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GOAL OF PROJECT: How are clouds distributed on Earth,
and why?

SLIDES
Part 1: Synthesis of the theme and tools proposed during the training session

* General context : What is the goal of the project ?
* Introduction to cloud types and cloud physics
* Spatial distribution and link with the large scale atmospheric motion
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Part 2: Your project
* Links to satellite visualizations
* Your presentation



What are clouds ?




Clouds and atmospheric convection




What are clouds ?
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What are clouds? Key actors of climate
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What are clouds? A Grand Challenge
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Overview
‘ How do clouds couple to circulations in the present climate?
How will clouds and circulation respond to global warming or other Leadership
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Limited understanding of clouds is the major source of uncertainty in climate
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Clouds and atmospheric convection

clouds are diverse, ...

Stratocumulus

© NASA (GEOS)

Shallow cumulus
and cumulus congestus Cumulonimbus




Clouds and atmospheric convection

.. and coupled to circulations.

Intertropical Convergence Zone

' /




Clouds and atmospheric convection

GOAL OF PROJECT: How are clouds distributed on Earth,
and why?

1. Cloud types
2. Moist thermodynamics and stability

3. Coupling with circulation



1. Cloud types

Cumulus: heap, pile

Stratus: flatten out, cover with a layer
Cirrus: lock of hair, tuft of horsehair
Nimbus: precipitating cloud

Altum: height

~ 10 cloud types

Combined to define

10



1. Cloud types

Clouds are classified according to height of cloud base and appearance

Anvil top

High
clouds

| Base: 5
to 12km

Middle
_clouds
Base: 2

_| to 6km

Low
clouds

[ Base <
2km

11



1. High Clouds

Almost entirely ice crystals

Cirrus ‘
Wispy, feathery

-

o P

: i Layered clouds, cumuliform lumpiness
Cirrostratus Widespread, sun/moon halo Cirrocumulus - — . -




1. Middle Clouds

Liquid water droplets, ice crystals, or a combination of the two, including supercooled droplets (i.e., liquid
droplets whose temperatures are below freezing).

Altocumulus

Heap-like clouds with convective elements in mid
levels
May align in rows or streets of clouds

Altostratus
Flat and uniform type texture in mid levels




1. Low Clouds

Liquid water droplets or even supercooled droplets, except during cold winter storms when ice crystals (and snow)
comprise much of the clouds.
The two main types includwhich develop horizontally, and cumulus, which develop vertically.

Stratocumulus
Hybrids of layered stratus and cellular cumulus

Stratus
Uniform and flat, producing a gray layer of cloud

cover

Nimbostratus
Thick, dense stratus or stratocumulus clouds
producing steady rain or snow

£

Pl < -




1. Low Clouds

Liquid water droplets or even supercooled droplets, except during cold winter storms when ice crystals (and snow)

comprise much of the clouds.
The two main types include stratus, which develop horizontally, and which develop vertically.
Cumulonimbus

Cumulus (humili) _ Strong updrafts can develop in the cumulus
Scattered, with little vertical growth on an otherwise sunny day  oud => mature deep cumulonimbus cloud
Also called "fair weather cumulus™ i.e., a thunderstorm producing heavy rain.

Cumulus (congestus)
Significant vertical development (but not yet a thunderstorm)




1. Other spectacular Clouds...

Mammatus clouds (typically below anvil clouds)

Shelf clouds (gust front)

Question: Global cloud cover (%)?




