Y = 12834 (1 — cOSHy) Y — 4—B8hS(N — 17
A(1+ COSO,, s> ( v r ( ™) (7
with 6,, = mm/N. The leading order form dfL7) was given by Kawasaki and Ohts2] with a factor 2 error (see
Appendix B.

The first term in the right-hand side @7) is destabilizing the stationary solution with the eigenvalue

_128%et o (1_ 2(1+ cosem))—l

= 18
00 0 (18)

This instability is responsible of the inverse cascade in the CH equation. Each vaius associated with a real
eigenvalue ofF and a dimension 2 eigenspace. It turns out that an appropriate basis of this eigenspace is provided
by the couple of orthogonal vectors

2N-1

va(¥) = Y (=1)7 08}, 0 M(x — x;), (19)
j=0

2N-1

vp(x) = Y (=17 sin 6,0 M(x — x;), (20)
j=0

which are here given up to an erro@+*4/2). These expressions agree very well with the numerical solution shown
in Fig. 2

The i contribution vanishes but on the mode= N. The solutionv(x, r) must average to zero within the
periodic interval [Q L]. In terms of kink motion, this imposes the constraint

2N-1
> (=D =0

£=0

and thusg/y = 0. The presence () in (17)is required to impose this condition.
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Fig. 2. Numerical calculation af, andv,, by discretization of the eigenvalue problem fBi(cf. Section 5.} with 128 points forL = 76.953
andm = 4. (a) Thin solid:3©, solid: v, dashw;; (b) thin solid:3, 3@, solid: v, /9, 9?, dashw, /9, 9©. The scale is arbitrary far, anduy.
Even if the plateaus ia© are very short for the chosen valueslondm, the ratios in (b) show the staircase structureoéindv, over the
kinks as given in(19) and (20)except wherd, 5@ vanishes in the middle of the plateaus.

4.2. Stability of8-CH equation with infinite radius of deformation

4.2.1. Formulation of the problem
The equation governing the perturbatitinto 5@ can be written conveniently far = a tsv

with
L= —213,(0% — W' (0))d, — cdy — e L —er. (22)

The reason of using instead ofv is thatL is self-adjoint while the corresponding operator §oris not.

Unlike the casg = 0, the slow component perturbation to the stationary solution g t6#1 equation does not
reduce to the simple motion of kinks. One has also to take into account the dispersive effeg tafrthanodifying
the shape of the slow modes and contributing to the stability. Therefore, we eXpasd

L= Lo+ely+e%Lo+ O@>) (23)
with

Lo = —1dx(82 — UY)d,, (24)

L1 =13, (W'5P8,) + 18, — pa; L —r, (25)

L2 = 28, (Wg'T@ + W5V, + c20,. (26)

The eigenvalues dR1) are perturbations of the eigenvalueqb8). For a givenn # N, we obtain
o= 0'0+80’1+i8/L1+80'2+i8/L2+O(83). 27)

The functionsp, = a;lva andg, = a;lvb are orthogonal eigenmodes 6f and, it turns out, an appropriate
Jordan basis for the perturbation problem. They are, respectively, modified-a$ 9.1 + €202 + O(e®) and
©b + €p1 + €202 + O(e3). The hierarchy of linear problems is

Lopa = 00¢a, (28)
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Loga1 + L1¢a = 00@al + 01¢a — L1¢b, (29)

Loa2 + L1¢a1 + L20a = 00¢a2 + 010a1 + 020a — 101 — K29 (30)

and similar equations fapp;.

4.2.2. Stabilization by friction at first order
The first-order corrections of the eigenvalu@re obtained as solvability conditions(@0) by

(9a, L1¢a) = 01{@a; Pa), (31)
(0p, L1¢0a) = —p1{@p. ¢b). (32)

where(f, g) = (1/L) fOL f(x)gx)dx. In (¢, L1¢4), the contributions fron immediately vanish by integration.
We have, after integration by part

(@as L10a) = —1 (02, WE'DD) +r(vq, 97%0,). (33)

The first contribution to the right-hand side(8f3) can be reduced to an integral over a single kink by summing the
trigonometric factors arising fromaz:

w2, wi's @y f Wy (9, M ;)? dx. (34)

Herej labels an arbitrary kink and the integral bounds do not need to be specified sM¢elecays exponentially
for both positive and negative This contribution is further transformed using

1
/Wg’ﬁﬁl)(axMj)zdx = X/&;lﬁ(o)axMj dx,

which is valid up to exponentially small errors. Finally the contribution is reduced to a nonlocal integral by part:

1 1 [utd/24 1 2r?
—/a—l Og M de = — [ 9,099 dy = 22+ =
A 2A xj—(1/2)A 2 As
Combining this with(C.2) and (C.8)we obtain
o1 = —rsin —0 + 4— 1+ cos —0 1- 4 0052}9 N + O(e*4/?) (35)
2 2 As 2" '
In a similar way, we have
(9> L160a) = =2 (vavp, W 5P + c1(va, 5 Mop) — B(va, 0 2vp). (36)

The first term in the right-hand side (6) vanishes after the trigonometric summation. Ugi@) and (C.9pand
(C.1)—(C.3) we obtain
-1

2c12 124 o w22\ (I? o 2I? sAp2
m-(— e t(1+t)+62A><7(1+t)—s—A) + 09, (37)

or, retaining only the first three orders of the expansion:

B At(2+3t%) (14217 4 ° B
m=Fp <_ 12(1+12)  3s(1+12)2 t 3452 (1+12)3 +0 <_) (38)

with r = tanmm/2N.
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It is interesting to notice that the nonlinear contributi{mj, U(’,”ﬁ(l)) is destabilizing the stationary solution.
However, the direct linear damping by friction remains larger and the total effect of friction is always stabilizing.
Therefore, then-mode perturbation to the stationary solution is stabilized by friction for

—sA

535 cos? 22 (39)

r>rC:512A oN

at leading order.
The corresponding result when # 0 is given in(D.6). The mean advection decreases the value of friction
necessary to stabilize a given wavenumber.

