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The interaction of tidal currents with sea-floor topography results in the radiation
of internal gravity waves into the ocean interior. These waves are called internal
tides and their dissipation due to nonlinear wave breaking and concomitant three-
dimensional turbulence could play an important role in the mixing of the abyssal
ocean, and hence in controlling the large-scale ocean circulation.

As part of on-going work aimed at providing a theory for the vertical distribution
of wave breaking over sea-floor topography, in this paper we investigate the instability
of internal tides in a very simple linear model that helps us to relate the formation of
unstable regions to simple features in the sea-floor topography. For two-dimensional
tides over one-dimensional topography we find that the formation of overturning
instabilities is closely linked to the singularities in the topography shape and that it is
possible to have stable waves at the sea floor and unstable waves in the ocean interior
above.

For three-dimensional tides over two-dimensional topography there is in addition
an effect of geometric focusing of wave energy into localized regions of high wave
amplitude, and we investigate this focusing effect in simple examples. Overall, we find
that the distribution of unstable wave breaking regions can be highly non-uniform
even for very simple idealized topography shapes.

1. Introduction
The topic of this paper is the generation of internal waves in the deep ocean

through the interaction of barotropic tidal flow with sea-floor topography. This
process is known as tidal conversion and the resulting internal waves are known
as internal tides. Their generation, propagation, and eventual dissipation due to
instability, wave breaking, and concomitant bursts of three-dimensional turbulence
are currently believed to be important for the dynamics of the large-scale ocean
circulation as a whole, especially in the deep, abyssal ocean below 1500 m depth or so
(e.g. Munk & Wunsch 1998; Wunsch 2000; and the reviews in Wunsch & Ferrari 2004
and Thorpe 2005). These internal wave processes are far too small in spatial and/or
temporal scale to be resolved in numerical ocean circulation models used for climate
prediction, and therefore theory and observations must be used to parametrize their
effects in such models.

To provide some background, it is known from astronomical observations that 3.5
terawatts (TW) are available from tidal forcing for eventual dissipation in the ocean
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(Egbert & Ray 2000, 2001). There is much less certainty about the distribution of this
global dissipation, although there is reasonable agreement that approximately 2.5 TW
of this dissipation occurs in shallow seas, such as the Irish sea, whereas the remaining
1TW of dissipation occurs in the deep ocean and may involve the breaking of small-
scale internal waves such as the internal tides. The turbulent mixing associated with
these breaking waves makes a significant contribution to the diffusion of fluid particles
across density surfaces, which is important for the maintenance of the stratification
in the deep ocean (e.g. Wunsch & Ferrari 2004).

Egbert & Ray identify areas of the deep ocean where the barotropic tide seems to
lose energy to the internal tides (Egbert & Ray 2000). These are areas of significant
roughness, generally with elongated features such as ridges, trenches and island
chains oriented perpendicular to tidal flows. These topographic features have slopes
that vary over a wide range (Seibold & Berger 1996). Many oceanic islands and
trenches are supercritical topographies, i.e. the local topography slope exceeds the
propagation angle of the internal tides. An example is the Hawaiian Ridge, where a
comprehensive observational program was recently conducted (e.g. Alford, Gregg &
Merrifield 2006; Klymak et al. 2006; Lee et al. 2006; Aucan et al. 2006). On the other
hand, large-scale features of mid-ocean ridge topographies such as the Mid-Atlantic
Ridge are subcritical topographies. Observations of enhanced bottom mixing near the
Mid-Atlantic Ridge was found during the Brazil Basin Tracer Release Experiment
(Polzin et al. 1997; Ledwell et al. 2000).

Idealized analytical and numerical studies of tidal conversion have concentrated on
the energy conversion rate, which is the rate at which internal-tide energy is produced
by tidal conversion at the sea floor (e.g. Cox & Sandstrom 1962; Robinson 1969;
Baines 1973; Bell 1975a , 1975 b; Llewellyn Smith & Young 2002; Khatiwala 2003;
St. Laurent & Garrett 2002; St. Laurent et al. 2003; Balmforth, Ierley & Young
2002; Llewellyn Smith & Young 2003; Di Lorenzo, Young & Llewellyn Smith 2006;
Petrelis, Llewellyn Smith & Young 2006; Legg & Huijts 2006; see also Garrett &
Kunze 2007 for a recent review). The analytical studies range from the simplest linear
theory for infinitesimal sea-floor topography to more sophisticated techniques that
allow for more accuracy in the kinematic boundary condition at the sea floor. The
latter can also deal with supercritical topography. To date, the analytical studies
of supercritical topography have been restricted to two-dimensional flows over one-
dimensional topography. Somewhat surprisingly, these detailed investigations of tidal
conversion on one-dimensional topography suggest that the simplest linear theory
delivers results that are qualitatively reasonable and accurate in terms of energy
conversion rate within a factor of two or so.

Large-scale numerical ocean circulation models used for climate prediction require
a parametrization of small-scale mixing based on empirical maps of the global energy
conversion rate at the sea floor together with ad hoc methods of how to distribute
the energy dissipation and diffusivity due to breaking waves throughout the water
column; see e.g. Ledwell et al. (2000), Egbert & Ray (2000), Jayne & Laurent (2001),
Nycander (2005), and Hibiya, Nagasawa & Niwa (2006) for empirical data and
St. Laurent, Simmons & Jayne (2002), Simmons et al. (2004), Saenko & Merryfield
(2005), and Canuto et al. (2007) for parametrizations in numerical models. At present,
there is little theory to guide these methods, in particular as far as the distribution of
wave breaking in the vertical is concerned.

It is clear that a comprehensive understanding of internal tides and of their role
in the ocean circulation must encompass an understanding of their generation, their
instability, and also of their eventual breakdown into three-dimensional turbulence.
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This paper aims at the instability part of this problem, i.e. we consider in detail the
formation of unstable flow regions in the wave field and how this relates to the shape
of the sea-floor topography. We interpret these instability regions as the seeds of the
three-dimensional turbulence that ultimately produces the small-scale mixing that is
relevant to the ocean circulation. Of particular interest for us are wave fields that
show no obvious signs of instability in broad measures such as the root-mean-square
value of the Richardson number. Such wave fields are nevertheless capable of forming
localized pockets of instability, especially in three-dimensional flow where there is the
possibility for geometric focusing of wave energy. Geometric focusing is a genuinely
three-dimensional flow phenomenon, i.e. it does not occur in the most commonly
studied case of two-dimensional flow over one-dimensional topography.

We use the simplest form of linear theory in this paper. This is motivated by
convenience and by the previously noted observation that more sophisticated theories
predict surprisingly similar results. In other words we consider gentle widespread
subcritical topographies such as features of the Mid-Atlantic Ridge. We concentrate
on a real-space representation of the internal tides using Green’s functions rather than
on the more usual spectral representation using Fourier modes. This is because we
want to investigate in detail the formation of high-amplitude regions in the real-space
wave field, and for this aim the Fourier representation is not very helpful.

We present results for both two-dimensional and three-dimensional flows over
idealized sea-floor topography. The two-dimensional results are not essential for
the practical application but they serve to introduce the main ideas and techniques
in preparation for the three-dimensional results. Our main aim is to obtain a clear
understanding of where the linear wave field is unstable and of how this can be related
to topography features such as localized singularities or more extended features that
may lead to focusing in the ocean interior. A particular and recurring question will be
to understand under what conditions instability in the ocean interior occurs without
there being instability directly at the topography. This question has clear implications
for the distribution of the wave breaking regions throughout the water column. We
plan to follow up on this question in future work.

The paper is laid out as follows. In § 2 we study internal tides due to two-
dimensional flow over one-dimensional topography, which admits a very simple
representation using a Green’s function; this highlights the importance of singularities
in the topography shape in this case. In § 3 the case of two-dimensional topography
is studied, which has a more complicated Green’s function that, however, is amenable
to a simple far-field expansion along characteristic surfaces. This produces a simple
geometric theory of internal tides away from the boundary and leads us to the
focusing effect, which is then discussed in detail in § 4. Concluding remarks are offered
in § 5.

Finally, we would like to point out in passing that this study is not based on ray
tracing, i.e. we do not assume a slowly varying wavetrain. Time-periodic internal waves
are peculiar because their spatial structure is governed by a hyperbolic equation (e.g.
(2.6) below; Sobolev 1960; Maas & Lam 1995) whose characteristics indeed coincide
with the usual group-velocity rays; this can be confusing at times.

2. Internal tides in two dimensions
Our goal is to study linear waves generated by the flow of a uniformly stratified fluid

with barotropic tidal velocity U(t) over undulating sea-floor topography. Specifically,
let (x, y) denote the horizontal coordinates, z the vertical coordinate, and let the
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x-axis be aligned with the tidal velocity U(t) = (U0 cos ω0t, 0, 0) where ω0 > 0 denotes
the tidal frequency. Without bottom topography this barotropic tide represents the
basic solution to the usual tidal equations, and we consider a linear perturbation
to this solution caused by infinitesimal sea-floor topography z =h(x, y) relative to
the unperturbed sea floor z =0. The perturbed flow takes the form of internal tides,
which are the internal waves that are generated by the sloshing of the barotropic
tide over the undulating topography. We consider a linear Boussinesq model with
constant buoyancy frequency N and Coriolis parameter f and infinite vertical extent.
For simplicity, this omits all effects to do with variable stratification and finite ocean
depth, in particular it omits wave reflection in the vertical.

