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1 Introduction

The instability of the Kolmogorov flow U = sin y has received a large interest
in the literature (see [8, 11, 2, 3, 7, 1, 12] and references therein). This flow
exhibits a large-scale instability of the negative viscosity type for Reynolds
Re <

√
2. For slightly supercritical conditions, the perturbation follows Cahn-

Hilliard equation characterized by an inverse cascade of metastable states with
scale growing in time. This cascade involves merging of jets until the gravest
mode is reached (or without limit in an unbounded system). It can be halted
by adding friction or dispersive effects like Rossby waves to generate a stable
solution with multiple alternated jets [5, 7, 6]. Such stabilizing mechanisms
have been advocated to explain features observed in the atmosphere of fast ro-
tating Jovian planets and in numerical simulations of turbulence on a rotating
sphere [9, 4].

The theory, however, is valid at very low Re while geophysical fluids are
characterized by very large Re. Finding rigorously large-scale instabilities at
large Re is a formidable task, probably out of reach at the moment. In this
paper we address the problem of Kolmogorov flow instability when molecular
viscosiy is replaced by one of the popular parameterization for small-scale tur-
bulence representing the motion at scales smaller than the Kolmogorov flow.
This is clearly a non rigorous approach, but it provides hints on large-scale
instabilities at large Re and, hopefully, on the character of such instabilities.
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2 The stability of a turbulent Kolmogorov flow in a
Clark-Smagorinsky model

As in the standard problem [11], we use the framework of the two-dimensional
incompressible Navier-Stokes equation. Introducing the streamfunction ψ such
that (u = ∂yψ, v = −∂xψ), our basic equation is

∂t∇2ψ − ∂(ψ,∇2ψ)
∂(x, y)

= −r∇2ψ +D + F (1)

where r is a friction and the dissipation D follows the Clark-Smagorinsky
model [10] often used in LES or atmospheric simulations:

D =
∆2

12
(
(∂xy3ψ + ∂x3yψ)(∂xxψ − ∂yyψ) + ∂xyψ(∂y4ψ − ∂x4ψ)

)
+Cs∆

2∂xy

(
4(S̄∂xyψ) + (∂yy − ∂xx)S̄(∂yyψ − ∂xxψ)

)
with S̄ =

√
4(∂xyψ)2 + (∂xxψ − ∂yyψ)2 + ν. In this model ∆ depends on the

filtering of the velocity and can be considered as a cutoff scale. The forcing
F is chosen in order to maintain Ψ(y) = A cos y with A > 0 as a stationary
solution of (1). In order to distinguish our case from the standard case where
this flow is maintained against molecular diffusion, we call it the turbulent
Kolmogorov flow. A small diffusion ν is added to regularize the solutions near
y = ±π/2

We assume scale separation between the Kolmogorov flow and the large-
scale flow, and introduce slow variables X = εx and T = ε2t. Then it turns
out that the flow depends only on (X, y, T ) and we expand ψ as

ψ(X, y, t) = Ψ(y) + φ0(X,T ) + εψ1(X, y, t) + ε2ψ2(X, y, t) + . . . . (2)

Equation (1) is then expanded in ε and the perturbation problem is solved at
successive orders. At each order n in the expansion we have to solve

Cs∆
2∂yy((2A| cos y|+ ν)∂yyψn − rψn) = H , (3)

where H holds for a complicated expression involving solutions to lower order
equations in the perturbation expansion. In order to satisfy (3), the integral∫ 2π

0
Hdy must vanish for all (X,T ), thus providing solvability conditions for

each n.
Since the dissipation is a nonlinear function of the flow, the algebra of the

perturbative expansion is considerably more intricate than in the standard
problem. In practice it must be solved by symbolic calculations using Mathe-
matica. The output of these calculations would fill several printed pages. The
integrals appearing in the solvability conditions do not need to be calculated
except for those involved in the amplitude equation below. The numerous
other terms are found to vanish by the application of simple symmetry rules.
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3 Results and discussion

It turns out that the solvability conditions at order 0 and 1 are automatically
satisfied by (2). At order 2, we get a solvability condition

r =
4ACs∆

2

π
,

that is imposed to get rid of a spurious instability entirely due to the Clark-
Smagorinsky parameterization (i.e. without any coupling with the Jacobian
in (1)). This effect should be taken into account in numerical simulations of
the Kolmogorov flow.

The solvability condition is again satisfied at order 3 and, like in the stan-
dard problem, the solvability condition at order 4 provides the instability
condition for φ0. This equation is

∂X2Tφ0 = H∂X4φ0 +G(∂Xφ0)2∂X2φ0 , (4)

where H and G are two constants depending on the parameters (Cs,∆, ν)
and on the solutions of the perturbation problem at orders 1 and 2.

It turns out that in the limit ν → 0

H =
2∆2ACs

π
− α

2∆2Cs

(
1 +

∆2

12

)
A ,

where the coefficient α is numerically calculated as α = 0.18935 . . .. If one
further take the usual value 0.23 for Cs, it is found that H < 0 for 0 < ∆ <
∆c = 1.341 . . .. Hence (4) exhibits negative viscosity for small enough cutoff
scale, a result that is very similar to the standard Kolmogorov instability.

The new feature here is that the amplitude equation provides an additional
nonlinear term that is absent in the standard problem where Cahn-Hilliard
equation appears at sixth order. In the limit ν → 0, the coefficient in front of
this term is

G =
1

ACs∆2

(
α1 +

(
α2

Cs
+
α3

C2
s

)
1
∆2

+
(
α4

C2
s

+
α5

C3
s

)
1
∆4

+
α6

C3
s∆

6

)
with numerical coefficients α1 = 0.012 . . ., α2 = −0.0052 . . ., α3 = −0.0029 . . .,
α4 = −0.0026 . . ., α5 = 0.00073 . . . and α6 = 0.0084 . . .. It turns out that for
∆ = ∆c, we have G ≈ 0.219/A, that is G > 0.

In the instability range, (4) admits stationary solutions that can be ob-
tained in terms of elliptical functions. The dynamical study of (4) will be
presented elsewhere.

We have shown that a large-scale instability of the Kolmogorov flow is ob-
tained when a parameterized turbulent viscosity replaces the standard molec-
ular viscosity. This result is reached to the price of two scale separation hy-
pothesis, the first one between the Kolmogorov flow and the large-scale flow,
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and the second one between the small-scale turbulence represented by the
Clark-Smagorinsky parameterization and the Kolmogorov flow. Nevertheless,
the result is encouraging for the generic existence of large-scale instabilities of
the negative viscosity type in fully turbulent flow. The robustness would need
to be tested with a variety of parameterizations and numerical simulation.
Our results also shows the necessity of damping spurious instabilities that
are purely generated by the parameterization and may have polluted previous
numerical investigations. We also find a new nonlinear term in the amplitude
equation which is obtained without any assumption of slight supercriticality.
The term is cubic but differs from the nonlinearity in the Cahn-Hilliard equa-
tion. Again, robustness and significance of this result requires further studies.
This work has been supported by Project N.11397 CNR/CNRS 2002-2003
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