4.2.3. Stabilization by-effect at second order
At second order ire, o7 is solution of the solvability condition. Here we seto zero for simplification as
stabilization byr is already obtained at first order:

(0as L1¢a1) + (Pa, L20a) = 02(¢as Pa) — H1(Pas Pb1)- (40)
The second term on the left hand sidg4®) expands as
(¢ Laga) = =22, Wg'5P) — 3002, Wy @D)3). (41)

The second term is @243) while the first term is ©@82A%) and dominates at leading order. This term can be
transformed in the same way as above(far, L1¢,), leading to

A
(0u: Lag) == [ QVa2M; dx + O(5243)

whereQ® is the right-hand side for the second-order versiof7pfAfter dropping out all contributions that vanish
owing to the symmetries, we obtain

2
_ 2 _
(Qar L29a) = % / 0, o 02 M d + o f Wy (5D)202M; dx + O(2A3). (42)

The second term on the right-hand sid€4#) is negligible relatively to the first. This later can be calculated using

1 1 rxit@/24 1 rxt@/24

” / 0,305 02M ; dx = o 07351025 dx = o ERET T

xj—(1/2)A xj—(1/2)A
and(11). We obtain
B2AA[2 5 3
L = ———— +0(B°A°). 43
(@a> L20a) 92 160521 + OB ) (43)

The other contributions i40) involve ¢,1 andg,1. These quantities can be approximated in the same wayas
at distance from the kinks. We have

45%h0a1 = =272 WG 5P v,) — €107 00 + B 300 — 110 20p (44)

and a similar expression fen,1. Then, after some algebra and dropping the terms which do not contribute to the
leading order, we have

45%3(@a, L190a1) = €2 (Va, D7 20a) + B2 (Va, D7 Pva) — 2B¢1(var 37 H0a) — 118 (va, 9 %0p)
+ p1c1(va, 87 3vp) + O(B2A3).
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Using the results oAppendix G we obtain

ﬁ2F2A4 2 4 243
(Pas L1¢a1) = —m(l+ 6t° + 15t%) + O(B“A°).
and
2 43
(@as 9p1) = = Jemam(t + 3r%) + 0(A?).
Finally

B2AY 124+ 9P
69, 120521 (1 + 12)2

o2 =— +0(B243). (45)
The contribution from-2 is a correction to the first-order stabilization obtaineeinThe 8 term does not appear at
first order and is stabilizing i(45). Though the effect is small, it increases algebraically witwhile the nonlinear
coupling of kinks decreases exponentiall(18). Therefore, ifr = 0, stabilization of then-mode perturbation to
the stationary solution is obtained at leading order for

e—SA 5. 2 1 1/2
. = [ 35, 389 440 A 46

p>F ( A5 ° 4+9t2> (46)
The condition is the most restrictive for = 1, that isr = tanz/(2N).
4.3. Stability of8-CH equation with finite radius of deformation

In this caseC; and £, are modified as

L1 =20, Wg'v Py + c10x — (B + 1599, — 1, (47)

L2 = 10, (Wg'5@ + JUN5D%)a, + ca(dx — $20;). (48)
At first order ing, the imaginary part of the eigenvalue is

vy, 0= Lup 0, 0730 481 (2 4 312)
P R A ) e il o 0(%) (49)
(vfb A %0p) (vfb, 37 %¢p) AS“(L+t%) A

At second order i, o7 is still given by(40). The contribution¢,, L2¢,) is now
2
<¢a,£z¢a>—M/a D020, ce +o<i>

After integration by part and using4), we obtain

B ﬂZI'VZ ’32
<(pa9£2(pa>— m+ 7 .

Similarly, we have
2

B2r? r
9656521

2
(@a, L19a1) = = o571+ 62 +15% + 0 (%) . AP op1) = — t(1+3t%) + O(D).
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Finally, we obtairp; as

g% 3477+ 9t B2
=— o|—). 50
727 T30525%. (1+12)2 A (50)
The stability cross-over fof is now
3+ 72+ gt e\ 2
Be = <15, 360555225 t2+ " ) (51)

Therefore, the stabilizing effect ¢f is much reduced compared to that with infinite radius of deformation.
All the perturbative calculations &ections 3 and have been checked with Mathematica.

5. Numerical results

The analytic results establishedSection 4are valid in the double limit of smadland largeA. These asymptotic
results are complemented and compared with three types of numerical calculations: (i) numerical solution of the
perturbative problem for several valuesf (i) direct numerical simulation of the Cahn—Hilliard equation in the
Fourier space and (iii) direct stability calculation.

5.1. Numerical solution of the perturbative problem

We relax here the hypothesis on the large valug @y solving numerically the perturbative equations#6¥,
9@ 9.1 ande,1, and numerically evaluating the solvability conditions.
The calculation is performed according to the following algorithm:

(1) The basic solution©@ is defined by the approximate form givenAppendix A
(2) The inverse derivatived”13©, 5-20© and 933 are calculated by Fourier transform and tabulated to
obtainQ©.
(3) c1 is calculated by discrete evaluation(8.
(4) (7)is discretized as a tridiagonal problem and solvecbfﬁrandﬁfl).
-(1)

(5) 0W is built in the same way a@© from the inverse derivatives (ﬁfsl) andp,”.

(6) 5@ is calculated by inverting a tridiagonal discretized problem.

(7) The eigenvectors, andv, are defined usin¢l9) and (20)

(8) ¢, andy, are calculated by Fourier transform and tabulated.

(9) o1 andpu are calculated according (@5), (31) and (32)
(10) ¢,1 andgy1 are obtained usin(R9) and solving a tridiagonal discretized problem.
(11) o7 is obtained fron(25), (26) and (4Q)

This algorithm admits @—54/2) errors, but all the steps generating errors of algebraic order in the asymptotic
expansion are here solved numerically. The implementation has been done as a Mathematica notebook availabl
from the authors. The number of grid points and Fourier modes has been adjusted as a furdctiod &fin order
to provide at least three digits of accuracy in the results. The symmetries have been exploited to distinguish the
solutions and reduce the number of points.
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5.2. Numerical solution of the complete Cahn—Hilliard equation

We have done numerical simulations of the complete Cahn—Hilégréation (1)or the caser = S = 0. For
practical convenience, the spatial period has been kept fixed by 2escalingc asx — px, henceL = 2z p. The
complete Cahn—Hilliard equation then reads

A A
v = —ZBEW/(U) — ofv— ppa; v —rv. (52)
p P

Since Fourier modes are discretized by the periodicity condition, the nuimdfarnstable modes far = 0 is the
integer part ofp(2/3)1/2.