Even with these simplifications the linear problem for internal tides forced by
sinusoidal topography h = h0 cos(kx) with wavenumber k is known to be hard (e.g.
Baines 1973). In general, subtle Doppler-shifting effects lead to the generation of
waves not just at frequency ω0 > 0 but at higher harmonics of ω0 as well. More
specifically, the intrinsic frequency spectrum of the waves can be seen to be given by
the frequency spectrum of the vertical motion of a fluid particle that follows the tidal
sloshing across the topography. This spectrum is therefore critically dependent on the
non-dimensional tidal excursion parameter U0/Lω0, which measures the horizontal
tidal excursions of size U0/ω0 against the gradient length scale of the topography
L =1/k.

Simple solutions are available if this parameter is either large or small. For instance,
in the limit ω0 → 0 the excursion parameter is large and the spectrum concentrates
at the Doppler-shifting frequency U0k; this is the usual lee-wave regime. Conversely,
for small values of the excursion parameter the spectrum concentrates on the tidal
frequency ω0 itself, i.e. Doppler-shifting effects are unimportant in this regime. It
follows that U∂/∂x � ∂/∂t and advection by the tides can be neglected. In other
words, the problem reduces to the forcing of a quiescent body of fluid by oscillatory
vertical motion at its lower boundary. This is the regime we will study here and
therefore we assume

U0k

ω0

=
U0

ω0L
� 1. (2.1)

Of course, this assumption limits the maximum horizontal wavenumber of the topo-
graphy. However, with U0 = 3 cm s−1 and ω0 = 1.4 × 10−4 s−1 for the semi-diurnal
tide (see Bell 1975b), the tidal excursion is only 215 m, which is smaller than most
topographic features of interest.

In this section we consider the two-dimensional problem in the xz-plane such that
∂/∂y = 0 for all fields including the bottom topography h(x). In § 3 we will return
to the three-dimensional problem with full h(x, y). The governing equations are the
linear Boussinesq equations in standard notation:

∂u

∂t
− f v +

1

ρ0

∂p

∂x
= 0,

∂v

∂t
+ f u = 0,

∂w

∂t
+

1

ρ0

∂p

∂z
= b,

∂b

∂t
+ N2w = 0,

∂u

∂x
+

∂w

∂z
= 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.2)

There are no terms such as U∂u/∂x etc., because of (2.1). Here b = −g(ρ − ρs(z))/ρ0

is the usual buoyancy disturbance given in terms of gravity g, density ρ, constant
reference density ρ0, and the linear background stratification ρs(z) = ρ0(1 − N2z/g).
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The flow is forced by the kinematic boundary condition w =U (t)∂h/∂x at the lower
boundary z = 0. We also impose a radiation condition, i.e. the energy carried by the
waves radiates away from the topography. We note in passing that this system also
applies to one-dimensional topography at an arbitrary angle to the tidal velocity
because adding a y-component to the tidal velocity would not change the above
equations or the boundary condition and therefore the same wave field would be
generated.

2.1. Solution in Fourier space

The above system of equations can be reduced to a single equation for the stream-
function ψ such that (u, w) = (−ψz, ψx), namely(

f 2 +
∂2

∂t2

)
∂2ψ

∂z2
+

(
N2 +

∂2

∂t2

)
∂2ψ

∂x2
= 0. (2.3)

The general solution consists of plane waves with frequency ω0 and xz-wavenumbers
(k, m). From the dispersion relation we have

µ =
∣∣∣m
k

∣∣∣ =

√
N2 − ω2

0

ω2
0 − f 2

(2.4)

and the slope of the group-velocity rays is dz/dx = ±µ−1. Typically in the deep
ocean µ takes moderate values of order unity. For instance, with the representative
near-bottom buoyancy frequency N =5f−10f and f = ω0/2 at a latitude of 30◦,
µ = 2.6−5.7, and therefore the slope dz/dx = µ−1 is about a quarter or so. In the
upper ocean N is about ten times bigger and the slope flattens correspondingly.

It is convenient to define the scaled vertical coordinate Z = µz and the non-dim-
ensionalized topography H (x) by h(x) = h0H (x). Following Balmforth et al. (2002)
we look for solutions of the form

ψ(x, z, t) =U0h0Re(φ(x, Z)e−iω0t ), (2.5)

and (2.3) becomes a one-dimensional wave equation where Z plays the role of time

∂2φ

∂Z2
− ∂2φ

∂x2
= 0 (2.6)

with lower boundary condition

φ(x, Z = 0) = H (x). (2.7)

However, the radiation condition means that this is not the standard Cauchy problem
for the wave equation. The radiation condition necessitates the use of Fourier
transforms at this stage.

From now on, we assume that H (x) is a function on the real line that decays to
zero as |x| → ∞. In other words, we are interested in isolated topography. Of course,
the periodic case can be studied by the same method with Fourier series replacing
transforms. Consider the Fourier transform of φ in x:

φ̂(k, Z) = FT {φ}(k, Z) =

∫ ∞

−∞
φ(x, Z)e−ikx dx, (2.8)

φ(x, Z) = FT −1{φ̂}(x, Z) =
1

2π

∫ ∞

−∞
φ̂(k, Z)eikx dk. (2.9)

Then (2.6) yields m = ±k. For internal waves, the vertical group and phase velocities
have opposite signs and therefore the radiation condition implies negative vertical
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phase velocity, i.e. mω0 < 0. Imposing the radiation condition for ψ(x, z, t) on each
mode along with (2.7) and with the convention ω0 > 0 we obtain m = −|k|, and
therefore

φ̂(k, Z) = Ĥ (k)e−i|k|Z. (2.10)

This is the solution in Fourier space. Note that this is not the Fourier transform of a
real function for Z > 0. Indeed, its real part will contribute to the wave field with a
cosω0t factor and its imaginary part with a sinω0t factor.

The time-averaged energy conversion rate C quantifies the mean energy flux of the
internal tides, which presumably is ultimately related to the deep-ocean mixing caused
by dissipating or breaking internal tides. The conversion rate is quadratic in wave
amplitude and additive over all Fourier components because of orthogonality. This
means that it can be computed directly from the solution in Fourier space. Indeed,
the conversion rate of energy per unit length in y is simply the time average, denoted
by brackets, of the vertical flux of energy at Z = 0:

C =

〈∫ ∞

−∞
p(x, 0, t)w(x, 0, t) dx

〉
=

〈
1

2π

∫ ∞

−∞
p̂(k, 0, t)ŵ∗(k, 0, t) dk

〉
(2.11)

by Parseval’s theorem, where ŵ∗ denotes the complex conjugate of ŵ. From (2.2) and
(2.10),

ŵ(k, 0, t) = U0h0FT {H ′(x)} cos(ω0t), (2.12)

p̂(k, 0, t) =
ρ0U0h0

ω0

√
N2 − ω2

0

√
ω2

0 − f 2
1

|k|FT {H ′(x)} cos(ω0t), (2.13)

where the prime denotes x-differentiation. Therefore

C = C0

∫ ∞

−∞
|k|
∣∣∣Ĥ (k)

∣∣∣2 dk, C0 =
1

4π

ρ0U
2
0 h2

0

ω0

√
N2 − ω2

0

√
ω2

0 − f 2. (2.14)

We recover Bell’s formula (Bell 1975a) for the contribution of the waves with tidal
frequency ω0 to the conversion rate in the limit N/ω0 � 1; see, for instance, equ-
ation (2) in Llewellyn Smith & Young (2002), who extended Bell’s formula to non-
zero f .

The energy conversion rate has an interesting dependence on the shape of the
topography described by the integral in (2.14).† This can be brought out by considering
the family of stretched and scaled topographies defined by H

p
δ (x) ≡ δpH (x/δ) where

δ > 0 and p is a real number. Thus, H 1
1 (x) = H (x), the Fourier transform of H

p
δ is

Ĥ
p
δ (k) = δp+1Ĥ (kδ), and we obtain

C
p
δ = C0

∫ ∞

−∞
|k|
∣∣Ĥ p

δ (k)
∣∣2dk =C0

∫ ∞

−∞
|k|δ2p+2

∣∣Ĥ (kδ)
∣∣2 dk

= C0δ
2p

∫ ∞

−∞
|δk|
∣∣Ĥ (δk)

∣∣2 dδk = δ2pC1
1 . (2.15)

This shows the surprising result that the conversion rate is invariant if p = 0, i.e. the
conversion rate is unaffected by any pure stretching transformation H (x) → H (x/δ).
Llewellyn Smith & Young (2002) point out this invariance in the case of the witch of
Agnesi, but (2.15) makes obvious that this invariance in fact holds for any compact
topography shape.

† The same integral appears in the computation of the form drag due to hydrostatic lee waves.
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Physically, this invariance is due to the cancellation of two counter-acting effects,
as can be seen in the case of a localized topographic wave packet with width W

and central wavenumber k, say. Compressing the wavepacket with δ < 1 increases the
central wavenumber by a factor 1/δ, which increases the conversion rate per unit
width of the packet according to the k-weighting in (2.14) by the same factor 1/δ. On
the other hand, the width W is reduced by a factor δ and this precisely cancels the
first effect.‡

2.2. Solution using Green’s function

The solution in terms of inverse Fourier transforms is convenient for computation
of the conversion rate, which was a single number, but it is not convenient in order
to investigate the behaviour of the solution, say, as a function of distance above the
topography. However, the latter is necessary in order to study local instabilsities of the
wave field. For this purpose it is more convenient to have a real-space representation
of the solution in terms of a Green’s function. In fact, in the present two-dimensional
case this leads to a very simple representation of the solution in terms of the
topography shape and its Hilbert transform. We believe that this is well known, but
the approach is summarized here as preparation for the less simple three-dimensional
case.