1. Cloud types

Distribution of cloud amount
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1. Cloud types

Cloud amount was underestimated

Also note the latitudinal distribution

0.90
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GOES satellite imagery May 2™ @ 11,15,18,21 UTC

hortwave, or visible
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1. Cloud types

Brightness temperature from satellite (white < cold cloud tops)

01 JANUARY 2017

Large
extratropical

e storm
' ]» systems

subtropics: ~no
}high clouds

% i"j’* ITCZ =

Intertropical
convergent
zone

« A year of weather » 20



1. Cloud types

~ Water va or from satelllte Large
extratropical ~ => Large-scale extratropical
storm convection
systems

subtropics: ~N0 -5 gshallow clouds
high clouds

ITCZ =

Intertropical ~ => Small-scale tropical
convergent convection

zone

.. but not always that small!
Deep convective system over Brazil:




Clouds and atmospheric convection

1. Cloud types
2. Moist thermodynamics and stability

3. Coupling with circulation

22



Cloud formation

Courtesy : Octave Tessiot




Cloud formation

Courtesy : Octave Tessiot




Atmospheric thermodynamics

Dry convection

T decreases with height.
But p as well.

Density = p(T,p).
How determine stability? The parcel method

Raise parcel adiabatically. Comes back to initial position?

> 25



2. Atmospheric thermodynamics: instability

Dry convection T decreases with height, but p as well. Density = p(T,p). How
determine stability? The parcel method

Exercise : Temperature profile of a dry adiabat.
 Use the first law of thermodynamics and the ideal gaz law to show that under adiabatic

displacement, a parcel of air satisfies dT/ T—-R /¢, dp/ p = 0 (specify what the
variables and symbols are).

« Deduce that potential temperature 6 = T (p,/p) R is conserved under adiabatic
displacement (py denotes a reference pressure usually 1000hPa).

* If we make the hydrostatif approximation, deduce the vertical gradient of temperature.

y4

Raise parcel adiabatically. Comes back to initial position?

> 26




2. Atmospheric thermodynamics: instability

Dry convection

Potential temperature 8 = T (py / p)R'cP conserved under adiabatic
displacements :

Adiabatic displacement
1

1st law thermodynamics: d(internal energy) = Q (Dea/t added) — W (work done by parcel)
c,dT = -/p d(1/p)
Sincep=pRT, c,dT =-pd(RT/p)=-RdT+RTdp/p
Since ¢, + R=c,, c,dT/T = Rdp/p
=dInT-R/c,dInp=d In(T/pRer) =0

= T/ pR/er = constant

Hence 6 =T (py/ p)R/eP potential temperature is conserved under adiabatic displacement
(R=gaz constant of dry air; c,=specific heat capacity at constant pressure; R/c, ~ 0.286 for air)

27



2. Atmospheric thermodynamics: instability

When is an atmosphere unstable to dry convection?
When potential temperature 6 = T (py/ p)R/cP decreases with height !

The parcel method:

Small vertical displacement of a fluid parcel adiabatic (=> 6 = constant).
During movement, pressure of parcel = pressure of environment.

ZA 8(z) A 0(z)
0,< B
| TPl S 0,= B
= Pp=P
____________ 0,
/ > >
STABLE NEUTRAL UNSTABLE

28



2. Atmospheric thermodynamics: instability

Convective adjustment time scales is very fast (minutes for dry convection) compared to
destabilizing factors (surface warming, atmospheric radiative cooling...)

=> The observed state is very close to convective neutrality

Dry convective boundary layer over daytime desert
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But above a thin boundary layer, not true anymore that 8 = constant. Why?..
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Atmospheric thermodynamics: instability

inversion

Fig. 3.15 Looking down onto widespread haze over south-
ern Africa during the biomass-burning season. The haze is
confined below a temperature inversion. Above the inversion,
the air is remarkably clean and the visibility is excellent.
(Photo: P. V. Hobbs.)

Smoke rising in Lochcarron, Scotland, is stopped by an overlying layer of warmer air (2006). @ More det|



2. Atmospheric thermodynamics: instability

Convective adjustment time scales is very fast (minutes for dry convection) compared to
destabilizing factors (surface warming, atmospheric radiative cooling...)

=> The observed state is very close to convective neutrality

Dry convective boundary layer over daytime desert
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But above a thin boundary layer, not true anymore that 8 = constant. Why?...