5.2.1. Time-dependent simulations

The simulations are performed using a standard semi-spectral method where the number of retained real Fourier
modes is 256. The collocation grid in the spatial domain has 512 points in order to fully remove the aliasing due to
the cubic term i{52). We have checked that using higher resolution does not modify the results within the explored
parameter range. The temporal integration is performed with an Adams—Bashforth second-order scheme. Initial
conditions are a random white noise in the spatial domain. We have made a large number of runs by varying the
initial conditions (changing the seed of the pseudo-random number generator and the amplitude of the noise), the
values ofr andn.

Section &hows the existence of multiple stable solutions inducegldnyd friction but does not provide indications
about the attraction basins of these solutions. In the inverse cascade of the standard Cahn—Hilliard equation, the
interaction of a pair of neighboring kink and antikink scales agexp\x), where Ax is the distance between
the kink and the antikink (se&ppendix B. When frictionr is just above the critical valug(N) stabilizing the
solution with N pairs, we may conjecture that the stabilizing effect is of the ordgr © r.(N))éx), wheres,
is the departure of a kink from its equilibrium position (this is clear from the shape of the eigenmoaed v,
(cf. Section 4.)). This effect, however, cannot extend very fainas the attraction to the next antikink grows
as exfisdx). Moreover, the time-dependent solutions do not need to pass in the vicinity of-fraer fixed point
during the cascade of kink—antikink annihilations. Therefore, we expect that the fraction of the solutions halting on
the N-pair stable state will be small in the vicinity of the criticaland will be significant only when the stabilizing
effect is felt over a distance of order. Once this is obtained, very few solutions should jump to lowestates.

Fig. 3shows how the inverse cascade evolves as a functierfafthe same initial conditions, with the corre-
sponding steady states showrFig. 4. The final state wavenumber increases wittnd stays bounded by the value
of the most unstable eigenmode of the Kolmogorov flow (2/3)1/2xn which is the unique mode excited when
approachesgy. The total energy calculated as the sum of the various enefgiesf the single modes, decreases
as the friction increases.

Fig. 5compares the halting of the inverse cascade by friction angl éffect for the same initial conditions. It
is apparent fronfrig. 3that friction simply halts the cascade by stabilizing one of the intermediate steps. Here, the
effect of theg-term is more complex: oscillatory transients are excited and, paradoxically, the cascade is accelerated.
In Fig. 5the transitions taVv = 3 and toN = 2 occur much earlier than in the absencgoDther examples can
be found in[11,18]. In the final state, th@ effect breaks the symmetry between the kinks and the antikinks which
is preserved by friction.

5.2.2. Numerical stability calculations
In order to compare the results from the analytic and numerical perturbation approaches to the direct simulation of
the complete Cahn—Hilliard equation, we have developed a direct analysis of stability by the same technique as for
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Fig. 3. Temporal evolution of the energi€sk) of the Fourier modes and their Subiy:. The three shown cases, are fo= 0,r = 3 x 108
andr = 10°, with 8 = 0,n = 10 and the same realization of white noise as initial condition.-Fer 0 the inverse cascade is complete to
N = 1, for the other values the cascade stops, respectively, en2 and onN = 3. Note thatEi is constant between two annihilation events.
Increasing further enables to stop the cascade on largeonfigurations (not shown).

the time-dependent simulations. The core of this analysis is to calculate the Jacobian matrix of the right-hand side of
(52)linearized around a given statewith respect to each of the Fourier component. This is done by differentiating
(52) and calculating the columns of the Jacobian matrix by the semi-spectral method applied to the differentiated
equations for each Fourier component.

The stability calculation is performed as follows. First an estimate of the stationary solution basgokmdix A
is refined by a Newton—Raphson algorithm which usually converges within a few steps. The degeneracy due to

1.5 T T T T T T

r=1e-05

QLN
oo

r=3e-06

r=0

X

Fig. 4. The corresponding asymptotic velocity profile for the three cases preseftgd3nNote that the kinks—antinkinks pairs are equidistant,
unlike theN = 2 or N = 3 configurations ofig. 1which are only metastable.
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Fig. 5. Comparison between two temporal evolutiorEgs and E (k), for the same initial conditions and for very similar final solutions with
sameN and final energyE ~ 0.5535. Topr = 10~> andp = 0. Bottom:r = 0 andg = 9.7 x 1032,

the x-invariance of the complete Cahn—Hilliard equation is removed by setting to zero the imaginary part of the
dominating Fourier mode and removing the corresponding row and line from the Jacobian matrix. In fhe‘dase

the solution is stationary in a frame traveling at a velocityhis phase velocity is treated as an additional unknown
increasing the dimension of the Jacobian matrix by 1. The stability of this numerical solution is then found by
finding the eigenvalues and the eigenmodes of the Jacobian matrix using a standard QR algorithm from LINPACK.
In this procedure, we find both the slow components associated to kink dynamics and the highly damped modes
associated with fast relaxing transients. The conditioning of the eigenvalue problem gets verybeatiEeases

as a result of the large separation between slow and fast eigenvalues, thus limiting the parameter range for the
numerical calculation of stability. There is enough overlap, though, with the validity domain of the perturbative
theory to provide detailed comparison. The number of Fourier modes used in this analysis has been 128, 256 or
384, depending on the valuesbfandN.

