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ABSTRACT: Weuseoceanobservations and reanalyses to investigate the subseasonal predictabilityof summerand fall sea ice area

(SIA) in thewesternArcticOcean associatedwith lateral ocean heat transport (OHT) throughBering Strait and vertical OHT along

theAlaskan coastline fromEkman divergence and upwelling. Results show predictive skill of spring Bering Strait OHT anomalies in

the Chukchi Sea and eastern East Siberian Sea for June and July SIA, followed by a sharp drop in predictive skill in August,

September, andOctober and a resurgence of the correlation inNovember during freeze-up. Fall upwelling of PacificWater along the

Alaskan coastline—amechanism that was proposed as a preconditioner for lower sea ice concentration (SIC) in theBeaufort Sea the

following summer—shows minimal predictive strength on both local and regional scales for any months of the melt season. A

statistical hindcast based on May Bering Strait OHT anomalies explains 77% of July Chukchi Sea SIA variance. Using OHT as a

predictor of SIA anomalies in the Chukchi Sea improves hindcasts from the simple linear trend by 35% and predictions from spring

sea ice thickness anomalies by 24%. This work highlights the importance of ocean heat anomalies for melt season sea ice prediction

and provides observational evidence of subseasonal changes in forecast skill observed in model-based forecasts of the Chukchi Sea.
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1. Introduction

Skillful seasonal predictions of Arctic sea ice on a regional

scale are important for the safe navigation of Arctic waters and

for local indigenous communities who use sea ice for hunting,

fishing, and recreational activities (Pearce et al. 2015; United

StatesNavy 2014). State-of-the-art coupled ocean–ice–atmosphere

models have been shown to provide skillful predictions of

September pan-Arctic sea ice extent with lead times up to five

months, both in seasonal forecast setups (Chevallier et al. 2013)

and perfect model experiments (Bushuk et al. 2017; Tietsche

et al. 2014; Day et al. 2014). The predictive skill of these seasonal

sea ice forecasts is primarily attributable to the persistence of sea

ice thickness (SIT) and ocean heat anomalies throughout the

melt season (Guemas et al. 2016). For example, thinner ice in

the late winter contributes to an earlier melt and increased

surface ocean heat uptake in the summer. This signal is then

amplified by the ice-albedo feedback and leads to a delayed

freeze onset the following fall (Blanchard-Wrigglesworth et al.

2011, Bushuk et al. 2017).

The persistence of SIT and ocean heat anomalies have been

used successfully to produce seasonal and regional forecasts of

sea ice extent. In the Geophysical Fluid Dynamics Laboratory

seasonal prediction system, regional forecasts of sea ice extent

are skillful with 4–11 months of lead time (Bushuk et al. 2017).

Skillful predictions with lead times as large as 11 months are

primarily produced for winter ice conditions in the Atlantic

sector, with skill derived from the initialization and persistence

of ocean temperature anomalies (Bushuk et al. 2017). In the

Pacific sector, predictive skill for summer ice conditions is

linked with SIT anomalies instead, and lead times of approxi-

mately four months do not differ significantly from those of

observational studies (Brunette et al. 2019). Bushuk et al.

(2017) find that reduced lead times for skillful forecasts in the

Pacific sector compared to the Atlantic are due to less persis-

tent sea ice extent and SIT anomalies, particularly in the spring

and in line with declines in anomaly persistence seen in other

model-based forecasts (Bonan et al. 2019; Blanchard-

Wrigglesworth and Bushuk 2019).

The general consensus is that SIT anomalies are important for

the seasonal prediction of summer ice conditions, and ocean

heat anomalies for the prediction of fall and winter ice condi-

tions (e.g., Bushuk et al. 2017; Guemas et al. 2016). Nonetheless,

in specific regions of the Pacific sector, ocean heat transport

(OHT) anomalies are important for sea ice predictability during

the melt season. For example, Serreze et al. (2016) show that

OHT through the Bering Strait is a skillful predictor of melt

and freeze onset dates in the Chukchi Sea, with lead times of

1–2 months and average hindcast errors of 5 and 15 days, re-

spectively. The skill of observation-based freeze onset forecasts

fromSerreze et al. (2016)match those produced by the CanSIPS

forecasting system (Sigmond et al. 2016). For melt onset, how-

ever, CanSIPS predictions are not skillful because they rely in-

stead on the persistence of spring sea ice concentration

anomalies into the summer. The differences in predictability

from observation- and model-based forecasts suggest that an

improved understanding of the role of horizontal and vertical

ocean heat transports in shaping summer ice conditions is still

required.

Anomalously large Bering Strait OHTs in 2007 and 2011 led

to an earlier opening of the pack ice, increased solar-driven seaCorresponding author: Jed Lenetsky, jed.lenetsky@colorado.edu
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ice melt, and rapid spring atmospheric warming (Woodgate

et al. 2010; Woodgate 2018; Serreze et al. 2016). These rela-

tively warm waters entering the broad shallow shelf of the

Chukchi Sea (see Fig. 1) interact directly with the local sea ice

cover and can effectively reduce sea ice thickness before

mixing with cooler waters from the central Arctic basin

(Pickart et al. 2016; Auclair and Tremblay 2018). This early

melt increases the area of open water that is exposed to direct

solar radiation, further warming the ocean mixed layer and

amplifying sea ice loss (i.e., the ice-albedo feedback; Perovich

et al. 2007; Woodgate et al. 2010). Bering Strait OHT vari-

ability is primarily driven by remote zonal winds anomalies in

the East Siberian Sea, which can set up sea surface height

gradient anomalies between the North Pacific and Arctic

Oceans, increasing the volumetric transport of Pacific Water

into the Arctic (Serreze et al. 2019; Peralta-Ferriz andWoodgate

2017;Danielson et al. 2014). PacificWater temperatures and local

northerly (along-strait) winds can amplify or diminish the trans-

port of ocean heat into the Arctic Ocean (Serreze et al. 2019;

Woodgate 2018).

