Entropy

ple who are not scientists, especially people with a literary bent. R. Z. Shep-

pard reviewing in Time (1 May 1995) The Information by Martin Amis asserts
that “By now the literary uses of entropy are threadbare even for Amis.” And in an
article by Ivan Hannaford, The Idiocy of Race (Wilson Quarterly, Spring 1994), we
find “All that remained . . . was the shell of an orthodox race-relations policy that
only exacerbates the state of civic entropy.” These examples were not searched for
carefully; they were stumbled upon in the course of everyday reading. Countless
other examples can be found. You can amuse yourself by noting the ways in which
entropy is used outside thermodynamics and puzzle over the connection, if any, be-
tween scientific and literary entropy.

In some ways, increased use of the term entropy by people who haven’t the foggi-
est idea what it means is a good thing. As a term becomes part of everyday speech
and writing, it loses its mystery, and people think they understand it. Familiarity
breeds contentment. We usually don’t agonize over the meaning of words we encoun-
ter every day. Energy, for example, is not the fearsome creature that entropy is merely
because energy is more familiar. Energy is used in so many different ways by so
many different people, often in ways unrelated to or even incompatible with its use
in physics, that students rarely find energy so formidable as entropy. Yet entropy in
its scientific sense is no more mysterious than energy. The defining characteristic of
energy is that it is a measurable physical quantity that remains constant (for an iso-
lated system), whereas the defining characteristic of entropy is that it is a measurable
physical quantity that can only increase (for an isolated system). Why is it inherently
more puzzling that one quantity can only increase whereas another quantity must
remain constant?

Entropy used by nonscientists who want to appear up-to-date in a scientific world
vaguely conveys undesirability, often associated with disorder or dysfunction. Civic
entropy, in the example cited in the first paragraph, presumably is meant to convey
the breakdown of law and order and social cohesiveness. We critically examine the
association of entropy with disorder, but first we determine the mathematical form of
the entropy of an ideal gas and examine how it changes in various processes. We

Entropy is a virus that has escaped from the laboratory and infected many peo-
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believe that this is a more satisfactory approach than defining entropy as an abstract
quantity. Having understood a concrete example of entropy, we are better prepared to
grasp it in the abstract.

4.1 Entropy of an Ideal Gas

The first law of thermodynamics applied to a closed system for which the working
rate is —p dV/dt is

dUu dyv
= i 4.1
Q +p ar 4.1)

dt
Except for a constant-volume process, the heating rate O cannot be expressed as a
time derivative of a thermodynamic variable or combination of variables. But we can
obtain from Q such a quantity, called entropy. We do so for an ideal gas, although
the concept of entropy has a much wider applicability.
The rate of change of internal energy of an ideal gas can be written

du ar
dr Cv dt

If we divide Eq. (4.1) by T and use Eq. (4.2) and the ideal gas law pV=NkT, we
obtain

4.2)

Q_Cydl Nkav
T T dt V dt

Recall that Cp — Cy,= Nk, which, with a bit of algebra, allows us to write Eq. (4.3) as

(4.3)

0 1dT y—-1dV
EZ=Cyl=—+1—— 4.4
T V(T dt V dt ) (44)
If C, is independent of temperature, the equation
as QO
5T 4.5)
has the solution
TVY!
§=5,+Cy m(m) .6)

where the subscript 0 indicates a reference state and S, is the value of S for this state.
S is a thermodynamic variable, called entropy, with the property that its time deriva-
tive is O/T. This thermodynamic variable owes its name to Rudolf Clausius (b. Kos-
lin, Prussia, 1822; d. Bonn, Germany, 1888), a German physicist who in 1850 wrote
that “I propose to name the magnitude S the entropy of the body from the Greek
word fj7pom), a transformation. I have intentionally formed the word entropy so as
to be as similar as possible to the word energy, since both these quantities . . . are
so nearly related to each other in their physical significance that a certain similarity
in their names seemed to me advantageous.”
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Sometimes we are slightly careless and write the entropy of an ideal gas with heat
capacity independent of temperature as

S=C, In(TV?™Y) 4.7)

This equation is dimensionally incorrect. According to Eq. (4.6), the dimensions of
entropy are the same as those of heat capacity, energy divided by temperature. Al-
though we sometimes use Eq. (4.7) to save effort, we should use Eq. (4.6) to compute
entropies (strictly, entropy differences).

Sometimes it is more convenient to express the entropy of an ideal gas as a func-
tion of the intensive variables p and T

T
S-5,=C, 1n(§,—) — Nk ln( pﬁ) @.8)

o

which follows from Eq. (4.6) and the ideal gas law.

Having derived the entropy of an ideal gas by way of a particular idealized process
(one for which W= —p dV/df), we may forget about how we obtained entropy and
consider it to be yet another thermodynamic variable. That is, the entropy of an ideal
gas is defined by Eq. (4.6) or (4.8), which also happen to give the entropy change of
an ideal gas in a particular process. The best way to understand entropy is to examine
how it behaves. As we shall see, entropy behaves differently from energy.

