Attachment line swept wing "instability": a validation of local analysis

Gianluca Meneghello, Peter Schmid, Patrick Huerre

Goals

We perform a global receptivity and sensitivity analysis of a swept-wing, incompressible boundary layer in a domain covering the attachment line as well as an extended region downstream of it. Despite performing our analysis in a stable flow regime — all our eigenvectors are decaying — we provide qualitative connections with previous local and global results in unstable regimes: the identification of the most receptive and sensitive regions within our domain provides an explanation for the validity of the local analysis results. The tools used are the one of modal analysis — eigenvectors and eigenvalues decomposition — and optimization theory. Receptivity and sensitivity form the foundation for the passive and active manipulation of the flow by applying control-theoretic means.

Model

$$\mathcal{R}(\mathbf{Q}) \equiv \begin{cases} \partial_t \mathbf{U} + \nabla \mathbf{U} \mathbf{U} - \nu \Delta \mathbf{U} + \nabla P &= \mathbf{F} \\ \nabla \cdot \mathbf{U} &= 0 \end{cases}$$

The boundary conditions used are:

- *inflow*: velocity and pressure are given from the inviscid solution
- *solid boundary* : velocity is zero and the equation for the pressure is applied with a modified stencil
- *outflow* : pressure is given from the inviscid solution and the momentum equations are ap-

The FAS (Full Approximation Storage) multigrid *coincide with the fine grid solution*" [5]. to obtain a grid refinement only where necessary. solved [6]. On each grid level the linearization of the continuous problem is discretized and written in the form:

$$\frac{\partial L}{\partial u}^k \delta u^k = \tau_{k+1}^k$$

where $\tau_{k+1}^k = L^k \left(I_{k+1}^k u^{k+1} \right) - I_{k+1}^k \left(L^{k+1} u^{k+1} \right)$ is the "fine to coarse defect correction, a correction to the coarse-grid equation designed to make its solution

Results

scheme is used to solve the nonlinear, steady-state On every level except the coarsest, the domain is de-Navier Stokes Problem. The FAS algorithm has two composed in two different, possibly overlapping, submain advantages with respect to the more widely domains. In the interior subdomain (orange) the equaknown CS (Correction Scheme): it can address the tions are relaxed one by one with some (2 or 3) blocknon-linear problem without using an external New- line Gauss Seidel sweeps performed in a downstream ton iterator and provides an efficient and easy way direction. The boundary subdomain (green) is instead

plied with a modified stencil

Open Questions

- Pressure boundary conditions for the incompressible Navier Stokes equations
- How does multigrid behaves for complex numbers?
- Is it possible to compute eigenvalues and eigenvectors using the same multigrid structure?

References

[1] A. Brandt. Multi-level adaptive solutions to boundary-value problems. Mathematics of Computation, 31(138):333–390, 1977.

- [2] A. Brandt. Lecture Notes of the ICASE workshop on multigrid methods. Lecture notes of the ICASE workshop, 1978.
- [3] A. Brandt. Multi-Level Adaptive Techniques (MLAT) for singular perturbation problems. In P.W. Hemker and J.J.H Miller, editors, Numerical Analysis of Singular Perturbation Problems, pages 53–142. Academic Press, 1978.
- [4] A. Brandt. Guide to multigrid development. In *Multigrid* methods, volume 960, pages 220–312. Springer, 1982.
- [5] A. Brandt. *Multigrid techniques: 1984 guide with applica*tions to fluid dynamics. GMD Bonn, 1984.
- [6] Boris Diskin, James L. Thomas, and Raymond E. Mineck. Textbook Multigrid Efficiency for Leading Edge Stagnation. Technical report, NASA Langley Research Center, 2004.
- [7] J.L. Thomas, B. Diskin, and A. Brandt. Textbook multigrid efficiency for fluid simulations. Annual Review of Fluid Me*chanics*, 35(1):317–340, 2003.

The convergence history of the residuals as a function tions increase with the Re and/or the inverse of the of the number of V-cycles per level are shown for dif- mesh size. The situation gets worse when a bigger ferent grids. A detail of the ensemble of grids used is downstream part of the geometry under consideration shown on the right. Each grid is obtained by apply- (in this case, a circle) is used. ing a conformal mapping to a rectangular, equispaced A possible origin of this performance degradation is grid. A continuation method is used in order to guar- to be searched in the downstream relaxation process, antee the convergence of the algorithm: the *Re* num- which is at the moment performed along rays from the ber is increased proportionally to the mesh size of the inflow to the solid boundary. While the velocity field finest grid used in each moment (i.e. $Re \sim dh^{-1}$). is somehow aligned with the rays in the upstream part The first series of data — when only the red grid is of the domain, this is no more true close to the outflow used — corresponds to Re = 80 and the last is for boundary, where the residual convergence is seen to Re = 5120.be slower. A solution could be to change the direction The number of iterations required to solve the equa- of the sweep in this area.