Warm water of Pacific origin exits the Chukchi Sea via

three common pathways: the Harold Canyon on the Western

Continental Shelf, the BarrowCanyon over the Eastern Shelf,

and a central branch over the Harold Shoal (Pickart et al.

2016). In the summer and fall, the central and eastern

branches carry the majority of Pacific Water and heat into the

Arctic Ocean interior, which together form the Beaufort

Shelfbreak jet, traveling eastward along the Alaskan–Beaufort

Sea coastline between 50 and 150m below the surface (Steele

et al. 2004; Gong and Pickart 2015; Foukal et al. 2019; Lin et al.

2016). Along theAlaskan coastline, semipermanent zonal winds

associated with the Beaufort high transport sea ice westward

(Yang 2006; Tandon et al. 2018). The east–west sea ice stress

results in local Ekman offshore transport into the Beaufort Sea

interior, leading to surface convergence and downwelling in

the Canada Basin interior and upwelling along the Alaskan

coastline (Yang 2006; Meneghello et al. 2018b; Lin et al.

2019; Timmermans et al. 2014). These Ekman dynamics are

further complicated by the presence of geostrophic currents,

which, along with extensive sea ice cover, can either reverse

the ice-stress curl and lead to intense periods of upwelling in

the Canada Basin interior in the fall and winter or accelerate

the ice-stress curl along the Beaufort Sea continental slope

(Meneghello et al. 2018a,b). It has been hypothesized that

vertical Ekman pumping along the Alaskan coastline could

reduce winter sea ice growth and act as a thermodynamic

preconditioning mechanism for reduced sea ice extents in the

Beaufort Sea (Dmitrenko et al. 2018; Okkonen et al. 2009;

Pickart et al. 2009; Babb et al. 2016). To test this hypothesis,

we also include an analysis of vertical ocean heat transport

along theAlaskan coastline and its impact on subseasonal sea

ice predicatability in the western Arctic.

The goal of this paper is to understand the persistence of

ocean heat anomalies from horizontal and vertical OHTs in the

melt season, and to bridge the gap in sea ice predictability

between the melt onset and freeze onset reported by Serreze

et al. (2016). In addition, we develop a statistical hindcast

model for the seasonal prediction of sea ice area (SIA). We

show that oceanic heat transport through Bering Strait is a

skillful predictor for sea ice concentration (SIC) in the Chukchi

Sea and eastern East Siberian Sea in June and July but loses

strength as a predictor in late summer, and that vertical ocean

heat transport by Ekman pumping along the Alaskan coastline

has little predictive skill at seasonal time scales.

The paper is structured as follows. Section 2 outlines the

datasets used in this study. We describe the temporal and

spatial variance of SIC and SIA predictability associated with

the Bering Strait OHT in section 3a, and Ekman pumping in

FIG. 1. (a) Arctic Ocean domain and definitions of the western Arctic peripheral seas, as per the NSIDCArctic

Ocean regional mask (Parkinson 2014): Beaufort Sea (blue), Chukchi Sea (green), and East Siberian Sea

(yellow). The jagged edges defining each region gives an indication of the spatial resolution of the EASE-grid

used in this study. (b) The bathymetry and definition of the Beaufort Sea continental slope region (magenta),

defined between 1308–1608W and 708–728N, where ocean depth is greater than 300m. The location of the A3

mooring marked in red.
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the Beaufort Sea in section 3b. We also propose physical

mechanisms responsible for the observed differences in SIC

predictability from the Bering Strait OHT and Ekman

pumping along the Alaskan coastline. Finally, we present a

hindcast model of SIA in Chukchi Sea based on May Bering

Strait OHT anomalies and compare the forecast skill of this

model with that of other models using different predictors

(section 3c). The main conclusions from this study are sum-

marized in section 4.

2. Data

The monthly mean Bering Strait OHT time series is derived

from hourly, near-bottom temperature and transport obser-

vations from 1998 to 2015 from the A3 mooring deployed

35 km north of the Bering Strait at a depth of 57m (see Figs. 1

and 2; Woodgate 2018; Woodgate et al. 2015). This mooring

was chosen based on the consistency and quality of the ob-

servational record, and its location at the outlet of the Bering

Strait limits the influence of in-strait variations of velocity and

temperature (Woodgate 2018). Moorings A1 and A2, which

are located in the Russian and U.S. regions of the strait, re-

spectively, have temporally inconsistent and uncorrected rec-

ords, and do not provide representative OHT estimates for the

entire strait (Woodgate 2018). Data from the A3 mooring,

however, do not include the nonnegligible contribution of the

Alaskan Coastal Current (Woodgate 2018). For the total

Bering Strait OHT, A3 recordings should in principle be sup-

plemented with data from the A4 mooring, located just off the

Alaskan Coast since 2001. Due to the limited length of the A4

time series, we only include data from the A3 mooring in the

OHT calculations, resulting in the underestimation of the

Bering Strait OHT by approximately 25%. Nonetheless, in

Woodgate (2018), temperature and velocity measurements

from the A3 and A4 mooring are found to be strongly and

significantly correlated (r . 0.75; see Woodgate 2018, p. 129,

Table 3 therein) and show almost identical trends (seeWoodgate

2018, p. 127, Table 1 therein). Thus, theA3mooring is considered

a representative record of Bering Strait OHT variability (Serreze

et al. 2016; Woodgate 2018).