Most atmospheric convection involves phase change of water 31
Significant latent heat with phase changes of water = Moist Convection



2. Atmospheric thermodynamics: instability

Clausius Clapeyron

80 =

Water Vapor Pressure (mb)

(°C) -30
(°F) -22

-20

-4

e(T)

Temperature

de,

40
104

B L.U(T)(:TS where:

> e € is saturation vapor pressure,
RUT « [’ is a temperature,

» [, is the specific latent heat of evaporation,
» R, is water vapor gas constant.

e, depends only on temperature

e, increases roughly exponentially with T

Warm air can hold more water vapor than
cold air

32



2. Atmospheric thermodynamics: instability

When is an atmosphere unstable to moist convection ?

Exercise :

« Show that under adiabatic displacement, a parcel of moist air satisfies
dT/T-R/c,dp/p=-L,/(c, T)dq,.

« Deduce that equivalent potential temperature 0, = T (py/p) R/% etvav/ (e T js
approximately conserved.

Some helpful values and orders of magnitude :

- specific heat capacity at constant pressure ¢, = 1005 J kg! K-

- gaz constant of dry air R = 287 J kg' K-

- latent heat of vaporization L,=2.5 x 10° J kg

- water vapor mixing ratio (kg of water vapor per kg of dry air) q, = O(10-3)
- temperature T = O(3 x 102 K)

33



2. Atmospheric thermodynamics: instability

When is an atmosphere unstable to moist convection ?

Equivalent potential temperature 8, = T (p, / p)R/°P e Lvav/(epT) js conserved
under adiabatic displacements :

1st law thermodynamics if air saturated (q,=qs) :
d(internal energy) = Q (latent heat) — W (work done by parcel)

c,dT =- L,dqgs- pd(1/p)
=dInT-R/c,dInp=d In(T/pRer)= —L,/(c, T) das
But d(qs/T)=dq,/T-qs dT/T2=dq,/ T if dgy/T >> q, dT/T? & dqg./q>>dT/T
= d In (T /pRer)~ —L,/c,d(qsT)

= T /pRler glvas/(epT) ~ constant

Note: Air saturated => q,=q;
Air unsaturated => g, conserved

Hence
0. =T (py/ p)RVee e Lvav/(ce T) equivalent potential temperature is
approximately conserved 34



2. Atmospheric thermodynamics: instability

When is an atmosphere unstable to moist convection ?

Skew T diagram (isoT slanted), atmospheric T in red

EL equilibrium Moist adiabat 6.= cstt

level

"j —— Positive areé
/ (CAPE) :

pressure. N o /
% Temperature —

ifference v =~ Nk 207 Dry adiabat 6 = cstt

LFC level of free convection
(= LCL lifted condensation
level for simplicity)

The COMET Program

CAPE: convective available potential energy 35



2. Atmospheric thermodynamics: instability

Parcel = yellow dot

EL equilibrium >
level

<€<——LFC level of free
convection

The COMET Program

CAPE: convective available potential energy 26



CIN: convective inhibition

100

:

783838 8

Sounding showing CIN and CAPE

B

.c
9y

©The COMET Program
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2. Atmospheric thermodynamics: instability

If enough atmospheric instability present, cumulus clouds are capable of producing serious

storms!!!

Strong updrafts develop in the cumulus cloud => mature, deep cumulonimbus cloud.
Associated with heavy rain, lightning and thunder.

Developing Stage Mature Stage Dissipating

Evaporative driven cold pools

&The COMET Program

For more: see « atmospheric thermodynamics » by Bohren and
Albrecht %8




Atmospheric thermodynamics: instability

Note that thunderstorms can be :

single-cell (typically with weak wind shear)
Developing Stage Mature Stage Dissipating

multi-cell (composed of multiple cells, each being at a
different stage in the life cycle of a thunderstorm.