Entropy Change in a Free Expansion

Consider an ideal gas in a closed, insulated container divided into two chambers by
an impermeable partition (Fig. 4.1). The volume of one chamber is V; and that of the

Partition
(a)

(b)
Figure 4.1 Free expansion of an isolated ideal
gas. When the partition separating the gas in vol-
ume V; (a) from adjacent empty space is re-
moved, the gas expands to fill the entire volume
V, (b).
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two chambers taken together is V,. The temperature of the gas is 7 and initially is
confined to V;, and hence its entropy is

S;=Cy In(TV;"™1) 4.9)

where the subscript i denotes the initial state. We punch a hole in the partition and
allow the gas freely to occupy both chambers. Because the gas is ideal, its tempera-
ture does not change when its volume increases. The final entropy is

Sy=Cy In(TV,"™1) (4.10)
and the entropy change (of the universe) is
V. V.
S S =Cy (y—1 _2)= (_2) 4.11
AS=8—8,=Cy (y—1) h‘(vl N In(; @.11)

Because V, > V;, AS > 0. In this process, the entropy of the universe increased even
though there was no heating and no working, and hence no change in internal energy.
This is our first hint that entropy behaves differently from energy.
We could not have obtained the entropy change in this free expansion by integra-
ting
as _Q
T (4.12)
which would give AS=0. This is because underlying the correct use of Eq. (4.12) is
the requirement that the working rate be —p dV/dt, whereas in an adiabatic free
expansion W=0. Although volume increases in this process, and hence —p dV/dt
does not vanish, the integral of this quantity is not the work done, which is zero.
Left to itself, the system will not return spontaneously to its state before the free
expansion, when all the molecules were crowded into V;. This is equivalent to scram-
bling eggs. Once they have been scrambled, they cannot be unscrambled without
effort. And so it is with the free expansion of a gas. To restore it to its initial state
requires doing work

Vl
W, = —f p ﬂ-/dl,‘ (4.13)

If this compression is carried out at constant temperature 7, the ideal gas law in Eq.
(4.13) yields

Vs

W, = NKT m(Vl

): T AS (4.14)

where the entropy change AS is that in the original free expansion (Eq. 4.11). Thus
in this process the entropy increase of the universe requires doing work on the system
to restore it to its original state.

Entropy Changes Upon Heating and Cooling

As our next example of an entropy change, consider the heating or cooling of an
ideal gas. For simplicity, we take a fixed volume of gas in contact with a much larger
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Figure 4.2 Two rigid containers filled with an
ideal gas at different initial temperatures 7; and
T, are placed in contact and isolated from their
surroundings.

volume of the same gas. We call the larger volume a reservoir. You can imagine the
gases to be enclosed in rigid metal tanks (Fig. 4.2). The two volumes are insulated
from their surroundings. Initially, the temperature of the small volume is 7, and that
of the large volume is 75, where T, > T,;. With the passage of time, both volumes
come to the same temperature 7. In this process, total internal energy is conserved:

Coy Ty +CyyT,=Cyy T+Cy, T (4.15)

This equation can be solved for the final temperature:

Cwi I Cv 1.16
T T ‘1
Cy, +Cy, ! Cy1+Cy, 2 ( )

Volume does not change in this process, and hence the entropy changes from Eq.
(4.7) are

T T
T T,
By using Eq. (4.16), the total entropy change can be written
ptxy 1 1+ M/x)]
AS=AS, +AS,=Cy, [m(l +M)+M ln( o @)
where
Cwy T,
=— =—= 4.
c,, 1, (4.19)

Our task is simpler if we take the limiting case of an infinite reservoir, which requires
us to determine AS in the limit as p goes to zero. The first term in brackets in Eq.
(4.18) poses no problems:

: pAx\
lim, m(m) =lnx (4.20)

The second term requires more effort because 1/u is infinite in the limit of zero w,
whereas the limit of the logarithmic term is zero. To evaluate the second limit, we
use the expansion

In(1+z)=~z, |z]<<1 4.21)
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Thus for sufficiently small values of u we have

1+up/x 1
= —In(1+pu)==-— 42
ln( 1+ 1 ) In(1 + w/x) —In(1 + w) . 18 (4.22)

which yields the limit

. 1 Aty 1
= ==_1 4.2
lim, o ln( o ) - (4.23)
With this result, the entropy change of the universe is
1
AS= cm(]n X+ 1) (4.24)

By supposition the reservoir is hotter than the volume V; of gas. If the reservoir is
infinite, it follows from Eq. (4.16) that T=T,. Thus we can describe this process as
a heating process: The temperature of the smaller volume of gas increases, whereas
that of the (infinite) reservoir does not change. What happens to the total entropy in
this process? To answer this question requires examining the sign of the function

fx)=In x—I—i— 1 (4.25)

in Eq. (4.24) for x > 1. Note that f(1) =0 and that

da 1 1
R (4.26)
is positive for x > 1. Thus in this heating process, the entropy of the universe in-
creases.