The cumulative monthly mean Bering Strait OHT (J) from

April (m 5 4) to month M can be written as

FIG. 2. Variability in the ocean heat transport (OHT) through the Bering Strait and its components:

(a) temperature, (b) volume transport, (c) monthly mean noncumulative OHT, and (d) yearly cumulative OHT from

April through month m. The red line indicates the 1998–2015 mean, and the gray shading indicates the total range.
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where rw is the density of ocean water (5 1023 kgm23), Cpw is

the specific heat of ocean water (5 3900 J kg21 K21), Twm is the

monthly mean observed near-bottom temperature of water in

the Bering Strait for month m (considered representative of

the largely barotropic water column), T ref
w is the reference

freezing point temperature of ocean water for the annual mean

Bering Strait salinity of 32.5 psu (21.98C), Vm (Sv; 1 Sv [
106m3 s21) is the monthly mean volumetric water transport

through the Bering Strait for monthm, Pm is the total length of

the each month m (s), and k (5106m3 s21 Sv21) is the con-

version factor from Sverdrups to m3 s21.

The OHT is calculated relative to a reference salinity-

dependent freezing temperature, at which Bering Strait wa-

ters leave the Arctic Ocean through the Fram Strait and

Canadian Arctic Archipelago. This allows for the estimation

of how much heat from Pacific Water has been transferred to

the Arctic Ocean throughout its transit (Woodgate 2018).

OHT estimates are robust to the exact choice of reference

salinity, within a 5% error (Woodgate 2018). In this time se-

ries, the month of June 1999 was missing and was filled with

the average of the May and July OHT of the same year. In the

following, monthly correlations are performed using the cu-

mulative OHT of a given year beginning in April, as it is the

first month in the year where OHT is nonzero as per our

definition (see Fig. 2).

We use SIC from the monthly NOAA/NSIDC Climate

Data Record (CDR) of passive microwave sea ice concen-

tration, from January 1979 to December 2018 (Meier et al.

2017). The dataset is based on brightness temperatures from a

variety of passive microwave sensors to differentiate between

sea ice and open water (Peng et al. 2013). Brightness tem-

peratures are converted to sea ice concentration measure-

ments using a rule-based classification (CDR algorithm) that

relies on the highest output of two different proven algo-

rithms, NASA Team and NASABootstrap (Peng et al. 2013).

We interpolate the SIC data from a polar stereographic grid to

the Equal-Area Scalable Earth Grid (EASE-Grid) with a res-

olution of 25 km3 25 km. SIA is assessed as the sum of all SIC

grid cells in the regional domain, multiplied by grid cell area

(625 km2).

We use the total Beaufort Gyre Ekman pumping velocity

from 2003 to 2014, from Meneghello et al. (2018b). Ekman

pumping velocity is estimated using bulk formulas and com-

bining (i) SIC from Nimbus-7 SMMR and DMSP SSM/I–

SSMIS passive microwave data, version 1 (Cavalieri et al.

1996); (ii) sea ice velocity from the Polar Pathfinder daily

25-km EASE-Grid sea ice motion vectors, version 3 (Tschudi

et al. 2016); (iii) geostrophic currents computed from dynamic

ocean topography (Armitage et al. 2016, 2017); and (iv) 10-m

wind from the NCEP–NCARReanalysis 1 (Kalnay et al. 1996).

The passive microwave-derived SIC is used to account for the

differential stresses of the ice-covered versus open ocean at the

sub-gridcell resolution. This dataset is notable as it includes the

role of geostrophic currents, which can modify Ekman pumping

rates and direction (Meneghello et al. 2018b). The length of the

Ekman pumping velocity time series is limited by the discon-

tinuation of the Envisat satellite in 2014, which is used by

Armitage et al. (2017) to calculate geostrophic currents. We

present results for averaged fall (October–December) Ekman

velocities along the Alaskan continental shelf where up-

welling is largest, defined between 1308–1608W and 708–728N,

and where ocean depth is greater than 300m, as shown in

Fig. 1b (Meneghello et al. 2018b).

To compare the predictive strength of spring ice thickness

anomalies and Bering Strait OHT anomalies, we use the

mean May SIT calculated from the Pan-Arctic Ice Ocean

Modeling and Assimilation System (PIOMAS) monthly mean

data from 1979 to 2015 (Schweiger et al. 2011; Zhang and

Rothrock 2003). PIOMAS is a coupled ice–ocean model that

assimilates sea ice concentrations and sea surface temperatures in

order to produce SIT fields (Schweiger et al. 2011). PIOMAS ice

thickness retrievals generally agree well with observational data

from ICESAT (,0.1-m mean difference) with the exception of

coastal areas in the Chukchi and Beaufort Seas, where ice is

thinner compared to ICESAT, and north of Greenland and the

Canadian Arctic Archipelago, where ice is thicker than ICESAT

observations (Schweiger et al. 2011). Despite these biases,

PIOMAS SIT retrievals reasonably capture monthly and inter-

annual variability in ice thickness, and warrants its use in this

study. For consistency across datasets, we interpolate PIOMAS

SIT onto the EASE-grid.