From (2.10) the streamfunction is obtained from the topography by the x-
convolution

φ(x, Z) = (G ∗ H )(x) =

∫ ∞

−∞
G(x − x ′, Z)H (x ′) dx ′, (2.16)

where G(x, Z) ≡ FT −1{e−i|k|Z} is the causal Green’s function. This is a distribution,
which can be computed explicitly (see Appendix A) as

G(x, Z) =
1

2
(δ(x + Z) + δ(x − Z)) +

i

2π

(
1

x − Z
− 1

x + Z

)
. (2.17)

The streamfunction is therefore given by

φ = G ∗ H =
1

2
(H (x + Z) + H (x − Z)) +

i

2π

∫ (
H (x ′)

x − Z − x ′ − H (x ′)

x + Z − x ′

)
dx ′

(2.18)

with the integral defined by its Cauchy principal value; this is the Hilbert transform
of H . Specifically, if we denote the Hilbert transform of a function f by f̃ ≡ 1/πx ∗f

then we can rewrite (2.18) as

φ = G ∗ H =
1

2
[H (x + Z) + H (x − Z)] +

i

2
[H̃ (x − Z) − H̃ (x + Z)]. (2.19)

This surprisingly simple expression demonstrates that φ is a linear combination of
shifted values of the topography H and its Hilbert transform H̃ along the charac-
teristics dZ = dx and dZ = −dx of the hyperbolic equation (2.6). From (2.5) the
time-dependent streamfunction is given by

ψ(x, z, t) =
U0h0

2

{
cos ω0t[H (x + Z) + H (x − Z)] + sinω0t[H̃ (x − Z) − H̃ (x + Z)]

}
,

‡ For periodic topography stretching is permitted if δ = 1/n with integer n, but in this case the
second effect is absent and the conversion rate per period length would indeed be proportional
to n.
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which illustrates that the real and imaginary parts of φ correspond to in-phase and
out-of-phase oscillations relative to the tidal velocity U (t) = U0 cosω0t .

In general, for any function of the linear wave field, an x-convolution with the
Green’s function G(x, Z) provides a map between the function at the lower boundary
Z = 0 and the function at Z � 0, i.e.

A(x, Z) = G(x, Z) ∗ A(x, 0) ⇔ Â(k, Z) = exp(−i|k|Z) Â(k, 0) (2.20)

holds for any complex wave field A defined in analogy with φ in (2.5). The explicit
action of G(x, Z) on A(x, 0) can be read off from (2.19). In fact, there is nothing
special about the location Z = 0 because (2.20b) makes it obvious that G satisfies the
group property G(x, Z1 + Z2) = G(x, Z1) ∗ G(x, Z2) for arbitrary Z1 and Z2. Thus we
can view G as the unique linear operator that maps wave fields between different
altitudes. In other words, G is the propagator of the wave field in altitude Z.

2.3. Instabilities of the wave field

We now investigate the possible instability of the internal tide solution. More
specifically, we are looking for strong, fast, and catastrophic instabilities that signal
the inevitable breakdown of linear theory and thereby mark the incipient stage of
localized three-dimensional turbulence and therefore of irreversible mixing. In other
words, we are using linear theory to predict its own breakdown. For simplicity, this
omits all weaker nonlinear interaction effects such as resonant triad interactions,
which could be viewed as weak instabilities of the linear wave field that operate over
long, amplitude-dependent time scales and tend to preserve the energy of the wave
field.

Thus, we use a simple measure of wave amplitude based either on Kelvin–Helmholtz
instability flagged by low Richardson number or based on convective instability
flagged by negative stratification. With Coriolis forces and three-dimensional flows it
is simpler to look at the latter, and therefore we look at the stratification surfaces of
constant Θ = b+N2z = b+N2Z/µ, which is proportional to the materially conserved
density in the Boussinesq model for the ocean. Negative stratification corresponds to
overturning of the stratification surfaces such that ∂Θ/∂Z is negative. From (2.2) we
find

∂Θ

∂Z
=

N2

µ

{
1 − U0h0µ

ω0

∂

∂Z
Re

[
ie−iω0t

∂φ

∂x

]}
=

N2

µ
{1 − Re[e−iω0tA(x, Z)]}. (2.21)

This introduces the non-dimensional wave amplitude

A(x, Z) ≡ i
U0h0µ

ω0

∂

∂Z

∂φ

∂x
= Ar (x, Z) + iAi(x, Z) (2.22)

such that

∂Θ

∂Z
=

N2

µ
{1 − [cosω0t Ar (x, Z) + sinω0t Ai(x, Z)]} (2.23)

and |A| � 1 signals convective instability at some point in the oscillation. Combining
(2.22) and (2.19) yields

Ar =
1

2

U0h0µ

ω0

[H̃ ′′(x+Z)+H̃ ′′(x −Z)], Ai =
1

2

U0h0µ

ω0

[H ′′(x+Z)−H ′′(x −Z)] (2.24)

where prime denotes differentiation. We observe that the wave amplitude is
proportional to the second derivative of the topography and of its Hilbert transform.
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Figure 1. (a) A Gaussian bump H (x) = exp(−x2/2σ 2)/(
√

2πσ ) with σ = 0.5 and its second
derivative (plain and dashed line, respectively), along with (b) their Hilbert transforms H̃ and
H̃ ′′ (plain and dashed line, respectively). By (2.24), the dashed line in (b) is proportional to the
amplitude of the wave field at Z = 0.

Also, the term involving the Hilbert transform H̃ ′′ is in phase with the tidal velocity
U (t), whilst the term involving H ′′ is ninety degrees out of phase.

It is useful to consider separately the wave amplitude field at the lower boundary
Z = 0 and the propagated amplitude field in the ocean interior Z > 0. At Z = 0, the
wave amplitude is A0(x) = A(x, 0) = Ar (x, 0) = (U0h0µ/ω0)H̃

′′(x) such that

Z = 0 :
∂Θ

∂Z
=

N2

µ

{
1 − U0h0µ

ω0

cosω0t H̃ ′′(x)

}
. (2.25)

We observe that at the lower boundary the wave amplitude does not depend on H (x),
is in phase with the tidal velocity, and hence there will be overturning instabilities
when and where cos(ω0t)H̃

′′(x) > ω0/U0h0µ. To illustrate this let us look at the
smooth single-bump topography in figure 1. The boundary amplitude A0 has a
positive maximum before the bump and a negative minimum after the bump. Hence
cos ω0tA0(x) is maximum at ω0t = 0 on the left of the topography, and at ω0t = π on
the right of the topography. In either case, cos ω0tA0(x) assumes its maximum value
on the current upwind side relative to the oscillating tidal flow U0 cos ω0t .

By (2.20), at any depth Z � 0 the amplitude of the wave field is given by A(x, Z) =
G(x, Z) ∗ A0(x), which is (2.24). The amplitude in the interior depends on both H (x)
and H̃ and instabilities will again occur when and where

cos ω0t[H̃
′′(x +Z) + H̃ ′′(x − Z)] + sinω0t[H

′′(x + Z) − H ′′(x − Z)] > 2
ω0

U0h0µ
. (2.26)

This makes clear that it is possible for the wave amplitude at the sea floor to be
very different from the wave amplitude in the ocean interior simply because A(x, 0)
depends on H̃ ′′ only, whereas A(x, Z) depends on both H̃ ′′ and H ′′. As is well known,
the smallness of a function does not imply the smallness of its Hilbert transform,
or vice versa. A simple example of this is a bounded discontinuous function like a
step function, the Hilbert transform of which exhibits a logarithmic singularity at the
jump location.
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Figure 2. Buoyancy surfaces at ω0t = 0 (a) and ω0t = π/2 (b) when H ′′ has discontinuities.
The parameter α = U0h0µ/ω0.The dashed lines are the characteristic lines emanating from
discontinuities of H ′′. At the bottom, 0.1H̃ (X) and 0.1H (X) are shown in (a) and (b)
respectively (the scaling factor 0.1 has been introduced for better visualization of the wave
field). Note that on the characteristics that do not intersect the support of H , the buoyancy
surfaces are undisturbed at ω0t = π/2. This is not true at ω0t = 0, since the Hilbert transform
involves a non-local convolution and hence H̃ ′′ does not have compact support.

This is illustrated in figure 2, which depicts the internal tide due to topography
with piecewise constant H ′′, in other words H is piecewise quadratic. Specifically, H

is given by

H (X) = 8
(
X + 1

2

)2
χ[−1/2,−1/4] + 8

(
1
8

− X2
)
χ[−1/4,1/4] + 8

(
X − 1

2

)2
χ[1/4,1/2]. (2.27)

where X = x/L and χ denotes the indicator function. The corresponding H ′′ has
discontinuities at ±1/2 and ±1/4 and hence its Hilbert transform is unbounded along
the characteristics emanating from these locations. We expect overturning to occur
near these characteristics when cos(ω0t) = 1 and this is illustrated in figure 2. Away
from these singular characteristics the stratification surfaces undulate with a typical
slope U0h0µ/(ω0L

2). In terms of physical numbers, for a ridge with height h0 = 400 m
and width L = 10 km, and using semi-diurnal values U0 = 4 × 10−2 m s−1, f0 = 10−4 s−1,
N = 10f0 and ω0 = 2f0, we obtain U0h0µ/(ω0L

2) ≈ 4 × 10−3. Nonetheless, in order to
display the wave field clearly, we used the rather large value U0h0µ/(ω0L

2) = 7 × 10−2

in figure 2.
The presence of overturning is a robust result for the first mode (at fundamental

tidal frequency ω0) even for finite tidal excursion U0/Lω0. If we remove the small
tidal excursion assumption (2.1) but retain discontinuous H ′′, then there can still be
overturning but the amplitude is now bounded with a logarithmic singularity in the
tidal excursion parameter (see Appendix B for solutions in the finite tidal excursion
regime).