15—

Height (km)

or supercell, characterized by the presence of a deep, rotating updraft

Typically occur in a significant
vertically-sheared environment

Bear flank < B cicrm movement [See Houze book: Cloud Dynamics;

P ' = Muller — Cloud chapter, Les Houches
o Summer School Lecture Notes]
Shelf clowd 39

Precipitation-free
base

Rain curtain Hall

| Heavy rain
Wallcloud  Tornado 4 Light rain




If enough atmospheric instability present, cumulus clouds are capable of
producing serious storms. But this is RARE !

The typical situation is one with small CAPE

Why?

40



If enough atmospheric instability present, cumulus clouds are capable of
producing serious storms. But this is RARE !

The typical situation is one with small CAPE

why? Radiative Convective Equilibrium

Radiative relaxation time scales ~ 40 days
Convective adjustment time scales: minutes (dry) to hours (moist)

In competition between radiation and convection, convection “wins” and
the observed state is much closer to convective neutrality than to

radiative equilibrium

Vertical T profile neutral to dry convection:
0 constant with height

Vertical T profile neutral to moist convection:
0. constant with height

41



Radiative Convective Equilibrium

Dry convective boundary layer over daytime desert [Renno and Williams, 1995]
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But above a thin boundary layer, most atmospheric convection involves phas4e2
change of water: Moist Convection



Radiative Convective Equilibrium

Tropical sounding => moist adiabatic

Constant 6,

0 .
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TYPICAL TROPICAL THERMODYNAMIC PROFILE (over oceans)
Convection FAST, quickly consumes CAPE.
Instability (largely CIN) controlled by large scale circulation
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Clouds and atmospheric convection

1. Cloud types
2. Moist thermodynamics and stability

3. Coupling with circulation

44



Clouds are coupled with circulation

Extratropical low/high pressure systems

Tropics and Subtropics : ITCZ, Hadley, Walker (ENSO), monsoon

Mid-latitudes : Extratropical frontal systems




Clouds and Circulation

Recall : spatial distribution

Brightness temperature from satellite (white < cold cloud tops)

Large
extratropical

- storm
]» systems

subtropics: ~no
}high clouds

Intertropical
convergent
zone

01 JANUARY 2017

« A year of weather »

Question: Where are deep clouds more frequent? Why do
you think that is?

46



Clouds and Circulation

An inversion can develop aloft as a result of air gradually sinking over a wide
area and being warmed by adiabatic compression, e.g. associated
with subtropical high-pressure areas.

— unstable layer capped by stable layer :
— Warm, dry air above cold air « T inversion »

@

T

B

=

o

£

L]

e

2

- Frontal Inversion

L a Air stops,rising when it
1 L Smoke rising in Lochcarron, , Scotland , is stopped by an overlying layer of warmer air (2006). oy x eyl b woarew L -

— . __encountérs the warmer air above
Decreasina temperature ngh Pressure N

A p -
S = >,

Cool air near surface




3. Clouds and Circulation: Tropics and Subtropics

Hadley circulation: Zon

al and time average

Cloud cover (%)
Hadley cell —=
15 P . 40
35
12 30
25 GOCCP data,
8 . 4 L ' 20
= 9 15 from satellite
.‘-t%. . R LI B | : : ' ' 10 lidar
i I i 1 1 1 ' ) i )
Co o CoL 2 (Calipso):
S L | ] | ' 1 1 1 i i
' 1 4
2
o} | 1 1
308 o tropics 30N
Latitude subtropics (30°)
Cloud types:

=O0n average: Deep cumulonimbus Fair weather cumulus
Deep clouds are favored where there is large-scale ascent ; 48

Shallow clouds are favored where there is descent.