To bolster our observational results, we also perform

complimentary analyses using the Estimating the Circulation

and Climate of the Ocean (ECCO) reanalysis version 5 from

1992 to 2017 (ECCO Consortium et al. 2020a,b). The ECCO

reanalysis uses the MIT general circulation model initialized

using atmospheric fields from the ERA-Interim reanalysis,

and all available satellite, mooring, and ARGO float data to

calculate the ocean and sea ice state at a daily resolution

(Forget et al. 2015). We use ECCO estimates at a monthly,

1/48 horizontal, and 10-m (near the surface) vertical resolu-

tion. Bering Strait OHT is calculated from zonally and ver-

tically integrating average meridional velocities (Vm) and

temperatures (Twm) across the entire strait (648–678N,1688–
1798W; 5–60-m depth), and applied to Eq. (1) in the text.

Thus, ECCO OHTs differ from OHTs from the A3 mooring,

which are calculated from monthly mean water properties

at a singular location in the strait. The correlation between

OHT detrended anomalies from the A3 mooring and ECCO

is 0.97. This is in accord with the findings ofWoodgate (2018),

who show that the A3 mooring captures water properties that

are representative of the Bering Strait as whole. Beaufort Sea

Ekman velocities are calculated from 20-m ECCO vertical

velocities, the approximate Ekman layer depth (Yang 2006),

averaged across the Alaskan coastal region outlined in Fig. 1.

Correlations between observed and ECCO Ekman pumping

velocities are significantly correlated (r 5 0.50) but show less

agreement than Bering Strait OHT estimates. This discrep-

ancy is likely due to disagreements between NCEP–NCAR

and ERA-Interim atmospheric forcings over the relatively

small Alaskan coastal region. When compared over larger

regions, such as the entire Beaufort Sea, Ekman velocities

show closer agreement (r 5 0.72).
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We calculate anomalies of SIC, SIA, OHT, SIT, and Ekman

velocities by linearly detrending each time series over matching

time periods. The correlations presented in the results section are

taken between anomalies of SIC/SIA and OHT/Ekman velocity

and are considered statistically significant at the 95% significance

level (p , 0.05), unless otherwise mentioned.

3. Results and discussion

a. Variability in SIC and ocean heat transport

Monthly mean cumulative Bering Strait May OHT anoma-

lies are strongly correlated with SIA anomalies in the Chukchi

Sea for the month of May (r 5 20.65), June (r 5 20.77) and

July (r 5 20.74), with a sharp decline in covariability in

August, despite a decorrelation time scale in the noncumula-

tive May Bering Sea OHT anomaly of 3 months (see Table 1

and Fig. 3). One factor that may be at play in the decline in

correlation beyond July is the (unpredictable) dynamical loss

of ice area in late summer and the fact that the sea ice edge is

moving farther away from the mouth of the Bering Strait and

continental shelf where ocean heat is interacting directly with

the sea ice cover. Note however that July coastal divergence in

the Chukchi Sea can skillfully predict September sea ice extent

in the Chukchi Sea, suggesting that both dynamical pre-

conditioning (thinner ice cover in the Chukchi Sea from late

winter coastal divergence) and thermodynamical (Bering Strait

OHT) processesmay be important for seasonal prediction in this

area (Kim et al. 2020, manuscript submitted to J. Climate). We

also see a reemergence of sea ice predictability in the fall: the

MayBering Strait OHT is correlatedwithmonthly Chukchi SIA

anomaly in November with a coefficient of r 5 20.48 (see

Table 1 and Fig. 4). Weekly correlations, while nonsignificant in

November, still show a broader pattern of fall resurgence. These

findings are in agreement with the observational studies of

Serreze et al. (2016), as well as themodel-based study of Bushuk

et al. (2017), who show that November Chukchi SIA is pre-

dictable from as early as May with 7 months of lead time. This

suggests that improved forecasts of Chukchi SIA in early sum-

mer and fall (near melt and freeze onset) may be possible with a

proper representation of OHT through the Bering Strait in

coupled and forced ice-ocean models. The Bering Strait OHT is

not significantly correlated with SIA in any other seas throughout

the melt season.

TABLE 1. Correlations betweenmonthly mean detrended Bering Strait OHT anomalies, temperature anomalies, and transport anomalies

and Chukchi Sea SIA anomalies for the 1998–2015 time period. Significant correlations (p , 0.05) are shown in bold.

May SIA June July August September October November December

OHT

May 20.65 20.77 20.74 20.36 20.17 20.21 20.48 20.01

June — 20.67 20.71 20.44 20.32 20.30 20.42 0.04

July — — 20.70 20.38 20.25 20.24 20.43 20.05

August — — — 20.38 20.28 0.31 20.51 20.11

September — — — — 20.29 20.39 20.65 20.32

Temperature

May 20.58 20.78 20.77 20.42 20.21 20.28 20.51 20.21

June — 20.76 20.79 20.37 20.23 20.19 20.37 20.02

July — — 20.70 20.20 20.14 20.21 20.66 20.29

August — — — 20.43 20.31 20.42 20.63 20.09

September — — — — 0.00 20.26 20.62 20.16

Transport

May 20.55 20.29 20.29 20.31 20.24 20.12 20.19 0.04

June — 20.27 20.20 20.42 20.41 20.40 20.25 0.13

July — — 20.26 20.25 20.11 20.09 0.00 0.07

August — — — 20.06 20.12 20.18 20.21 20.24

September — — — — 20.13 20.24 20.44 20.60

FIG. 3. Autocorrelation of detrended noncumulative Bering Strait

OHT anomalies (blue) and detrended Chukchi Sea SIA anomalies

for May (red), June (purple), and July (green). The 95% statistical

significance threshold for 17 degrees of freedom (r5 0.46) is shown

in black. The decorrelation time scale for Bering Strait OHT and

SIA are approximately 3 and 2 months, respectively.
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To further discern a causal link between OHT anomalies and