It is worth noting that the presence of flow instabilities and wave breaking entirely
due to isolated jumps in H ′′ is probably not associated with a large dissipation of
energy. This is because any isolated discontinuity in H ′′ could be smoothed out by
convolution with a suitable mollifier (see, for instance, Appendix C4 in Evans 1998).
This would reduce or even suppress the overturning without necessarily significantly
modifying the energy conversion rate, which by (2.14) is proportional to the integral
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of k|Ĥ |2 over positive k. A jump in H ′′ leads to |Ĥ | ∝ k−3 as k → ∞, and therefore the
integrand has the rapid decay rate k−5. Smoothing the singularity of H ′′ suppresses
this power law tail, but this would have little impact on the net energy conversion
rate.

Finally, it is remarkable how the wave structure in this case of small tidal excursion
differs from that of lee waves, which illustrate the opposite case of infinite excursion
as a steady wind U > 0 blows over isolated topography. For instance, for hydrostatic
wavenumbers U 2k2 � N2 with f = 0 the vertical wavenumber for lee waves is simply
m = sgn(k)N/U , which does not depend on the horizontal wavelength. In this case
∂Θ/∂z =N2 {1 − A(x, z)}, and the corresponding overturning amplitude for steady
lee waves is found to be

A(x, Z) = −Nh0

U
(H̃ (x) cos Z + H (x) sin Z) (2.28)

where Z = zN/U . Broadly, this shows that lee waves are localized over the topography
and that their amplitude is proportional to H and H̃ . This is very different from the
waves in figure 2, which spread out with amplitudes proportional to H ′′ and H̃ ′′.

3. Internal tides in three dimensions
We now come to the main topic of the paper, which is the study of three-

dimensional internal tides. Mutatis mutandis, the solution in Fourier modes and the
Green’s function are derived as in the two-dimensional case. However, there is now
a fundamentally new phenomenon that did not appear in the two-dimensional case,
namely the geometrical focusing of wave energy into point- or line-like regions of the
ocean interior. This important phenomenon can lead to increased amplitudes in these
focusing regions, which are hence prime locations for wave breaking. We will briefly
summarize the Fourier and Green’s function solution in this section and thereafter
we will look in depth at the focusing phenomenon in § 4.

We again consider barotropic tidal flow U(t) = (U0 cos ω0t, 0, 0) above topography
h(x, y) = h0H (x, y). The assumptions are the same as in the two-dimensional case (in
particular, weak topography approximation and small tidal excursion limit) except
that we no longer assume ∂/∂y = 0. With the same notation as in § 2, the equations
become

∂u

∂t
− f v +

1

ρ0

∂p

∂x
=0,

∂v

∂t
+ f u +

1

ρ0

∂p

∂y
=0,

∂w

∂t
+

1

ρ0

∂p

∂z
= b,

∂b

∂t
+ N2w =0,

∂u

∂x
+

∂v

∂y
+

∂w

∂z
=0,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.1)

with the linearized boundary condition w = U0 cos(ω0t)∂h/∂x = h0U0 cos(ω0t)∂H/∂x

at z = 0. We also impose the upward radiation condition as before.
For internal waves, the above system of equations can be reduced to a single

equation for the vertical velocity(
f 2 +

∂2

∂t2

)
∂2w

∂z2
+

(
N2 +

∂2

∂t2

)
∇2

Hw = 0 (3.2)

where ∇2
H is the horizontal Laplacian ∂2/∂x2 + ∂2/∂y2.
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3.1. Solution in Fourier space

We take Z = µz as before and look for a solution of the form

w(x, y, z, t) =U0h0Re(W (x, y, Z)e−iω0t ). (3.3)

Then (3.2) becomes

∂2W

∂Z2
− ∇2

HW =0. (3.4)

As in the two-dimensional case, we now assume that H (x) is compactly supported,
i.e. we are interested in isolated topographic features. Consider the Fourier transform
of W over x = (x, y)

Ŵ (k, Z) = FT {W}(k, Z) =

∫ ∞

−∞

∫ ∞

−∞
W (x, Z)e−ik·x dx dy, (3.5)

W (x, Z) = FT −1{Ŵ}(x, Z) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
Ŵ (k, Z)eik·x dk dl. (3.6)

Here the wavenumber vector is k = (k, l). Imposing the radiation condition on each
mode along with the bottom boundary condition W (x, 0) = ∂H (x)/∂x, we obtain

Ŵ (k, Z) = exp(−i|k|Z) FT

{
∂H

∂x

}
= exp(−i|k|Z) ikĤ (k). (3.7)

Note that as in the two-dimensional case, this is not the Fourier transform of a real
function for Z > 0. Its real part contributes to the wave field with a cosω0t factor in
phase with the tide, and its imaginary part contributes with a sin ω0t factor out of
phase with the tide.

Again, the conversion rate of energy from the barotropic tide to the waves is the
time average, denoted by brackets, of the vertical flux of energy at Z = 0,

C =

〈∫ ∞

−∞

∫ ∞

−∞
p(x, 0, t)w(x, 0, t) dx dy

〉
=

〈
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
p̂(k, 0, t)ŵ∗(k, 0, t) dk dl

〉
(3.8)

by Parseval’s theorem. Denoting κ = |k| =
√

k2 + l2, it follows from (3.1) and (3.7) that

ŵ(k, 0, t) = U0h0FT

{
∂H

∂x

}
cos(ω0t), (3.9)

p̂(k, 0, t) =
ρ0U0h0

ω0

√
N2 − ω2

0

√
ω2

0 − f 2
1

κ
FT

{
∂H

∂x

}
cos(ω0t). (3.10)

Therefore

C = C0

∫ ∞

−∞

∫ ∞

−∞

k2

κ

∣∣∣Ĥ (k)
∣∣∣2 dk dl, C0 =

1

2(2π)2
ρ0U

2
0 h2

0

ω0

√
N2 − ω2

0

√
ω2

0 − f 2. (3.11)

In the limit N/ω0 � 1, we recover formula (54) from Llewellyn Smith & Young (2002)
for an ocean of infinite depth and with V0 = 0.

Let us compute the conversion rates for a family of simultaneously stretched and
scaled topographies H

p
δ (x) = δpH (x/δ), where δ > 0 and p is a real number. If the

original topography H has its support included in some disk of radius L, then H
p
δ

has support within a disk of radius δL. The Fourier transform Ĥ
p
δ (k) = δp+2Ĥ (δk),
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and we obtain

C
p
δ = C0δ

2p+4

∫ ∞

−∞

∫ ∞

−∞

k2

κ
|Ĥ (δk)|2 dk dl

= C0δ
2p+1

∫ ∞

−∞

∫ ∞

−∞

(δk)2

δκ
|Ĥ (δk)|2 dδk dδl = δ2p+1C. (3.12)

Setting p = −1/2, we see that the conversion rate is invariant with respect to the
simultaneous stretching and scaling H (x) → H (x/δ)/

√
δ. For example, a given

topography generates waves carrying the same amount of energy as the same
topography shrunk by half (i.e. δ = 1/2) and amplified by

√
2.

3.2. Solution using Green’s function

From (3.7) we have the horizontal convolution

W (x, Z) = G(x, Z) ∗ ∂H

∂x
(x), (3.13)

where the causal Green’s function is given by

G(x, Z) =FT −1 {exp(−iκZ)} . (3.14)

This distribution can be computed as

G(x, Z) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
e−iκZeik·x dk dl =

1

2π

∫ ∞

0

κe−iκZJ0(κr) dκ, (3.15)

where r = |x| and J0 is the zeroth-order Bessel function of the first kind. Hence

G(x, Z) =
i

2π

∂

∂Z

(∫ ∞

0

e−iκZJ0(κr) dκ

)
(3.16)

=
i

2πr

∂

∂Z

(∫ ∞

0

e−isZ/rJ0(s) ds

)
=

i

2πr

∂

∂Z
J̃ (Z/r), (3.17)

where J̃ (t) =
∫ ∞

0
J0(s)e

−ist ds is the one-dimensional Fourier transform of J0(s)χ[0,∞)(s).

The real and imaginary parts of J̃ can be found, for instance, in Watson (1966):

J̃ (t) =
χ|t | < 1√
1 − t2

− i

(
−χt<−1 + χt>1√

t2 − 1

)
,

where the indicator function χt<−1 is one if t < −1 and so on. This yields

G(x, Z) =G(r, Z) =
1

2π

∂

∂Z

(
χr<Z√
Z2 − r2

+ i
χr>Z√
r2 − Z2

)
. (3.18)

Convolution with this propagator G(x, Z) yields any wave field A(x, Z) =G(x, Z) ∗
A0(x) in terms of its known values at the lower boundary A0(x) = A(x, 0), i.e.