5.3. Comparison of stability results

Table 1compares the critical values of friction agdestimated from the analytic perturbative expansion, the
numerical solution to the perturbation problem and the numerical stability analysis. In the numerical stability analysis
the value of the parameter is adjusted by dichotomy from two values bracketing the transition. There is an excellent
agreement between the three values of critical friction wheis large. At the largest values, however, the QR
algorithm fails to converge and no results are obtained for the numerical stability. Wisamot large, that is when
the kinks are not distant enough to neglect the contribution(ef @/2), significant discrepancies occur between
the different estimates. We see from the table that this occurs wHérn%z, 3 x 1072,

There is also an excellent agreement betw,é@‘zrﬁt and g™ for the same range ofl values as forc. The
analytical predictior{46), however, provides only an order of magnitude and is wrong by at least a factor 2 when the
two other quantities agree by four digits. The reason is that the er(d6)mlepends algebraically am unlike the
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Table 1
Critical values of friction ang as a function of the number of unstable modesr equivalently the size of the domain= n(3/2)%/2) and
the wavenumben of the stationary solutich

n N es4/2 rgm ré’e” rgum gn é)ert Qum
7 2 4x10* 6.8478x 1077 6.8484x 1077 6.848x 1077 1.06 x 1074 2.0522x 1074  2.0523x 1074
3 6x10°8 2.7469x 1074 2.7705x 104 2.779x 104 5.88x 1073 1.6329x 1072 1.6385x 1072
4 2x1072 5.5655x 103 5.9149x 1073 6.147x 107 5.58 x 1072 0.216 0.222
5 5x1072 3.4908x 1072 3.9614x 1072 5.139x 102 0.260 1.473 1.379
20 2 2x1010 68832x10%° 68825x 102 NA 393x 10712 482x 102 NA
3 4x107 4.1846x 10718 4.1847x 10713 NA 2.50x 1078 342x 1078 NA
4 2x10° 1.0438x 1079 1.0439x 1079 1.009x 10°° 241x 1076 3.780x 107 3.716x 1078
5 1x10* 1.1756x 10°7 1.1756x 10°7 11751x 107  4.23x10°° 7.782x 1075 7.782x 107
6 6x10* 2.8135x 10°® 2.8143x 1078 2.8144x 10® 313x10°* 6.858x 104 6.858x 104
7 2x10°8 2.7738x 1073 2.7778x 10°° 2.7795x 10°  1.40x 1073 3.706 x 102 3.710x 1072
8 4x10°8 1.5681x 104 1.5750x 104 1.580x 10~4 452x 1078 1.468x 1072 1.479x 1072
9 7x10°8 6.1103x 10°* 6.1582x 104 6.242x 104 1.18 x 102 4.676x 102 4.827 x 1072
10 1x1032 1.8329x 1073 1.8416x 1073 1.921x 1073 2.68x 1072 0.124 0.138
11 2x10°32 4.5418x 1073 4.4508x 1073 4.965x 1073 5.24 x 1072 0.287 0.373
12 2x102 9.7452x 10738 8.9096x 103 1.135x 1072 9.58 x 102 0.551 1.01
13  3x10°?2 1.8708x 102 1.4927x 1072 2.392x 1072 0.164 0.951 2.11

aThe columns:2" and 82" show the analytical predictions given £89) and (46or m = 1. The columns£®" and 2" show the critical

values obtained by numerically solving the perturbation problem as indicaBetiion 5.1again form = 1. The columnsJ“™ and 8™ show
the critical values obtained from the direct numerical stability study of the complete Cahn—Hilliard equation, as indigatdthm5.2.2

error in(39) where the error exhibits an exponential dependence. Very large valuearefrequired to makel6).
for n = 200 andN = 5, we obtaing®" = 2.24 x 10742 and g0U™ = 2.35 x 1042, while for N = 2 we obtain

e — 1,842 x 10710 and gPUM = 1.808 x 10101 This difficulty with g is entirely due to the need to solve
completely the perturbation at order 1. The phase speadd the frequency1, which are obtained as solvability
conditions at order 1, are known with the same accuraey,as can be checked fable 2

5.4. Comparison of stability properties and time-dependent solutions

In order to assess the distribution of final states among the multiple stable steady states we have performec
ensemble simulations for a number of values afidg. Each numerical integration of the time-dependent numerical
model described iBection 5.2.%s characterized by, r, 8 and the initial condition. We choose for this a white
noise with amplituded in the spatial domain. For each value of the parameters and for two values of the amplitude,
A =0.1andA = 1.0, we performed an ensemble of 100 independent simulations by varying the seed of the random
number generator. After some time, all simulations converge to a final stationary or uniformly traveling state (if
B = 0orp # 0, respectively). The honconvergent cases are due to fast transients leading to nonlinear numerical
instabilities.

Table 3shows the dependence prvheng = 0 andrn = 20. The distribution of final states agree qualitatively
with the analysis presented 8ection 5.2.1Stationary states associated to given valu® are only reached for
r larger than the critical value.(N). The proportion of solutions reaching these stationary states is about 15% for
A = 0.1 and 10% forA = 1.0 whenr/re(N) ~ 3. This proportion grows rapidly asincreases further while the
number of states reaching solutions with smallefalls dramatically. In practice, it is difficult to find values of
r where more than three steady states are obtained. It is also visible that larger amplitude of the initial conditions
favor smaller finalv and more dispersion of the final states.
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Table 2
Values of the phase speed of the basic solution and the frequencymfth& mode as a function of and N2
n N c"/B B cnm/p 13"/ B il /B
7 2 —17.6492 —17.6492 —17.649 —6.01296 —6.01298 —6.0127
3 —8.05199 —8.0485 —8.0486 —2.21915 —2.22148 —2.222
4 —4.61026 —4.57267 —4.5730 —-1.16117 —1.18408 —1.1876
5 —3.11049 —2.93650 —2.9368 —0.63701 —0.73943 —0.74685
20 2 —133043 —133043 —13304 —16.4572 —16.4571 NA
3 —60.8209 —60.8209 —60.821 —5.86179 —5.86179 NA
4 —35.0024 —35.0024 —35.002 —3.08063 —3.08063 —3.0806
5 —228122 —22.8122 —22812 —1.92726 —1.92726 —1.9273
6 —16.0670 —16.0669 —16.067 —1.33119 —1.33123 —1.3312
7 —11.9316 —119310 —-11931 —0.979702 —0.979894 —0.97994
8 —9.20895 —9.20716 —9.2074 —0.753012 —0.753716 —0.75386
9 —7.32184 —7.31636 —7.3170 —0.596714 —0.59863 —0.59900
10 —5.96367 —5.95021 —5.9514 —0.482911 —0.487182 —0.48791
11 —4.95971 —4.93139 —4.9335 —0.395862 —0.404176 —0.40547
12 —4.20511 —4.15177 —5.1550 —0.325842 —0.340601 —0.34263
13 —3.63500 —3.54226 —3.5452 —0.266160 —0.290808 —0.2927

aThe columng-12"/8 and 2"/ show the analytical predictions given £§) and (37) The columns)®"/8 and.5*"/8 show the values

obtained by numerically solving the eigenvalue probled! and ,Lﬁe" are calculated form = 1. The columns™™/8 and "™/ show

the values obtained from the direct numerical stability study of the complete Cahn—Hilliard equation near the critical gaju®@'8fis the
frequency of the critical mode.