sea ice conditions in the Chukchi Sea, we decompose the OHT

signal into its temperature and volume transport components

and relate them to SIA anomalies (see Table 1). Comparisons of

correlation strength between Bering Strait temperature and

volume transport anomalies demonstrate that predictive skill

from OHT in May, June, July, and November is primarily de-

rived from ocean temperature variability. Correlations between

velocity and SIA anomalies in the above months are only sig-

nificant in May. Furthermore, correlations between Bering

Strait temperature andOHT anomalies show a seasonal cycle in

which fall, summer, and winter OHT variability is primarily

determined by variability in volume transports, whereas spring

OHT variability is primarily determined by water temperature

variability (see Fig. 5). The importance of water temperatures

peak inMay and June, withMay water temperatures explaining

89% of May OHT variability. Thus, the months in which OHT

exhibits the strongest predictive skill (May and June) are the

same months in which the importance of Bering Strait temper-

atures outweighs the importance of volume transports. These

findings confirm that Chukchi SIA predictability from OHT is

due to direct interactions between ocean temperature anomalies

and sea ice cover, and not due to covariations between atmo-

spheric circulation patterns (which determine volume transport

anomalies) and sea ice conditions in the Chukchi Sea.

We now look at the spatial pattern of the correlations be-

tween OHT and SIC as a test of the proposed link between

Bering Strait heat transport and western Arctic SIA variability

(see Fig. 6). Bering Strait OHT has the largest influence on

Arctic SIC on the continental shelf where the ocean is shallow

and ocean heat entering the Arctic is in direct contact with sea

ice (Pickart et al. 2016; Auclair and Tremblay 2018; Lu et al.

2020). Furthermore, Pacific Water is largely constrained to the

Chukchi and Beaufort Sea continental slopes, limiting the

penetration of Pacific Water into the Canada Basin (von

Appen and Pickart 2012; Spall et al. 2018). For the Pacific

Water that does enter the Canada Basin interior, mechanisms

for vertical ocean heat transport over the deeper ocean, such as

Ekman pumping associated with positive ice–ocean surface

stress curl and turbulent mixing, are less effective at bringing

heat of Pacific origin to the surface mixed layer compared to

the direct interactions over the continental shelf (Timmermans

et al. 2014; Toole et al. 2010). These processes act to limit the

influence of the Bering Strait OHT to the western Arctic

Ocean’s margins.

The influence of OHT-induced melt is limited to the Bering

Strait in May, and then, as Pacific Water circulates throughout

the Chukchi Sea, extends offshore in June, and covers the

entire Chukchi Sea as well as large areas of the East Siberian

Sea (ESS) in July. The eastern half of the ESS is dynamically

more similar to the Chukchi Sea than the western half when it

comes to subseasonal predictability of sea ice conditions. For

instance, May Bering Strait OHT is also correlated with SIC in

the eastern ESS in July with a sharp loss of predictive strength

in August and September. Bering Strait OHT anomalies,

however, are not correlated with June SIC anomalies in the

western ESS because it is farther away from the mouth of the

strait and the advective time scale for OHT to reach this part of

ESS is approximately one month. Thus, the strongly, nega-

tively correlated portions in the eastern part of the East

Siberian Sea are offset by nonsignificant correlations in the

western regions of the sea (r5 0.44, p5 0.07). Additionally, in

July, we also observe an extension of larger correlations (not

significant) over the Canada Basin and north of the Canadian

Arctic Archipelago in accord with known pathways of Pacific

Water entering the western Arctic (Jahn et al. 2010).

In August, September, and October, regions of high corre-

lation are smaller and highly fragmented, in line with the loss of

FIG. 4. Correlations between detrended cumulative May Bering

Strait OHT anomalies, and detrendedMay–December Chukchi SIA

anomalies (monthly: blue; weekly: red). 95% statistical significance

threshold for 17 degrees of freedom (r 5 0.46) is shown in black.

FIG. 5. Explained variance of detrended Bering Strait tempera-

ture (black) and volume transport (red) anomalies, for detrended

Bering Strait OHT anomalies.
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correlation reported above (see Table 1). We associate the loss

of predictive skill in late summer with summer stratification

over the continental shelf, the dynamical loss of sea ice, and

the ice-albedo feedback. Idealizedmodel experiments over the

Chukchi Sea continental shelf have shown that despite the

Bering Strait OHT providing heat for 70% of sea ice melt in

the spring marginal ice zone, by August and September an

increasingly thick layer of meltwater sits atop the PacificWater

layer, creating stable stratification and significantly reducing

interactions between sea ice and Pacific Water heat (Lu et al.

2020). The timing of this fresh surface layer and reduced OHT

influence also corresponds to a thinner and more fragmented

summer ice pack in which winds exert greater control over the

sea ice cover. A thinner ice pack is more mobile, and thus more

responsive to surface winds and summer storm activity (Lei

et al. 2020). Furthermore, summer synoptic-scale cyclones

have complex thermodynamic effects on sea ice, slowing melt

by cooling temperatures (Schreiber and Serreze 2020) while

also increasing bottom melt by generating waves that promote

increased upwelling of ocean heat to the surface (Zhang et al.