A(x, Z) =
1

2π

∂

∂Z

⎛
⎜⎝ ∫

|x′|<Z

∫
A0(x − x ′)√

Z2 − |x ′|2
dx ′

1dx ′
2 + i

∫
|x′|>Z

∫
A0(x − x ′)√

|x ′|2 − Z2
dx ′

1 dx ′
2

⎞
⎟⎠ (3.19)

where x ′ = (x ′
1, x

′
2). The first term is familiar from the Cauchy problem for the two-

dimensional wave equation (with Z replacing time) but the second is not. If A0 is real
then (3.19) gives the explicit split of A= Ar + iAi into its real and imaginary parts,
where the real part is in phase with the tidal velocity and the imaginary part is out
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of phase. Note that Ar (x, Z) depends on the boundary data A0(x ′) for |x − x ′| � Z,
which is the interior of the circle centred at x and with radius Z. On the other hand,
Ai(x, Z) depends on the boundary data A0(x ′) for |x − x ′| � Z, which is the exterior of
the same circle. Clearly, the circle is the footprint of the characteristic backward cone
with unit slope dZ/dr and apex at (x, Z). Furthermore, in both cases the integrand
is unbounded (although integrable) on the circle |x − x ′| = Z, and this leads to the
geometric focusing effects that will be studied in § 4.

For future reference we note that the Z-derivative in (3.19) can be incorporated in
the integral if we introduce the integration variable u = (u1, u2) = x ′/Z. After some
manipulations and using the fact that A0 is real (see (3.23) and (3.24) below), this
leads to

Ar (x, Z) =
1

2π

∫
|u|<1

∫
A0(x − Zu) − Zu · ∇A0(x − Zu)√

1 − |u|2
du1 du2, (3.20)

Ai(x, Z) =
1

2π

∫
|u|>1

∫
A0(x − Zu) − Zu · ∇A0(x − Zu)√

|u|2 − 1
du1 du2. (3.21)

We now turn to computing the overturning amplitude at the lower boundary. The
non-dimensional overturning amplitude A is again defined by

∂Θ

∂Z
=

N2

µ

{
1 − Re

[
e−iω0tA(x, Z)

]}
. (3.22)

In Fourier space the wave amplitude at Z = 0 is found to be

Â0(k) =
U0h0µ

ω0

κ ikĤ (k) (3.23)

and therefore we obtain the alternative real-space expressions

ω0

U0h0µ
A0(x) =

√
−∆

[
∂H

∂x

]
=

∂

∂x

{
−1

2πr
∗ ∆H (x)

}
=

x

2πr3
∗ ∆H (x) (3.24)

for A0 in terms of the topography H . (See Chapter V of Stein 1970 for some properties
of the fractional Laplacian operator

√
−∆; also, the convolution expressions make use

of FT −1{1/κ} =1/(2πr) and the final convolution must be evaluated in the principal
value sense.) Note that A0 is real and therefore the overturning amplitude at the
bottom is in phase with the tide, as it was in the two-dimensional case.

We illustrate (3.24) by computing A0(x) for the Gaussian bump topography
H (x) = exp(−|x|2/2σ 2)/(2πσ 2) with σ = 0.5 as shown in figure 3. The amplitude
A0(x) is maximal at a point on the x-axis with x < 0, i.e. before the Gaussian bump
in the tidal direction. This can be most easily understood from the final convolution
in (3.24) together with ∆H < 0 in the core of the Gaussian. Hence A0(x) cos(ω0t) for
ω0t = 0 has a maximum at x < 0, whilst for ω0t = π its maximum is at x > 0. In any
case, A0(x) cos(ω0t) is maximum on the side of the topography from which the tidal
current is coming. Therefore overturning instabilities at the bottom will again arise
on the upwind side of the topography relative to the tidal current.

In figure 4 we illustrate the interior amplitude A(x, Z)† for the same Gaussian bump
topography. The real part of A is maximal at the lower boundary Z = 0. However,

† Here and in the following the wave solution was evaluated using a Fourier series on a large
three-dimensional grid with typical resolution dx = dy = dZ = 0.05σ .
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Figure 3. Qualitative amplitude of the wave field generated at Z = 0 by a Gaussian bump
with U0h0µ/ω0 = 1 for ease of plotting. The x-axis is aligned with the tidal flow and the
overturning amplitude is in phase with tidal flow and largest on the upwind side of the bump.
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Figure 4. Real (a) and imaginary (b) part of A(x, Z) for Gaussian bump topography with
width σ . The boundary amplitude A0 is contoured in terms of the scaled coordinates
(x̄, ȳ) = (x/σ, y/σ ). The markers indicate grid locations where |Ar | and |Ai | are within 20 % of
their maximal values, respectively. The real part achieves its maximal value at the boundary
whereas the imaginary part achieves its maximum in the interior, roughly at Z = 0.75σ . The
maximal value of |Ai | is about 90 % of the maximal value of |Ar | for Gaussian topography.

the imaginary part of A is maximal in the interior, broadly at a distance Z > 0 that
is proportional to the topography width σ (see caption for details). Both amplitude
maxima are closely comparable in magnitude and therefore wave breaking, should it
occur, is likely to arise both at the boundary and in the ocean interior.

In the remainder of the paper we will consider only the dependence of the interior
wave amplitude A(x, Z) on the shape of a given boundary amplitude field A0(x). In
other words, we separate conceptually and computationally the wave generation part
of the problem, which is described by the relation between A0(x) and H (x) in (3.24),
from the wave propagation part, which is described by the relation between A(x, Z)
and A0(x) in (3.19). The latter part can lead to wave focusing, which we study now.
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4. A three-dimensional effect: focusing
The interior wave amplitude A is given by the action of the propagator on A0,

i.e. A(x, Z) =G(x, Z) ∗ A0(x). Our task in this section is to understand how simple
boundary configurations of A0 are propagated into the interior, and especially under
what circumstances interior amplitudes can be significantly enhanced locally when
compared to the boundary amplitudes. This has an impact on the three-dimensional
distribution of likely wave instability and wave breaking. To begin with, it is a simple
consequence of |Ĝ| =1 that the propagation map is unitary in the sense of a constant
quadratic norm, i.e.∫

|A(x, Z)|2 dxdy =

∫ (
A2

r + A2
i

)
dxdy =

∫
|A0(x)|2 dxdy. (4.1)

In other words, the root-mean-square value of A is independent of Z. As noted in
the Introduction, the constancy of this quadratic norm for A masks the possible
non-uniformity of A in space, i.e. the possibility of large |A| in some localized region.
Wave breaking is caused by local wave amplitudes exceeding an instability threshold,
and therefore wave breaking is likely to be non-uniform in space in a manner that
is analogous to A. This non-uniformity is clearly not captured by the root-mean-
square value of A and therefore we must look more closely into the anatomy of the
propagator G.

For instance, we would like to have a qualitative understanding of the interior
amplitude distribution in response to Gaussian topography, which was displayed in
figure 4. In particular, we want to understand how this interior distribution is related
to the dipolar and curved distribution of boundary amplitude, which is contoured
in the same plot. To this end we will look at a few very simple examples of A0

distributions and develop a geometric theory to understand the interior amplitudes
that arise in these examples. We can then use these building blocks to understand
more complex distributions by superposition.

There is one technical point that needs to be noted at this stage. It is clear from the
x-derivative in the generation formula (3.24) that A0 satisfies the integral constraint∫

A0(x, y)dx = 0 for all y. It is convenient to dispense with this constraint when
considering simple shapes of A0 such as a monopolar bump. In other words, it is
tacitly understood from now on that a realistic A0 can be assembled by a suitable
superposition of simple shapes that together satisfy the integral constraint.

4.1. Geometric theory for Gaussian boundary amplitude

A direct look at A in terms of simple shapes in A0 is complicated by the singularities
of G that are apparent in (3.18). These singularities disappear once G is convolved
with a smooth A0 and therefore it is natural to consider a monopolar Gaussian bump
in A0 such that

A0(x) =
α

2πσ 2
e−|x|2/(2σ 2) with α =

U0h0µ

ω0

. (4.2)

As the width σ → 0, G∗A0 goes to G in the sense of distributions (up to an α factor),
hence understanding the action of G on a Gaussian bump will help us understand its
action on arbitrary topography. By horizontal isotropy, A is radially symmetric in x,
i.e. A(x, Z) = A(r, Z) where r = |x|. Furthermore, from (3.14) we have the homogeneity
relation σ 2G(r, Z) = G(r/σ, Z/σ ) for all σ > 0 and it then follows from (4.2) that

A(r, Z) =
α

2πσ 2
f (r/σ, Z/σ ) where f (r̄ , Z̄) = G(r̄ , Z̄) ∗ e−r̄2/2 (4.3)
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Figure 5. Real part (plain line) and imaginary part (dashed line) of f (r̄ , Z̄) = G(r̄ , Z̄) ∗ e−r̄2/2

versus r̄ for different values of Z̄. The line r̄ = Z̄ is also shown (dot-dashed). We see that at a
given Z̄, the function has a front around r̄ = Z̄. In fact, the real part of f is exactly zero after
the front and the imaginary part is zero before the front, as expected from the integration
domains in (3.20) and (3.21). We also see that the magnitude of f decreases with height.

and the final convolution is taken over (x̄, ȳ). Hence decreasing σ corresponds
to compressing the support and amplifying the magnitude of both A and A0. In
particular, |A(x, Z)|max ∝ 1/σ 2.

Now, in principle a monopolar distribution of A0 centred at the origin produces
a non-zero A ∝ f (r/σ, Z/σ ) at all r and Z > 0. In other words, the domain of
influence of the boundary point (x, Z) = (0, 0, 0) is the entire open half-space Z > 0.
However, the interior amplitude distribution due to a monopolar A0 is strongly
concentrated in the neighbourhood of the characteristic forward cone, which has
apex at (x, Z) = (0, 0, 0) and slope dZ/dr equal to unity.