Table 4shows the corresponding results as a functiop efhenr = 0. They are qualitatively similar to the
precedings although up to seven different final states are now observgafdr.

5.5. Attracting solutions and Lyapunov functional

In the presence of friction, the Lyapunov functional is

L A
F= / 2%+ 20002 + AW () ) dx, (53)
o \2 2
where we have set = § = 0 for simplicity. By using the same approximations a$gttion 3 we obtain
A% 11127 -1 (3 8hs  As?
F=T?L — —_— - —. 54
{r<96+ 452 +4As2)+A 2} (54)

Manfroi and Young[5] observed that minimizing" with respect toA yieldsr ~ A;]?n and suggested that final

steady states should satisfy this scaling in the presence of friction. &)we have

128  12:(3)\ Y3
min=< + A )) .

53

(55)

It is easy to check that this wavelength is always larger than the critical value provided by the stability condition
(39). In a finite domain, it is necessary to find the minimumrobver the discrete set of the steady states. We
have performed this calculation far= 20 and all the values of friction ifiable 3 Both (54) and the numerical
calculation of F from the steady state calculated $ction 5.2.2vith (53) provide the same wavenumba,
minimizing F. This wavenumber is indicated Table 3to be compared with the critic& bounding the stability
domain and the distribution of final steady states. It is clear that the solutions initialized with a white noise do not
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Table 3
Distribution of solutions as a function &f for n = 20, 8 = 0 and increasing values of
re r Ny N A=01 A=10
2.81x 10°° 6
105 1 4 4% 19%
5 81% 71%
6 15% 10%
1.78 x 1075 1 4 1% 8%
5 57% 69%
6 42% 23%
2.78x 1075 7
3.16x 10°° 1 4 0% 1%
5 44% 52%
6 56% 41%
5.62x 107° 1 5 23% 30%
6 74% 67%
7 3% 3%
104 1 5 9% 16%
6 76% 75%
7 15% 9%
157 x 1074 8
178 x 1074 2 5 1% 2%
6 50% 65%
7 49% 33%
3.16x 10 2 6 18% 34%
7 75% 64%
8 7% 2%
5.62x 10 2 6 1% 19%
7 63% 62%
8 36% 2%
6.16x 10 9
103 3 6 0% 6%
7 29% 40%
8 69% 54%
9 2% 0%
1.78x 102 3 7 1% 20%
8 74% 71%
9 25% 9%
1.84x 1072 10
3.16x 1072 4 7 0% 3%
8 26% 57%
9 68% 69%
10 6%
4.45x 1073 11
5.62x 1073 5 8 2% 20%
9 66% 70%
10 32% 10%
8.90x 1073 12
102 6 8 0% 3%
9 20% 51%
10 66% 45%
11 14% 1%
1.49x 102 13
1.78 x 1072 7 9 1% 9%
10 33% 59%
11 62% 32%
12 4% 0%
3.16x 1072 8 10 3% 17%
11 48% 59%
12 48% 23%
13 1% 1%

2The statistics is calculated out of an ensemble of 100 cases for each valaad#. The cases are obtained by varying the seed of the random generator. The fifth and
the sixth columns show the percentages of solutions ending on the Atgidé solutions withV in the fourth column. The first column gives the critical linear stabiljtps
a function of N (same line in the fourth column), provided by the numerical solution to the perturbative probleBese® 3. The third column gives for each value of
the steady state wavenumber with the minimum value of the Lyapunov functional.
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Table 4
Same agable 3but for the distribution of solutions as a function®ffor n = 20,r = 0 and increasing values gf
Be B N A=01 A=1
7.78x 1075 5
104 3 12% 13%
4 85% 87%
5 3% 0%
6.86x 1074 6
103 4 17% 36%
5 82% 63%
6 1% 1%
371x 1078 7
1072 5 0% 2%
6 74% 68%
7 26% 30%
1.47 x 1072 8
4.68 x 1072 9
0.1 7 2% 10%
8 56% 78%
9 42% 12%
0.124 10
0.288 11
0.551 12
1.0 7 0% 1%
8 0% 2%
9 0% 17%
10 16% 26%
11 65% 46%
12 18% 8%
13 1% 0%

reachN,, but cluster over a few wavenumbers near the critiéals described iSection 5.4This suggest that the
attraction basin of the most stable solution is indeed very small in the phase-space of the solutions.

6. Summary and conclusion

We have investigated the stabilization induced by friction@etfect in the inverse cascade of the large-scale insta-
bility of the Kolmogorov flow. This problem has been treated by solving the unidimensional complete Cahn—Hilliard
equation using both numerical simulations and perturbation techniques.

In the standard Cahn—Hilliard equation, the kinks and antikinks are coupled by interactions decreasing expo-
nentially as a function of their separation. The number of kinks decreases with time and their average separation
increases as a result of the inverse cascade. Therefore the Cahn—Hilliard coupling also decreases with time.

The basic effect of friction is to damp uniformly the motion of the kinks and antikinks. Nonlinear effects due to
the deformation of the kinks tend to reduce this damping but cannot invert it. When the separation is large enough,
the damping overcomes the destabilizing Cahn—Hilliard coupling halting the inverse cascade before it reaches the
gravest mode. The dependence of the critical frictiompon the kink separation /2 scales ag. ~ (€7°4/A). The
perturbative approach yields a very accurate analytical expressigretause the leading contributionsoe’4,
which is algebraic in4, can be obtained exactly leaving out only terms which are exponentially small in

Stabilization byg-effect is more complex. It does not contribute to the linearization of Cahn—Hilliard equation
around a steady state and appears only at the second order of the perturbative exp@ngisithe first-order step
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of the perturbation expansion is only solved for the leading contribution jiteekpansion, the analytic expression
of the critical ¢ is fairly inaccurate when compared to numerical solution of the perturbative problem or to direct
stability calculations. Its scaling; ~ (e7°4/A%)%/2 is, however, correctly predicted.