2013). Additionally, as a fractured ice pack exposes more open

water to solar heating, the ice-albedo feedback becomes a

dominant mechanism of further ice melt (Perovich et al. 2007).

The above processes both reduce the relative influence of

the Bering Strait OHT and drive the variability of summer

SIA in the Chukchi Sea, overriding most of the early-season

signature from ocean heat, and are not predictable at seasonal

time scales (Serreze et al. 2016). We conclude that the loss of

late summer sea ice predictability is due to the above pro-

cesses, rather than the Chukchi Sea becoming ice free. From

1998 to 2015, the September Chukchi Sea ice cover exhibits

sizeable variability but has only twice become ice-free, in 2007

and 2012.

The loss of predictive skill from Bering Strait OHT for late

summer SIA in the Chukchi Sea is in accord with modeling

results from Bushuk et al. (2017) using a fully coupled global

climate model. As such, August through October represent a

predictive ‘‘gap’’ in the Chukchi Sea. This gap in predictive

skill occurs when ice melts—isolating the surface waters from

temperature anomalies at depth—and reemerges in the fall

during freeze up when the seasonal halocline is eroded and

ocean heat is ventilated at the surface, affecting the freeze

onset date (Bushuk et al. 2017; Blanchard-Wrigglesworth et al.

2017). In November, we see small areas with negative corre-

lations on theChukchi Sea continental shelf, resulting in sea ice

predictability at the regional scale.

FIG. 6. Correlations between detrended cumulative observed May Bering Strait OHT anomalies and detrended monthly mean SIC

anomalies for themonth of (a)May, (b) June, (c) July, (d) August, (e) September, (f) October, and (g) November. Significant correlations

(95% significance level) are outlined in black, and regions where the interannual variability inmonthly SIC is larger than 10%are outlined

in green.
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Interestingly, positive correlations between cumulative Bering

Strait OHT and SIC anomalies are observed in the Atlantic

sector for all months from May to September. Regions of

strong positive signal is observed in the northern regions of

the Barents and Kara Seas (r 5 0.6; see Figs. 6a–e). These

remote regions of covariability are akin to those reported

in Auclair and Tremblay (2018) in the Community Earth

System Model Large Ensemble, and appear to be caused by

atmospheric circulation patterns that drive anomalous sea ice

drift and covariability between Pacific and Atlantic volume

transports. For instance, Boer et al. (2018) show in model

simulations that volume transports through the Bering Strait

and the Fram Strait/Barents Sea Opening (BSO) are strongly

anticorrelated. This relationship is due to both conservation

of mass via oceanic sea surface height adjustment, and large-

scale atmospheric conditions (Timmermans and Marshall 2020;

Stigebrandt 1981). They found that large-scale atmospheric

circulation patterns (e.g., linked with the Arctic Oscillation and

Aleutian low) result in increased pressure head and volume

transport through the Bering Strait, in accord with results from

Danielson et al. (2014); Serreze et al. (2019). At the same time,

these circulation patterns generate northerly and northwesterly

winds in the Barents and Kara Seas, which in turn reduce

northward volume transport through the Fram Strait and BSO

while advecting sea ice into the region. Thus, our results pro-

vide observational evidence that increased volume (and heat)

transport of Pacific Water coincides with increased ice concen-

trations in the Atlantic sector, which we attribute to both sea ice

advection into the region and limited volume transport (and

heat) into the Arctic from the Atlantic Ocean. As a result, these

mechanisms can increase SIC in theAtlantic sector of theArctic

and become a source of predictability for the entiremelt season.

The same spatial and temporal patterns are seen in corre-

lation maps between ECCO OHT and SIC from 1992 to 2017

(see Fig. 7). May cumulative ECCO OHT anomalies are cor-

related with SIC anomalies over the Chukchi Sea continental

shelf from May through July, with a sharp drop in predictive

skill from August through October, and a return of predictive

skill in November along the continental shelf. However, some

key differences exist, namely reduced positive correlations in

the Atlantic sector of the Arctic Ocean and an even more

pronounced loss of predictive skill in the Pacific sector in

August. Despite these discrepancies, which highlight uncer-

tainties in both the mooring and ECCO OHT time series, the

two datasets agree and lend additional confidence to our pri-

mary findings that 1) predictive skill from the Bering Strait

FIG. 7. Correlations between detrended cumulative ECCO May Bering Strait OHT anomalies and detrended monthly mean SIC

anomalies for themonth of (a)May, (b) June, (c) July, (d) August, (e) September, (f) October, and (g) November. Significant correlations

(95% significance level) are outlined in black, and regions where the interannual variability inmonthly SIC is larger than 10%are outlined

in green.
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OHT is highest for sea ice over the continental shelves of the

Chukchi Sea and the eastern ESS, and 2) there is strong sub-

seasonal variability in the strength of this predictive skill.

b. Variability in SIC associated with Ekman pumping

Correlations between mean October–December Ekman

pumping velocity anomalies from both observations and the

ECCO reanalysis show a weak relationship between upwelled

ocean heat along the Alaskan coastline and SIC. October–

December mean Ekman pumping velocity anomalies derived

from observations are (weakly) negatively correlated with SIC

anomalies in the Beaufort and Kara Seas and (weakly) posi-

tively correlated in the East Siberian and Laptev Seas from

June through September (see Fig. 8). We argue that this tripole

pattern is associated with coupled variability between SIC and

large-scale atmospheric circulation patterns rather than up-

welling of ocean heat [e.g., see Fig. 5 from Armstrong et al.