This is apparent from the real and imaginary parts of f that are plotted in
figure 5 versus r̄ at various Z̄. We see that the function f has a front at the forward
cone r̄ = Z̄. More precisely, its real part has a positive extremum just after r̄ = Z̄,
its imaginary part has a negative extremum just before r̄ = Z̄, and these extrema
decrease in magnitude with Z̄. With a little more effort (see (4.5) below), it can be

shown that the extrema decay as 1/
√

Z̄ if Z̄ � 1, which is consistent with the usual
far-field behaviour of solutions to the two-dimensional wave equation, Z replacing
time. The important observation is that the second, imaginary part of the propagator
in (3.19) shows the same behaviour.

This suggests a geometric theory for the far-field behaviour of the propagator G

such that smooth boundary data A0 at a point x ′, say, induces an interior amplitude
A only on the forward cone (x, Z) such that |x − x ′| =Z and that along this cone

the induced amplitude decays as 1/
√

Z. This geometric theory is an approximation
to the full propagator and it is accurate at distances from the boundary that are
large compared to the gradient scale of the topography, which is σ in the case of the
Gaussian bump.

We will use this geometric theory to understand the interior amplitude response to
more complicated boundary data, but before this we briefly show how to compute the
asymptotic decay rate of the amplitude on the forward cone as a function of altitude,
i.e. we estimate how f (Z̄, Z̄) varies with Z̄ for Z̄ � 1. From (4.3) and (3.20)–(3.21) we
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Figure 6. (a) max{r̄�0}|Re(f (r̄ , Z̄))| =max{r�0}|Re(A(r, Z))|/|A0|max (plain line) and (b)

max{r̄�0}|Im(f (r̄ , Z̄))| =max{r�0}|Im(A(r, Z))|/|A0|max (plain line) versus Z̄ = Z/σ . The dashed
line is the asymptotic behaviour obtained with Laplace’s method. We see that, the real and
imaginary parts are in good agreement with the asymptotics. In particular we see that, for

fixed σ , the amplitude of the wave field decays like 1/
√

Z as Z → ∞.

obtain

Re(f (Z̄, Z̄)) =
1

2π

∫ 1

u=0

∫ π

θ=−π

e−Z̄2(1+u2−2u cos θ)/(2)

√
1 − u2

(1 + Z̄2u(cos θ − u)) dθ u du

and

Im(f (Z̄, Z̄)) =
1

2π

∫ ∞

1

∫ π

−π

e−Z̄2(1+u2−2u cos θ)/2

√
u2 − 1

(1 + Z̄2u(cos θ − u)) dθ u du. (4.4)

Using Laplace’s method we derive the following asymptotic behaviour for Z̄ � 1 (e.g.
chapter 6 of Bender & Orszag 2005; details are found in Appendix C):

f (Z̄, Z̄) ≈ (1 − i)
2−5/4π−1/2 Γ (3/4)

Z̄1/2
. (4.5)

Here Γ denotes the gamma function Γ (s) =
∫ ∞

0
us−1e−u du. Note that the real and

imaginary parts of f have same maximal magnitudes, but the real part has a positive
extremum, and the imaginary part has a negative extremum, consistent with what we
observed on figure 5. Figure 6 shows the maximum magnitudes of the real part (a) and
imaginary part (b) of f at different heights Z̄ = Z/σ . The dashed line is the asymptotic
estimate derived with Laplace’s method. We see that the real and imaginary parts of
f are in good agreement with the asymptotics. Note that the asymptotic estimate is
a little below the actual extrema. This is not surprising since we derived asymptotics
for |f (Z̄, Z̄)|, using the fact that at given Z̄, max{r̄�0} |f (r̄ , Z̄)| ≈ |f (Z̄, Z̄)|. In reality,

as seen in figure 5, the extrema of f do not occur exactly at the front r̄ = Z̄, but just
after the front for the real part and right before the front for the imaginary part.

For ease of reference, the corresponding asymptotic expression for the overturning
amplitude is

A(Z, Z) ≈ (1 − i)
α

2πσ 2

2−5/4Γ (3/4)

(πZ/σ )1/2
. (4.6)

The prefactor α/2πσ 2 equals the maximum of A0 at the boundary. Finally, by
combining (3.22) and (4.3) , (4.5) we find that the real-valued time-dependent amplitude
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on the forward cone is asymptotically equal to the real part of (4.6) times
√

2 cos(ω0t+
π/4), which lags the tidal oscillation by an eighth of a period.

As in § 2.3, it is noteworthy how the present wave structure differs from that of lee
waves. For three-dimensional hydrostatic non-rotating lee waves one readily obtains
m = (κ/k)N/U . The vertical displacement of the isopycnals is η(x, 0) =h(x) at the
bottom, and there is anisotropic vertical propagation η̂(k, z) = exp(imz)η̂(k, 0). Three-
dimensional lee waves are again localized over isolated topography, although there
is now also a bow-wave pattern that curves and extends leewards. This is in sharp
contrast to the isotropic front-like spreading shown in figure 5.

4.2. Point focusing from circular boundary data

The geometric theory for the interior amplitude makes obvious that for distributed
boundary data there can be geometric focusing effects at the envelopes formed by the
various forward cones. For instance, consider the simplest, albeit non-generic, focusing
structure, which is due to boundary data supported on a circular ring with radius R

centred at the origin, say. In the geometric theory the boundary data located at any x ′

contributes to A(x, Z) only on the corresponding forward cone, which at fixed Z > 0
is a circle with radius Z and centre x ′. Hence the various propagated contributions
from circular boundary data supported on |x ′| = R intersect at the point (0, 0, R)
above the centre of the circle and we expect |A| to be amplified there. This geometric
focusing effect can lead to interior amplitudes that exceed the boundary amplitudes.

We illustrate this with a simple Gaussian ring in boundary amplitude defined by

A0(x) =
α

2πσ 2
e−(|x|−R)2/2σ 2

=
α

2πσ 2
e−d2/2σ 2

, (4.7)

where d is the distance from x to the circle x2 +y2 =R2. Clearly, these boundary data
can be thought of as the continuous limit of arrangements in which many Gaussian
bumps with width σ are distributed around this circle.

Using the same argument as in (4.3), it follows that

A(r, Z) =
α

2πσ 2
g (r/σ, Z/σ ) = |A0(x)|max g (r/σ, Z/σ )

g(r̄ , Z̄) = G(r̄ , Z̄) ∗ e−(r̄−R̄)2/2, and R̄ = R/σ.

⎫⎬
⎭ (4.8)

Figure 7 shows the locations of maximal magnitudes of Re(g) (stars) and Im(g)
(circles) for R̄ = 10. The boundary data e−(r̄−R̄)2/2 are displayed at Z̄ =0 together with
a sketch of the forward cones in a cross-section.

We observe that the points where g is maximal are indeed located near the
point of intersection of the forward cones at (x̄, ȳ, Z̄) = (0, 0, R̄). Specifically, the
real part of A has a positive extremum just below the point of intersection and its
imaginary part has a negative extremum right above the point of intersection. This
is consistent with the locations of the fronts in figure 5. Quantitatively, we find that
|Re(g)|max = |Ar |max/|A0|max ≈ 3 and |Im(g)|max = |Ai |max/|A0|max ≈ 3. These ratios
are greater than unity and hence in this example it is true that the wave field could
be stable at the boundary and yet be unstable at the interior focusing point.

We can make a simple estimate for the amplitude at the focusing point in the
regime R � σ , where the radius of the Gaussian ring is much larger than its width.
In this regime the far-field asymptotics of § 4.1 are applicable in the focusing region.
We now think of the circular amplitude (4.7) as a superposition of Gaussian bumps
located on a circle of radius R. The volume of the Gaussian ring is

Vc =
1

2πσ 2

∫ ∞

−∞

∫ ∞

−∞
e−(|x|−R)2/(2σ 2)dxdy ≈ R

σ

√
2π for

R

σ
� 1. (4.9)
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Figure 7. (a) Points where |Re(g(r̄ , Z̄))|/|Re(g)|max > 80 % (stars) and where |Im(g(r̄ , Z̄))|/
|Im(g)|max > 80 % (circles), as functions of x̄, ȳ and Z̄ (r̄ = |(x̄, ȳ)|). In this example, R̄ = 10.

The boundary data e−(r̄−R̄)2/2 are displayed at Z̄ = 0. (b) and (c), cross-sections in the ȳ = 0
plane of (a), show the forward cones (dot-dashed) emanating from |x| = R. The region of
maximal amplitudes is located near (0, 0, R̄), as expected.

Now, the amplitude at the focusing point (0, 0, R) can be approximated by the
superposition of individual contributions from Gaussian bumps that are located
at horizontal distance R and have combined volume Vc. The volume of a single
Gaussian bump is unity and therefore we simply need to multiply Vc by the asymptotic
expression for a single Gaussian bump in (4.6) with Z = R. It can be checked that this
argument leads to the same estimate as applying Laplace’s method to the convolution
integral. The result is

A(0, R) ≈ (1 − i)
α

2πσ 2
2−3/4Γ (3/4)

√
R

σ
. (4.10)

Again, α/2πσ 2 = |A0(x)|max and the real-valued time-dependent amplitude at the

focusing point is approximated by the real part of (4.10) times
√

2 cos(ω0t +π/4). The
amplification at the focusing point is measured by g(0, R̄) = A(0, R̄σ )/|A0(x)|max ≈
(1− i)2−3/4Γ (3/4)R̄1/2, which indicates that the amplification is proportional to

√
R/σ .