The presence of a finite radius of deformatigi§ Slows down the fastest Rossby waves and provides less efficient
stabilization by theg effect. The criticalc then scales a8 ~ (€5'—54/4)1/2,

In the presence of mean advection, as in [fgf.the eastward jets are narrow and strong while the westward jets
are broad and slow. The critical value of friction is reduced (8e6)) and scales ag, ~ (e~*41=7/1) /7).

Stabilization is demonstrated near the modified steady states of the Cahn—Hilliard equation. The attraction basin
of these steady states depends on the stability of time-dependent solutions and has been investigated numericall
The results suggest a fairly simple pattern where, for most values of the parameters, the phase-space is filled by th
attraction basins of only two or three stationary solutions. The boundary of these basins might be very complicated,
even fractal. The most attracting solution has a wavenumber smaller than the critical wavenumber by one to two
units and larger than the wavenumber corresponding to the minimum of the Lyapunov functional (when this is
defined later). It is quite possible that the addition of external stochastic forcing to the dynamics would help the
solutions to jump over the barriers between the different attraction basins and reach the minimum of the Lyapunov
functional. This has not yet been investigated.

We have observed in the numerical simulations of the pure Cahn—Hilliard equation that the inverse cascade doe:
not always begin by the most unstable stste- k,,; however itis in principle always possible to stop the cascade at
such a state by enhancing the friction. The same is not try&, fohich is not always able to stop the cascade at the
scale corresponding to the most unstable state. As already n@idéshersive effect is more complex than friction
effect. While the inverse cascade prior to the halting by friction does not differ from the pure Cahn—Hilliard case,
the g8 effect is generally accelerating the cascade before halting. We speculate that this is due to the propagation of
fast Rossby waves superimposed to the kinks and increasing their coupling.

The scaling of the criticaB. also differs from the scaling. ~ A~2 which would arise from standard phe-
nomenology{1] by balancing the nonlinear and the dispersive terr(iLin The reason lies in the suppression of
nonlinearities in the slow manifold for solutions of the complete Cahn—Hilliard equation once the initial transients
have been dissipated. In more realistic two-dimensional or quasigeostrophic flows, the presence of strong dominat:
ing jets and/or coherent eddies is similarly inducing a reduction of nonlinearities with respect to a plain dimensional
estimate. This is why the prediction oka® energy spectrfl9] is usually not observed in forced two-dimensional
flows [20] with the possible exceptions of the smallest quasi-passive scales of the motion.
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Appendix A. Approximate solution of the Cahn—Hilliard equation

The stationary form of the Cahn—Hilliard equatiaﬁv — U’(v) = 0 can be recasted as
U = 38,(3:v)? (A.1)
from which the solution is obtained by quadrature. By integratiag) once, we obtain

U=3@wv?-c, (A.2)
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whereC is a constant which determines the valuépi on the kinks and the periodicity of the solution. For the
single-kink solution(5), we haveC = (1/2)s%I"2 and the asymptotic value &f is —C. Let us now assume

C = 35°T*(1— ),
wherepu is assumed a small perturbation and try a solution under the form

v = " tanhsx+ puv. (A.3)
By replacing in(A.2) and expanding, we obtain, at first orderin

20,0 = —4s? tanhsx— I's cosh?sx (A.4)

This equation can be solved as

(A.5)

r 3sx
i=——|(@3 hPsx) tanh ,
0] 16 <( + cosh“sx) tanhsx+ coshzsx>

where the conditio(0) = 0 has been used. We can relaté¢o the period of the solution by usirtgv = 0 for
x = A/4,leading to

1 3s tanhsx 1 s
ZsI | tanh®sx(3 + 2 costPsy + ———— | — =I's cosh’s =0. A.6
” {8S ( X3+ 0+ cosh23x> 2 ¢ X[ TS Costsx (A-6)
When A is large the main contribution is
w =644 (A.7)

Comparison with numerical solutions df) shows thatA.3) with (A.5) and (A.7)approximates periodic stationary

to less than 0.2% fort > 10. One can build a solution over the whole domain by ugf@) over contiguous
intervals containing a kink matched at mid-distance between adjacent kinks. The approximate solution is continuous
and the discontinuity of its derivative at matching points (@ —s|xak — xk|)) where|xak — xk | is the distance
between adjacent kinks.

Appendix B. Kink motion in the Cahn—Hilliard equation

This Section is adapted from Kawasaki and (i and corrects one error found in that paper.

We assume that the solution is a combination of kinks which are individually describ@) Bys 92M, (x) and
W’ (M,) decay rapidly away from = x, the solution in the vicinity of thgth kink is the sum o\ (x) and small
contributions from adjacent kinks which are the small deviations from their asymptotic values. We write

v(x, 1) = M;x)+0;(x, 1), (B.1)

wherev; is small in the vicinity of thejth kink, but takes finite value at large distance. A valid expression in the
vicinity of neighboring kinks is
0j(x, 1) = (Me(x) = Me(400)) + Y (M (x) — My(—00)), (B.2)

l<j =]

whereM, (+00) and M, (—o0) are the asymptotic values at infinity for the basic kink profile. Here we assume that
kinks and antikinks alternate (i.e;e;+1 = —1), and that they are numbered from O t¥ 2- 1 within the periodic
interval [0, L]. The time dependence is entirely contained within the positions of the kinks)}.
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The temporal evolution of the solution is then given by

2N-1
v, 1) =— Y &u(1)d My (x), (B.3)

=0

wherev(x, t) is governed by
1
—Xa;Za,u =920 — W' (v) 4 h(1). (B.4)

The functioni(r) arises from the integration in The other terms arising from the integration vanish owing to the
periodicity inx.