3. Clouds and Circulation: Tropics and Subtropics

P (mm/day)
1981-1999 climatology, multimodel mean

Small in Subtropics (descent) [Muller & O’Gorman, 2011]

Large in Tropics (ascent) 49



3. Clouds and Circulation: Tropics and Subtropics

double ITCZ

Single ITCZ: Atlantic sector in boreal summer Cloud cover (%)
| 1 | 1
40
35
30
25 GOCCP data,
S 20
s .5 from satellite
C s lidar
8 (Calipso):
6
~ 4
— 2
D
-
=
©

Latitude

50
Courtesy Gilles Bellon



3. Clouds and Circulation: Tropics and Subtropics

in the equatorial Pacific

Walker cell

Maritime
Continenf]

000000

West Pacific
warm pool

K
‘e

i 41’( ' ’-’
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3. Clouds and Circulation: Tropics and Subtropics
Walker cell

(green=cloud cover)

Walker circulation: Equatorial band
I | - |

15
% 12
3 9
% 6 LA A AR
VAW W\ \ NS v v rrrvr i~
3 R AR LRI INY SR LS
\
0
60E 120E 180 120W 60W 0
Longitude

52
Courtesy Gilles Bellon



3. Clouds and Circulation: Tropics and Subtropics

E| N | no Normal conditions El Nifio conditions

in the equatorial Pacific Eastward shift / extension of convection

—>

Weaker easterlies

8/808

HE R 11l e —— —————————— - -

o
I
Less upwelling : I
r- ’ !

150E 180 150W 120W 90w

Maritime
Continent West Pacific

warm pool

\ %
\‘?f&,"-ﬂ >

bl
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3. Clouds and Circulation: Tropics and Subtroplcs

Monsoons

Asian monsoon

West-African monsoon

Boreal summer

GOCCP data,
from satellite
lidar
(Calipso):

54

308 0 30N
Latitude Courtesy Gilles Bellon



3. Clouds and Circulation: Extratropics

Extratropical low/high pressure systems

3y
T |
. "

2P | A, & /-\ Hadley circulation

49

Mid-latitudes : Extratropical frontal systems




3. Clouds and Circulation

Recall : spatial distribution

Brightness temperature from satellite (white < cold cloud tops)

Large
extratropical

f _— storm
A ]»systems

subtropics: ~no
}high clouds

*I !d.’. " w ;‘.\(}?‘f ITCZ —_
& Intertropical
convergent

¢ zone

« A year of weather »
Extratropics: low and high pressure systems within the polar jet

Question: What explains different behaviors between tropics and extratrSC?pics?



Distribution of clouds: mid-latitudes

courant-jet polaire

High latitudes => clouds embedded in low/high pressure systems

and associated fronts NASA



Distribution of clouds: mid-latitudes

Clouds in frontal systems

Corresponding
T field

Clouds are
clearly linked to
the dynamics

of frontal
systems
Map view ‘ , Cross sectional view
&)
C.O'd:.""" =
air |
Yy L . 5
__.' air
8

Warm
air = |
f,”v o

858

(a) Mature midiatitude cyclone




3. Clouds and Circulation: Extratropics
Tosor s nouvet maracs | BNGES T Echéance : indi 21 mvemb'em'ejhaﬁ! ul

En altitude ) De¢ 21 novembre 2016 06Z
500hPa :tempé. etgéopotentiel | Jet stream (vent au niveau de la tropopause) peaxzssan | 1 PARAMETRES + OH
850hPa : tempé. et géopotentiel . : T ©En alitude Géopotentiel a 500hPa goden
700hPa : tempé. et géopotentiel e 500hPa : tempé. et géopotentiel | Température a 500hPa <l
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GOAL OF PROJECT: How are clouds distributed on Earth,
and why?

SLIDES
Part 1: Synthesis of the theme and tools proposed during the training session

* General context : What is the goal of the project ?
* Introduction to cloud types and cloud physics
* Spatial distribution and link with the large scale atmospheric motion

Caroline Muller

CNRS, Laboratoire de Météorologie Dynamique
Ecole Normale Supérieure Paris

Part 2: Your project

* Links to satellite visualizations

* Your presentation
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Your project:

GOAL OF PROJECT: How are clouds distributed on Earth,
and why?

To address this question, some uesful links:

- « Ayear of weather » video (available online)

- Online document:
http://www.Imd.ens.fr/muller/DOCS/IPSL_Clouds.pdf
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