This is illustrated in figure 8, which shows the approximated amplification factor as
a function of R̄ and compares it with numerical results for the global maximum of g.

There is reasonable agreement between the curves, although the approximation falls
noticeably short of the numerical values. For instance, in the example with R̄ = 10 the
numerical amplification factor was 3(1 − i), whereas the approximation yields only
2.3(1 − i). Part of the disagreement is because we approximated A(0, R), whereas the
actual maximum amplitudes do not occur exactly at Z =R, but slightly below for the
real part and slightly above for the imaginary part, as seen in figure 7.

Finally, we have also computed the wave field for the case of a circular ridge.
In this case the actual topography H (x) has the circular shape (4.7) and the
corresponding amplitude A0(x) is determined from the general relation (3.23). We
find that substantial amplification of boundary amplitudes by focusing occurs just as
before, with amplification factors that are within 20 % of those found in this section.

Moving on, we note that the present example is non-generic in the sense that the
perfectly circular amplitude configuration on the boundary led to focusing in a single
point in the interior. Generically, we expect that the focusing point is smeared out
into a focusing line once the boundary amplitude is supported on less symmetric



Instability and focusing of internal tides in the deep ocean 21

10 20 30

|Re(A)|/|A0|max |Im(A)|/|A0|max

R/σ R/σ
0 10 20 30

1

2

3

4

5

6

1

0

2

3

4

5

6(a) (b)

Figure 8. (a) The amplification factor max{r̄ ,Z̄} |Re(g(r̄ , Z̄))| = max{r,Z} |Re(A(r, Z))|/|A0|max

and (b) max{r̄ ,Z̄} |Im(g(r̄ , Z̄))| = max{r,Z} |Im(A(r, Z))|/|A0|max, versus R̄. The asymptotic esti-
mate is displayed as a dashed line and values above unity indicate interior amplitudes that are
above boundary amplitudes.

structures. This generic set-up reduces but does not eradicate the amplification due
to focusing, as we shall describe in the next section.

4.3. Line focusing from elliptical boundary data

We continue to consider boundary amplitude data that are supported on smooth
strips with width σ . In the previous section the strip was a perfectly circular ring
with radius R and the focusing region was the centre point of this circle translated
vertically to altitude Z = R. This example was non-generic because the radius of
curvature was constant along the strip, i.e. R(s) is constant if s measures arclength
along the centreline of the strip, say. However, we can generalize this example to
strips with variable radius of curvature R(s) by assuming that each segment of the
strip leads to focusing in a location that lies at a horizontal distance R(s) normal
to the segment under consideration and is also translated by a distance R(s) in the
vertical. In other words, we expect a focusing effect near the Z-translated evolute
of the boundary data. By evolute we mean the set of all the centres of curvature
of the supporting strip (this is equivalent to the envelope of the normals), and by
Z-translated we mean translated vertically to Z =R(s), which is the local radius
of curvature. This construction leads to a line as the generic focusing set and the
Z-translation makes clear that this line has a non-trivial shape in three dimensions.

The simplest strip example with non-constant curvature is the case where the
centreline is an ellipse, whose evolute is known as the Lamé curve. This curve is
shown in figure 9(a) (dashed black curve) for an ellipse with semi-major axis 14 and
semi-minor axis 10. When we Z-translate the Lamé curve we obtain the dashed black
curves shown in figures 9(b) and 9(c). Due to geometric focusing, we hence expect the
amplitude to be largest near this Z-translated evolute.

We check this with the elliptic boundary amplitude

A0(x) =
α

2πσ 2
e−d2/2σ 2

, (4.11)
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Figure 9. Points where |Re(h(x̄, ȳ, Z̄))|/|Re(h)|max > 80 % (stars in panel b) and where
|Im(h(x̄, ȳ, Z̄))|/|Im(h)|max > 80 % (circles in panel c), as functions of x̄, ȳ and Z̄. The boundary

data e−d̄2/2 are displayed at Z̄ = 0. In this example, ā = 14 and b̄ =10, and the dashed black
curve is the evolute of the ellipse translated vertically to the radius of curvature. We see that
points of maximal h are indeed located near this curve.

where d is the distance from x to the ellipse x2/a2 + y2/b2 = 1. Again, we have that

where
A(x, Z) =

α

2πσ 2
h (x/σ, Z/σ ) = |A0(x)|max h (x/σ, Z/σ )

h(x̄, Z̄) = G(x̄, Z̄) ∗ e−d̄2/2

⎫⎬
⎭ (4.12)

and d̄ denotes the distance from x̄ to the ellipse with scaled semi-axes ā = a/σ and
b̄ = b/σ . Figure 9 shows numerical results for the locations of maximal magnitudes
of Re(h) (stars in figure 9b) and Im(h) (circles in figure 9c) for ā = 14 and b̄ = 10.
The boundary data are displayed at Z̄ =0, and the evolute of the ellipse with semi-
major axis ā and semi-minor axis b̄ is shown as a dashed black curve. The evolute is
translated vertically to the radius of curvature in the three-dimensional panels.

We observe that, indeed, h is maximal near this translated evolute. Quantitatively,
we find the amplification factors |Re(h)|max = |Ar |max/|A0|max ≈ 1.7 and |Im(h)|max =
|Ai |max/|A0|max ≈ 1.6. This verifies that focusing can lead to increased interior
amplitudes near the line-like locations predicted by the geometric theory.

5. Concluding remarks
We have shown that the formation of unstable wave regions can be remarkably

non-uniform even for very simple idealized sea-floor topography. This is due both
to the peculiar boundary conditions of the present wave problem as well as the
focusing effect in three-dimensional flow. Overall, this work is part of an on-going
project aimed at providing a theory for the vertical distribution of wave breaking and
diffusivity over irregular sea-floor topography.

Within the confines of linear theory for sub-critical topography the present study
could be made more realistic by allowing for finite tidal excursions (see Appendix
B below), for variable stratification, and for a finite ocean depth. Arguably, it is
the extension to finite ocean depth that has the most dramatic impact both on the
general tides problem and also on the interior wave focusing studied here. Indeed, with
a typical characteristic slope µ−1 ≈ 0.2, focusing may lead to pockets of enhanced
mixing in the bottom two kilometres of the ocean only for curved topographic features
of horizontal extent less than about 10 kilometres. This is below the current resolution



Instability and focusing of internal tides in the deep ocean 23

of the global bathymetry (Smith & Sandwell 1997). For larger topography features
the characteristics are back-reflected at the upper boundary z =H , say, where the
vertical fluid velocity of the internal tides vanishes to a very good approximation. The
characteristics are also reflected at the ocean floor z = 0 and the resulting structure
of the solution changes considerably because of the cumulative nature of successive
up–down reflections. Specifically, it is easy to derive that for finite H the Fourier
transforms of the vertical velocity and of the wave amplitude at the sea floor are
related by Â0 = −(iµκ/ω0) cot(µκH ) ŵ0, and that their respective three-dimensional
structures are given by

Â(k, z) =
cos(µκ(H − z))

cos(µκH )
Â0(k), ŵ(k, z) =

sin(µκ(H − z))

sin(µκH )
ŵ0(k). (5.1)

Here z is the unscaled altitude above the sea floor. There is now a possibility of
resonance with ocean normal modes whenever µκH is a multiple of π. Also, even
for compact topography any numerical simulation of (5.1) on a periodic domain
suffers from sensitive dependence of the solution to small changes in the domain size;
this is an echo of the well-known ill-posedness of the boundary-value problem for
time-periodic internal waves in general bounded domains (e.g. Sobolev 1960; Maas
& Lam 1995).

The solution for finite H can be regularized by introducing dissipation along the
characteristics, which in (5.1) can be achieved by replacing κ by κ(1 − iε) with a
small positive ε that may depend on κ .† For instance, with weak dissipation in
place we have considered a circular boundary amplitude with radius R as in § 4.2,
but with finite ocean depth such that µH <R. Our preliminary results indicate that
focusing regions are still formed by the characteristic cones once reflections at the
ocean boundaries are taken into account. Specifically, the vertical position of focusing
regions is affected by the reflections, but their horizontal position remains unchanged
at the centres of curvature related to the topography shape. This makes focusing
relevant for considerably larger topographic shapes.

The need for dissipation along characteristics brings up the question of how to
model the dissipation due to wave saturation and breaking. We currently plan to use
the Green’s function of this paper to build a model for the effect of wave saturation
on the wave field. Briefly, at any altitude z we can constrain the wave amplitude
field to lie below unity, which models the turbulent saturation of the unstable wave
field. The Green’s function can then be used to propagate the saturated wave field
further in altitude, leading to further breaking regions and saturation. In this way an
estimate for the vertical distribution of wave breaking and turbulent mixing can be
formulated, which could be used to constrain parametrization models in large-scale
numerical models for the ocean.

This investigation also suggests the natural use of random topography with an
energy spectrum constrained by the data. For instance, the internal tides generated
by two-dimensional Gaussian random topography are a three-dimensional Gaussian
random field themselves, with easily studied geometric properties for the formation
of regions of high wave amplitude, for example. This could be useful in order to
investigate the likely importance of unobservable sub-grid-scale topography on the
wave breaking distribution in the deep ocean.