In order to estimate the motion of thi¢h kink, we useM} as a test function by multiplyin¢B.4) and integrating
over the domain. Then we obtain

Lq2N-1 L L
/ =3 k0, M9 M dy = / (320 — W' (v))8, M, dx +/ ho, M dx. (B.5)
e 0 0
A B C
ContributionA can be written as

1 2N-1 L L

A=-=3)" 5%/ / 3y M (x)Ga(x — x')3, My (x') dx dx’, (B.6)
rrt o Jo '

whereg; is the Green function solution of
—02Ga(x) = 8(x).

dxM; anda. M, are two well separated functions which contribute to the integrgBig), respectively, in the
close vicinity ofx; andx,. By expandingg>(x — x’) nearGx(x; — x¢) and summing local contributions using
[(x —x;)?8:M; dx = (=1)/ 72 /652 and [[ |x — x'|8, M3, M, dx dx’ = 4"?/s, we obtain

452 2N-1

2
_ M - _1yi-t o ISR
A= > %0 <( D7 Go(xj — x¢0) + (=1 oS 2S8]_g). (B.7)

Using the expression f@» within the interval [Q L], one obtains

2Lr?®SE (G m ) —xll] 1 7?1
A=— —1)/ %% / - - — (=D ].
y Zc:) (=D "% L2 L Tt arze T astY Y
(B.8)
ContributionB is expanded using
W () = W' (Mj) + W' (Mj)vj + Wy (M;, §)). (B.9)

Like 9;, W{_ is small in the vicinity of thejth kink but finite at large distance. We have

L L L
B= —/ Wy d: M dx—l—/ (02M; — W' (M;))d:M; dx+/ (020, — W'(M)3;)d,M; dx.  (B.10)
o o o
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The second integral i(B.10) vanishes and the third one vanishes also after integration of its first term by part.
Therefore, we are left with

L
B = —/ Wy 0x M dx. (B.11)
o

Using(2) we find

/ 2s2~2 ~
WNL = ﬁv](ij + Uj)

In the vicinity of x;, v; is of the order of the tails a#/;1(x;) — M;11(—o0) andM;_1(x;) — M;_1(c0), thatis
O(max(e=2j+1=%)) | @=2j=xj-1)) |n the vicinity of x; 11 andx;_1, 9, is O(1) while 3, M is O(e~2*j+1=%)))
and Qe~#®;—¥-1), Therefore, the two main contributions ®in (B.11) arise from the vicinities of ;1 and
xj—1. In the vicinity ofx ;1 we use

Vj=Mjy1+e€jal
so that

~2 ) ~N_ .3 o . 2

V5BMj + 7)) =¢€;I(2 tanhs(x — x;41))(1 + tanhs(x — x;41))“.
Using also

O M; = dse; " e 3%
and replacing ir{B.11) with similar contributions from the vicinity af ;_1, we obtain

B = —32522(e= 2 Win1—x)) _ g 25(xj=xj-1)) (B.12)
Finally, contributionC gives

C = 2¢;h(1). (B.13)

Summarizing the results, one gets

2er2?Et (= xollD? (—xolL] 1 w2 1 :
-1 j—t J _ J = - (-1 j*ﬁa,_ .
x ZZ:(:) b 12 L e T 2arzz Ty it ne
= 325° (e 2™ — @ WD) — 2¢ P (r). (B.14)

Eq. (B.14)shows that two neighboring kink and antikink attracts themselves. A stationary solution is obtained when
B vanishes for all values af. This condition is satisfied if the kinks and antikinks are equispaced over the interval
[0, L]. Then,h(r) = 0.

Eg. (B.14)can be used to determine the motion of the kinks far from the equilibrium, under the condition that
the kinks and antikinks remain far enough to satisfy the approximations of the above calculation.

The calculation of Kawasaki and OHteR2] slightly differs from our own and is limited to the leading order. They
fail to take into account the exponential variationigfnearx ;1 andx;_1. Therefore, their result for the leading
order of B contains an error, being too small by a factor of 2.
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Appendix C. Green function in the periodic domain and calculations of coupling coefficient

Within the periodic domain [0L], the § function is made periodic by adding a constant vahi¢ L everywhere
but at the origin. One can also use

1 27N
8(X) = Z Zexp(lTx) .
n#0
The solution to

0y Gn(x) = —=8(x)

Gux) = L' Y0 (7).

where

a®=M1-3 g =3GMLD*—x[1+3. g =3GEMLD® - &L+ 3«1,
ga() = 53 (([D* = 2 [1D° + (*[1D? - ), g5(x) = 73p(6(x[1])° — 15(x[1])* + 10(x[1])° — x[1]),
26(x) = 735((x[1D)°® = 3(x[1)° + S (+[1D* — 3= [LD* + 7).
wherex[1] meansx modulo 1.
The calculation of the perturbed motion requires to calculate the Fourier transform

2N-1

Gu(m) = Y (-1)G, (%) e im(m/N)
j=0

which can be written as a function of
2N—1

PN i
sm(p) = ;(—1)1 (ﬁ) e (n/N).

Form # N, s,,(p) can be calculated using the following relations:

P(z.x,J.p)=)_ j’*= (—) WY salp) = (—) P(—e "N 12N, p).
j=0

par; In z 2N
We get
1 1 a
0)=0 1 =——"— 2) = —
Sm() s Sm() 1—}-6{’ sm() 1+a+N(1+a)2’
(©) ! + 3a + 3a(l ~ a)
S = —
m 1+a 2N(1+a)2  4N2(1+a)¥
1 2a 3a(l— 1—4a +a?
) = ——— + gl aCG-data)
14a N@A+a)?2 2N21+a)3 2N3(1+a)4
5a(1— 1la + 1142 — 43 3a(l — 26a + 66a2 — 2643 + a*
() = o 4 2 D @ =t A k)

16N4(1 + a)5 ’ 16N5(1 + a)®
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wherea = exp(—i6,,) with 6,, = 7m/N. We also have
1
sn(0) = 2N, SN(1)=N—§,

1
sy(4) = W(zzv — 1)(4N — 1)(12N? — 6N — 1), sy (5) =

1
sy (6) = W@N — 1)(4N — 1)(48N* — 48N° + 6N + 1).