(2003)]. Fall upwelling along the Alaskan coastline is associ-

ated with anticyclonic wind forcing over the Beaufort Sea,

alongshore westward ice drift, and offshore Ekman transport

(Meneghello et al. 2018b). Positive correlations between up-

welling and SIC anomalies in the East Siberian and Laptev

Seas are presumably caused by convergent ice motion associ-

ated with the same anticyclonic atmospheric circulation (Ogi

andWallace 2007; Overland et al. 2012). Negative correlations

in the Kara Sea are likely also linked with the same atmo-

spheric circulation pattern, leading to alongshore easterly

winds, coastal divergence associated with offshore Ekman

FIG. 8. Correlations between detrended observedOctober–December mean Ekman pumping velocity anomalies

along theAlaskan coastline (magenta box in Fig. 1) and detrended (a) June, (b) July, (c)August, and (d) September

sea ice concentration anomalies. Significant correlations (95%) are outlined in black, and regions where the in-

terannual variability in monthly SIC varies by more than 10% are outlined in green.
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transports, and negative sea ice anomalies. In the ECCO re-

analysis, the strength of the tripole correlation pattern is much

weaker (see Fig. 9). In this case, the correlations are more uni-

formly negative, especially along the Siberian coastline, with

some positive correlations in the Chukchi Sea in June and in the

Beaufort Sea in August and September. As for the Bering Strait

OHT, discrepancies between observed and ECCO-derived time

series reflect uncertainties in both records. Neither observed nor

ECCOEkman pumping anomalies are correlatedwith Beaufort

Sea SIA on a regional scale (not shown).

Despite weak correlations between Ekman pumping and

SIC at seasonal time scales, fall upwelling events have the

capacity to act as a thermodynamic preconditioner for low

summer sea ice concentrations. Vertical ocean heat fluxes

associated with upwelling along the Alaskan coastline have not

been measured, but simulations suggest that turbulent vertical

(upward) heat fluxes associated with downwelling over the

Canada Basin can be as large as 20Wm22 (Bourgault et al.

2020; Ramudu et al. 2018). A simple order of magnitude

analysis show that these fluxes, when averaged over a 3-month

period (October–December), lead to ice thickness reductions

of 46 cm. This estimate is very likely an underestimate how-

ever, as upwelling along the continental slope entrains water

from the deeper boundary layer, as opposed to just the surface

Ekman layer in the Canada Basin, bringing additional heat to

the surface (Yang 2006). These calculations suggest that large

upwelling events in the fall, such as those described by Pickart

et al. (2009), have the capacity to produce negative thickness

FIG. 9. Correlations between detrended ECCO October–December mean Ekman pumping velocities along the

Alaskan coastline (magenta box in Fig. 1) and detrended (a) June, (b) July, (c) August, and (d) September sea ice

concentration anomalies. Significant correlations (95%) are outlined in black, and regions where the interannual

variability in monthly SIC varies by more than 10% are outlined in green.
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anomalies that reemerge in the spring and summer as negative

SIC anomalies in the Beaufort Sea.

c. Hindcasts for July Chukchi SIA

We present the results of July Chukchi SIA predictions from

1998 to 2015, based on the linear July Chukchi SIA trend alone

(M1), the linear trend together with anomalies of Bering Strait

OHT (M2), Bering Strait sea surface temperatures (SST)

(M3), May Chukchi Sea SIT (M4), May Chukchi Sea SIA

(M5), and May SIT and OHT (M6; see Table 2 and Fig. 10).

Models based on the linear trend alone (M1) take on the

mathematical form SIApred 5 a1t 1 C, where SIApred is the

predicted Chukchi SIA and a1 and C are coefficients deter-

mined by the linear SIA trend over the 1998–2015 period. M2–

M5 can be represented mathematically by SIApred 5 a1t 1
b1X1 1 C, where b1 is the coefficient determined by the least

squares fit between July Chukchi SIA anomalies and de-

trended, cumulative May Bering Strait OHT, Bering Strait

SST, May SIT, or May SIA anomalies (X1). M6 takes on the

mathematical form of SIApred5 a1t1 b2X21 b1X11C, where

b1 and b2 are the least squares regression coefficients for the

May OHT and May SIT anomalies respectively, and all other

variables are as before. For M2–M6, we also use a leave-one-

out approach, in which we remove the target year from both

time series before calculating b1 and b2 in order to remove the

influence of the target year from the least squares fit (Williams

et al. 2016; Brunette et al. 2019). This approach has the influ-

ence of reducing the skill of the models presented by approx-

imately 3%–7%, while increasing statistical robustness. For all

models, we use a jackknife approach to test the influence of

individual years on the performance of each model and give a

confidence interval for each model.

The simple hindcast based on a linear trend alone (M1)

explains 42% (R25 0.42) of the variance in SIA in the Chukchi

Sea. The statistical hindcast based on the linear trend and May

Bering Strait OHT anomalies (M2) explains 77% (R2 5 0.77)

of July SIA variance with a root-mean-square error (RMSE)

equal to 0.036 million km2 (4.4% of Chukchi Sea regional

area). We also test the predictive skill of May Bering Strait

SSTs (M3), a satellite-derived proxy for Bering Strait OHT.