† Alternatively, one can study the well-posed initial-value problem in which ω0 is replaced by
ω0+iα, where α > 0 is a growth rate small compared to ω0. This yields ε = αω0N

2/((ω2
0−f 2)(N 2−ω2

0))
if N � f , and so in this case ε does not depend on κ .
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Appendix A. Computation of the Green’s function in the two-dimensional case
From (2.10), the Green’s function is given by G(x, Z) =FT −1{e−i|k|Z}. In order to

compute G(x, Z), it is convenient to get rid of the absolute value. To this end, we use
the Heaviside function denoted Hv , and write

Ĝ(k, Z) = e−i|k|Z = Hv(k)e−ikZ + Hv(−k)eikZ. (A 1)

Hence

G(x, Z) = FT −1{Hv(k)e−ikZ}(x) + FT −1{Hv(−k)eikZ}(x)

= FT −1{Hv}(x − Z) + FT −1{Hv(−.)}(x + Z)

= FT −1{Hv}(x − Z) + FT −1{Hv}(−x − Z).

In the sense of distributions FT −1{Hv}(x) = i/(2πx) + δ(x)/2 and

G(x, Z) =
1

2
(δ(x + Z) + δ(x − Z)) +

i

2π

(
1

x − Z
− 1

x + Z

)
. (A 2)

Appendix B. Amplitude for finite tidal excursion
B.1. Two-dimensional flow over one-dimensional topography

Our purpose here is to compute the amplitude of the wave field for finite tidal
excursion, i.e. without the assumption (2.1). We first consider the two-dimensional
problem and we use the same notation as in § 2. In this regime, advection by the
tides can not be neglected and ∂/∂t is replaced by ∂/∂t + U(t) · ∇ in the governing
equations (2.2). It is convenient to work in the frame moving with the tidal flow U(t)
(see Bell 1975a , and Khatiwala 2003 for details).

We are interested in overturning of the stratification surfaces, i.e. where and when
∂Θ/∂z is negative. For finite tidal excursion, (2.23) becomes

∂Θ

∂z
= N2

{
1 −

n0∑
n=1

Re

[
e−inω0tAn

(
x − U0

ω0

sinω0t, z

)]}
(B 1)

where An(x, z) = Gn(x, z) ∗ An(x, 0), Ĝn(k, z) = e−i|k|µnz

Ân(k, 0) = i|k|(−1)n+1µnĥ(k)2Jn

(
U0k

ω0

)

where µn =
√

(N2 − n2ω2
0)/(n

2ω2
0 − f 2) and Jn(x) is the Bessel function of the first

kind of order n. In the above equations, we only kept the oscillating contribution
to the solution, i.e. modes with n � n0, where n0 is the largest integer strictly smaller
than N/ω0. Equation (B 1) has two interesting consequences. First, each mode n has
characteristics with slope µ−1

n . Hence different modes will generate instabilities near
characteristics with different slopes, and for isolated topography we can study the
instability of each mode separately. Secondly, the vertical propagation for each mode
is still governed by convolution with a Green’s function Gn(x, z) =G(x, µnz), where
G(x, Z) is given in (2.17).
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We can write the bottom amplitude An(x, 0) in real-space coordinates using the
identity (e.g. Bell 1975a)

FT −1 {2Jn(k)/kn} = gn(x) ≡
(1 − x2)n−1/2χ|x|<1√
π Γ (n + 1/2)2n−1

. (B 2)

This yields

An(x, 0) = in−1µn

(
U0

ω0

)n−1

f̃n(x) where fn(x) =
dn+1h

dxn+1
∗ gn

(
x

U0/ω0

)
. (B 3)

Specifically, the amplitude for the fundamental mode is

A1(x, z) = G1(x, z) ∗ A1(x, 0), A1(x, 0) =µ1f̃1(x) where f1(x) =
d2h

dx2
∗ g1

(
x

U0/ω0

)
.

By allowing for finite excursion, we find that the amplitude of the fundamental
mode is proportional to the Hilbert transform of h′′ convoluted with the compactly
supported function g1(xω0/U0). Hence integrable singularities in h̃′′ will be smoothed
by convolution with this compactly supported function. In the case of jumps in h′′

and logarithmic singularities of h̃′′ discussed in § 2.3, this now yields an increased
but finite wave amplitude at the jump locations. For small excursion kU0/ω0 � 1,
Jn(kU0/ω0) ≈ (kU0/2ω0)

n/n!, g1(xω0/U0) → δ(x)U0/ω0, the fundamental frequency
response dominates the wave field and we can recover the solution of the small
excursion regime from (B 1).

B.2. Three-dimensional flow over two-dimensional topography

We now turn to the three-dimensional problem and compute the amplitude of the
wave field for finite tidal excursion. We use the same notation as in § 3. In particular,
the horizontal coordinates and wavenumbers are respectively denoted x = (x, y) and
k = (k, l), and we denote |k| = κ . As in § B.1 we compute the perturbation of the
stratification due to the waves and (3.22) becomes

∂Θ

∂z
= N2

{
1 −

n0∑
n=1

Re

[
e−inω0tAn

(
x − U0

ω0

sinω0t, y, z

)]}
(B 4)

with An(x, z) =Gn(x, z) ∗ An(x, 0), Ĝn(k, z) = e−iκµnz

Ân(k, 0) = iκ(−1)n+1µnĥ(k)2Jn

(
U0k

ω0

)

where µn =
√

(N2 − n2ω2
0)/(n

2ω2
0 − f 2), Jn(x) is the Bessel function of the first kind

of order n and n0 is the largest integer strictly smaller than N/ω0. We see that each
mode has a front near a forward cone with slope µ−1

n . Hence different modes will
lead to instabilities near different cones, and for isolated topography we can study
the instability of each mode separately. The vertical propagation of each mode is still
governed by a propagator Gn(x, z) = G(x, µnz), where G(x, Z) is given by (3.18).

The bottom amplitude An(x, 0) can be computed in real-space coordinates

An(x, 0) = in−1µn

(
U0

ω0

)n−1 √
−∆

{
∂nh

∂xn
(x, y) ∗x gn

(
x

U0/ω0

)}
, (B 5)

where gn(x) is given by (B 2) and ∗x denotes convolution with respect to the variable
x only. As in § B.1, we can recover the small excursion solution if kU0/ω0 � 1.
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Appendix C. Asymptotic behaviour of the amplitude for the Gaussian
boundary amplitude

C.1. Asymptotic behaviour of Re(f (Z̄, Z̄))

From (4.5), we want the asymptotic behaviour of

Re(f (Z̄, Z̄) =
1

2π

∫ 1

0

∫ π

−π

e−Z̄2(1+u2−2u cos θ)/2

√
1 − u2

(1 + Z̄2u(cos θ − u)) dθ u du (C 1)

as Z̄ → ∞. We apply Laplace’s method to the first part of the above integral:∫ 1

0

∫ π

−π

e−Z̄2(1+u2−2u cos θ)/2

√
1 − u2

dθ u du ≈
∫ 1

0

ue−Z̄2(1+u2)/2

√
1 − u2

∫ ε

−ε

eZ̄2u(1−θ2/2) dθ du

≈
∫ 1

0

ue−Z̄2(1−u)2/2

√
1 − u2

∫ ∞

−∞
e−Z̄2uθ2/2 dθ du ≈

√
2π

Z̄

∫ 1

0

√
ue−Z̄2(1−u)2/2

√
1 − u2

du

≈
√

2π

Z̄

∫ ε

0

√
1 − u

√
u

√
2 − u

e−Z̄2u2/2 du ≈
√

π

Z̄

∫ ε

0

e−Z̄2u2/2

√
u

du

≈
√

π

Z̄

∫ ∞

0

e−s

23/4s3/4
√

Z̄
ds ≈

√
π Γ (1/4)

Z̄3/2 23/4
, (C 2)

where Γ denotes the gamma function Γ (z) =
∫ ∞

0
uz−1e−u du.

Similarly ∫ 1

0

∫ π

−π

e−Z̄2(1+u2−2u cos θ)/2

√
1 − u2

u(cos θ − u) dθ u du

≈
∫ 1

0

u2e−Z̄2(1+u2)/2

√
1 − u2

∫ ε

−ε

eZ̄2u(1−θ2/2)(1 − u) dθ du (C 3)

≈
∫ 1

0

u2(1 − u)e−Z̄2(1−u)2/2

√
1 − u2

∫ ∞

−∞
e−Z̄2uθ2/2 dθ du

≈
√

2π

Z̄

∫ 1

0

u3/2
√

1 − ue−Z̄2(1−u)2/2

√
1 + u

du (C 4)

≈
√

2π

Z̄

∫ ε

0

(1 − u)3/2
√

u√
2 − u

e−Z̄2u2/2 du ≈
√

π

Z̄

∫ ε

0

e−Z̄2u2/2
√

u du

≈
√

π

Z̄

∫ ∞

0

e−ss−1/42−1/4Z̄−3/2 ds ≈
√

π Γ (3/4)

Z̄5/2 21/4
. (C 5)

Since √
π Γ (1/4)

Z̄3/2 23/4
� Z̄2

√
π Γ (3/4)

Z̄5/2 21/4
, (C 6)

we obtain

Re(f (Z̄, Z̄)) ≈ 2−5/4π−1/2 Γ (3/4)

Z̄1/2
as Z̄ → ∞. (C 7)

C.2. Asymptotic behaviour of Im(f (Z̄, Z̄))

Using (4.5) and the same method as in § C.1, we find

Im(f (Z̄, Z̄)) ≈ −2−5/4π−1/2 Γ (3/4)

Z̄1/2
as Z̄ → ∞. (C 8)
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