1 1
V@) = 50N =DEN =1, sy@) = g @N - 1)?,
1

e (2N — 1)%(8N? — 4N — 1),

Using these relations, the Fourier transforms are readily calculated: oV, we have

Grm) = sw(D) — 35m(0) + 3 = —3it, (C.1)
Ga(m) = 3L(sy(2) — sm(D) + 25(0) = 2AL+ 12, (C.2)
Gam) = 2L%(35(3) — 53 (2) + L5 (D) = i5A% (1 +1?) (C.3)

with r = tanzm/2N. Since the Fourier transfor@i, scales ast” 1, it depends only on the @/N"~1) term in
sm(n). Therefore, the higher order transforms are jfiox N:

Ga(m) = — 553431+ 15 (1 + 32), (C.4)
Gs(m) = —iA—4t(1+t2)(2+3t2) (C.5)
SV = 1536 ’ :

5
C _ 2 2 4
Ge(m) = ) o112+ 15 + 15, (C.6)

Using this formalism, it is possible to calculate,, 3" v,) for evenn as

1 L L
(Va, 0 "vg) = —— / / Va(X)Gn(x — x")vg(x") dx dx’
LJo Jo

1 2N—-12N-1 L L
= > )" cosjby coslby, /0 /O 9y M j(x) 3y My (x") G (x — x) dx d. (C.7)
j=0 (=0

This integral contains two types of contributions. Type | arises from the interaction of distant kinks and type Il is a
local correction arising from the autocoupling of a given kink and taking into account the discontindjtgofor
its derivatives inc = 0. At first, we consider only the type | contribution for whiGh(x — x’) can be developed as
a Taylor series around; — x; in order to separate the double integration in two independent integrations around
the kinks

Gnx —x) =Gu (3G = DA + Gu1GU = DA((x —x)) — (¢ — x1)
+3G-2(30 = DA —x) = (&' =2+ -+
Now we replace ir{C.7)and calculate the local contributions using

2
/axMj dx =2r(-1y’, /(x—xj)axMj dx =0, /(x—xj)zaxMj dx:j;—z(—l)].
s
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We also expand the trigonometric factor and find that the only nonvanishing contribution depenhés/ oAfter
relabeling, we obtain

(va, 9" va) 1 = ——— Z cos—( 1/G, (—) 371 Z cos—( /G2 (2 )

—n 4 7.[2 n—6
(Va, 0y "Va)1 = gn(m) gn 2(m) + O(A"™7) (C.8)

for evenn. A similar relation is obtained for odet

_ 4r21. n?r21
(v, 0 "up) = _T?g”(m) 324 ]

The local type-Il contributions must be examined case by case: For2, Go(x) is continuous inc = 0 but its
derivative is not. Near = 0, we have

g0 =5 (5 171+ 1z):

The two termg(1/6) 4 (x?/L?) are taken into account in type-I contribution. The complementary contribution is

—gn 2(m) + O(A"~5). (C.9)

1
(00r 320 = o [ [ M Con MG e

After a bit of algebra, we obtain

(Va, 3 20)1 = 2re
a, Oy Uglll = As
and finally
re 2r?
(Va, 07%0,) = -5 @+ %) + 0 (C.10)

Forn = 4, Ga(x) has a discontinuity on its third derivative.in= 0. It brings an @1/A) correction in{v,, 3;4va),
which is of higher order than the terms(i@.9).

For odd orders, including = 1, the sine factor cancels the type-Il contribution. Notice thaufer 1, G1(x) is
discontinuous inc = 0. We have arbitrarily assumed that(0) = 0 in (C.7) but this is not important since only
the imaginary part of1(m) is used in the sine transform.

Some other quantities may need to be calculated, of the{fyped " v,) wheren is odd andf is a periodA
nonlocalized function which is odd over the kinks. In this case, the nonvanishing contributions are those arising
from the odd derivatives df,. At leading order, we obtain

2r .
(.8 00) = = Go-slom) [ XEOMG) - (€11)
The same expression holds whenis replaced by,. The caser = 1 is special, we have

(fua, 05 tva) = % f F()8M?(x) dx.
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Appendix D. The effect of mean advection

The case’ # 0 has been studied numerically and near the linear ligr{geeSection 4.}in Ref.[5]. Itis possible
to study the stability properties of steady solutions for smailthe same way as for = 0 but this is to the price
of a considerable increase of complexity in the algebra. It is beyond the scope of this manuscript to describe the
details of these cumbersome calculations. We provide here the results without demonstration.

Wheny # 0, the equilibrium positions of the kinks and antikinks are given by

xzp:pA—%A, x2p+1=(2p+1)%A+%A,

whereA is related toy by

. AT
16I" e *4 sinhsA = -t (D.1)

We define als@l = A/A.
Similarly to Section 4.1it is convenient to expand the displacements of the kinks with respect to the equilibrium
in terms of Fourier components. One has now to separate the kinks and antikinks as

N-1 N-1
5x2p — Z wﬂ;elrr(Zmp/N)’ 8x2p+l — Z I/jljl—eln((Zp+l)m/N).
m=0 m=0

By combining these components into

& 1 /01 1 v,
= \en e )yl )

we obtain
. Asin26,, (1 - CcoshsA — Q,, 0
Pm = Em ( 0 1— CcoshsA + Q,, ) P ©-2)
with
128,54 4 4 sin2p d coshs A — sinhsA
AZ 1 a2\ A ’ gm = 1 - + - ) = u )
(1—d?)A sAL—d?) " $2A2(1— a?) D
2
C= — 5 D = coshsA — d sinhs A, Qn = (B+2CsinhsA + 3C%(cosh2A + cos ,,))"/2.
S

This result generalizg4.8).
Now, the stabilization effect by friction is still given at first order of the perturbative expansion for snvaé
first need to define

om = 2(Bc0s%0,, + Q,, Sin6,,)%?

2 2 2
COSp1, = — (BCoshy,), siNg1, = — (Q SiNGy,), COSp2n = — (B4 CsinhsAsin?g,,),
Pm Pm Pm

. 1 .
singy,, = ——(Csin 29,, coshs A).
Pm
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The stabilization effect is

)
r sin<g,, 5 4

=— = M1 —_gdf - —
7 rt 2 ( sA)

i -1
2sin 9m> . (D.3)

X <1+dsin9m Sin(¢om — ¢1m) — COSH,, COS(P2 — P1m) — A

These results have been checked numerically with the same accuracy as those presgnted.for
In the case of largel and whend is not small, that is when the asymmetry is strong, we can neglect all terms
O(e~*4) in front of terms which are @) or larger.Egs. (D.2) and (D.3bhen simplify considerably. We obtain

. 12831 e~5(4=4) - -1
é, = cohe T ((A=dsA) 0) (D.4)
A+d)énA 0 1
and
r 4 2\71
=—r+-(Q-ad®>-—)(1+d- =) . D.5

a=r+g(a-d-7) (1ra-7) ©3

As a consequence, the critical value for friction is, at leading order:
25631 g5 (4—4)
rC = (D6)

(14 d)2A

Notice that this relation is not valid for smalland does not matcf89) ford = A = 0.
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