May Bering Strait SSTs along with the linear trend skillfully

explain 52% of July SIA variance and a RMSE of 0.052mil-

lion km2 (6.3% of Chukchi Sea area). The difference in pre-

dictive skill between Bering Strait OHT and SST anomalies is

likely due to differences between Bering Strait water temper-

atures and SSTs, as found by Woodgate (2018).

Next, we compare M2 and M3 with a hindcast using a linear

trend and spring SIT anomalies in the Chukchi Sea (M4), a key

parameter for skillful forecasts of summer Chukchi sea ice in

Bushuk et al. (2017). Hindcasts utilizing May mean Chukchi

SIT anomalies (M4) predict July SIA in the Chukchi Sea with

RMSE 5 0.052 million km2 (6.3% of Chukchi Sea area) and

explain 53% of Chukchi SIA variance. Hindcasts using May

SIA anomalies (M5) explain a similar amount of variance as

M4. Thus the use of May Bering Strait OHT in hindcasts im-

proves predictions of July SIA in the Chukchi Sea by 35%

compared to those based only on the linear trend only; and by

24% compared to those using spring SIT anomalies and the

linear trend as predictors. Additionally, predictive skill from

both OHT and SIT (M6) does not exceed the skill of previous

models, suggesting that there is minimal predictive skill in May

SIT anomalies that are not captured by May OHT anomalies.

These hindcasts confirm the larger influence of the Bering

Strait OHT on the interannual variability of SIA in the

Chukchi Sea from May to July, and highlights the importance

TABLE 2. Predictors, correlation coefficients (R2), and root-mean-square errors (RMSE) in millions of square kilometers for hindcasts

of July Chukchi Sea SIA from 1998 to 2015. Applying a jackknife to the modeled and observed SIAs allows for the confidence interval (s)

of each model to be given; s is the standard deviation of possible R2 values from the jackknife analysis.

Label Predictors R2 6 s RMSE

M1 Linear trend 0.42 6 0.047 0.057

M2 Linear trend 1 May OHT 0.77 6 0.028 0.036

M3 Linear trend 1 May SST 0.52 6 0.039 0.052

M4 Linear trend 1 May SIT 0.53 6 0.052 0.052

M5 Linear trend 1 May SIA 0.52 6 0.038 0.057

M6 Linear trend 1 May OHT 1 May SIT 0.71 6 0.052 0.040

FIG. 10. Statistical hindcasts of the July SIA in the Chukchi Sea for

the 1998–2015 time period and observed SIAs (black): linear trend

(M1; red), linear trend 1 detrended, cumulative, May Bering Strait

OHT anomalies (M2; green), and linear trend 1 mean, detrended

May SIT anomalies (M4; blue). See Table 2 for hindcast statistics.
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of considering Bering Strait OHT for a skillful subseasonal

forecast of Chukchi SIA.

4. Conclusions

We investigate the role of Bering Strait OHT and Ekman

pumping along the Alaskan coastline on the subseasonal

predictability of sea ice area in the Arctic. Results show that

ocean heat from the Bering Strait OHT has the largest in-

fluence on sea ice conditions in the spring and early summer in the

Chukchi Sea, causing an early opening of the pack ice, a signal that

is amplified by the ice-albedo feedback. Bering Strait OHT

anomalies lose predictive skill in the late melt season, due to

summer stratification of Chukchi Sea waters, the ice-albedo

feedback, and dynamic sea ice area change associated with wind-

induced sea ice drift, before reemerging inNovember as a delayed

or early freeze onset. These findings provide observational evi-

dence in support of a predictability gap in the Chukchi Sea, also

seen in seasonal forecast studies based on fully coupled models

such as Bushuk et al. (2017). Additionally, decomposition of

Bering Strait OHT components (volume transports and water

temperatures) shows that predictive skill is primarily derived from

water temperature anomalies andnot volume transport anomalies.

We also document a link between Bering Strait OHT anomalies

and sea ice conditions in the Atlantic sector of the Arctic, with

larger than normal sea ice concentrations for positive Bering Strait

OHT anomalies, potentially attributable to an anticorrelation

between volume flux through Bering Strait and the Barents Sea

Opening and Fram Strait.

Ekman upwelling velocity anomalies along the Alaskan

continental shelf (a proxy for vertical ocean heat transport)

provide no seasonal sea ice area predictability at regional or

local scales.We instead find that correlations between Ekman

velocities and sea ice concentration are due to dynamic sea

ice motion associated with an upwelling-favorable atmo-

spheric circulation. This anticyclonic circulation pattern leads

to coastal divergence and sea ice export from the Beaufort

Sea and sea ice convergence along the Siberian coastline. We

however also present a simple order of magnitude analysis,

which shows that large fall upwelling events, despite minimal

predictive skill, have the capacity to limit fall sea ice growth

and act as a thermodynamic preconditioner for spring and

summer sea ice conditions.

We also present the results from six hindcasts based on the

linear trend and Bering Strait OHT, SST, SIT, and SIA

anomalies at the onset of melt season. Results show that in-

cluding Bering Strait OHT or SIT anomalies as predictors

improve hindcasts of July sea ice conditions in the Chukchi Sea

with respect to a linear-trend based forecast. While SIT

anomalies lead to skillful predictions of sea ice conditions in

the Pacific sector (Bushuk et al. 2017), sea ice area predict-

ability from the Bering strait OHT exceeds that of SIT

anomalies in the Chukchi Sea. Improved seasonal sea ice

predictions will help increase the navigability of Arctic Ocean

waters for all Arctic stakeholders.
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