We now might be tempted to surmise that if entropy increases in a heating process,
entropy decreases in a cooling process. This is a reasonable expectation, but it is not
true, which attests to the peculiarity of entropy. From Eq. (4.26) it follows that df/dx
is zero only at x=1, and hence f has an extremum at this value. This extremum is a
minimum because the second derivative of f is positive at x= 1. Because the mini-
mum value of fis zero at x=1, f> 0 for x > 1 (heating) and for x < 1 (cooling). Thus
for both heating and cooling, the entropy of the universe increases.

Unlike for the free expansion, we could have obtained the entropy change for
heating and cooling by integrating Eq. (4.12). This is because W=0 and is equal to
—p dV/dt (by supposition, V is constant). Let Q be the rate of heating (cooling) of
the smaller volume of gas. The rate of cooling (heating) of the reservoir is thus —Q.
By supposition, the reservoir is infinite, and hence its temperature does not change
during the process. The entropy change of the reservoir is therefore

AS,= f — = = —— f Q dt= — ch(T2 T,) (4.27)

The entropy change of the smaller volume is



4.1 Entropy of an Ideal Gas 141

0 (ldu 1 dr T
J i J 2 di=cy, f o di=Cy, m(Tf) (4.28)

Thus we obtain the same total entropy change as in Eq. (4.24).

Before we try to make sense out of this result, let us consider a process in which
entropy does not increase. Such a process is adiabatic (Q=0) with working rate
—p dV/dt. We already showed that in this process

TV>~!=const (4.29)

This result in Eq. (4.6) yields no entropy change, another example in which we get
the same result using Eq. (4.12). Note that the best we have been able to do is find a
process in which entropy is constant. In the other processes considered, entropy in-
creased. A process in which entropy is constant is said to be isentropic. For the first
adiabatic process we considered (free expansion), entropy increased, whereas for the
second adiabatic process, entropy was constant. Although some adiabatic processes
are isentropic, not all are.

We obtained what, on reflection, is a disturbing result: The entropy of a fixed-
volume (ideal gas) reservoir changed, yet its temperature remained constant. Suppose
that before the smaller volume was put into contact with the reservoir we measured
its temperature. When our backs were turned, someone put the smaller volume in
contact with the reservoir, then removed this volume when its temperature was that
of the reservoir. We turned around, oblivious to what happened when we weren’t
looking, and measured the temperature of the reservoir. We recorded no change. Thus
we would have had to conclude that nothing happened. But the entropy of the reser-
voir changed even though we could not make any macroscopic measurement that
indicated a change in its state. It seems that the only way out of this embarrassing
fix is to assert that infinite reservoirs do not exist; they are idealizations not found in
nature. In any energy transfer process between a reservoir and a system, the tempera-
ture of the reservoir must change even though that change be exceedingly small.
Another way of looking at this problem is to note that according to Eq. (4.16), T=T,
in the limit of an infinite reservoir (Cy, becomes infinite). But if we set Cy, to infinity
and T=T, in Eq. (4.17), we obtain an indeterminate result for the entropy change of
the reservoir. So we sneak up on the infinite reservoir by taking the limit of the
entropy change as Cy, approaches (but never reaches) infinity. This limit exists:

. 1
limg,, ,.AS,=Cy, (; - 1) (4.30)

even though the infinite reservoir does not.

Now we tackle some of the confusing and sometimes contradictory terminology
of thermodynamics. A quasistatic process is a continuous succession of equilibrium
states (see Section 1.6 for the conditions under which a real process is approximately
quasistatic). It is sometimes said that a quasistatic process is also a reversible process,
which is not true (as we shall show). Reversibility and its antonym irreversibility are
difficult concepts to grasp. No two authors seem to agree precisely on what they
mean. A working rate —p dV/dt is quasistatic and reversible. By reversible is meant
the following. We can imagine a compression (or expansion) described by —pdV/dt
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as being realized by successively adding tiny weights to a piston enclosing a gas
within a cylinder. These weights can be imagined to be taken from slots within the
walls of the cylinder, so that as each weight is added to the piston another slot is
uncovered, which enables us to slide a weight from a slot onto the piston without
doing any work. Friction doesn’t exist in this idealized process. At any stage of the
process, we can reverse it by pushing weights back into the slots, following which
the piston will rise.

We have already seen that if a quasistatic compression or expansion is carried out
adiabatically, the entropy of the universe does not change. What happens if the same
process is carried out isothermally? To achieve this, we would have to put the cylin-
der in contact with a large (strictly, infinite) constant-temperature reservoir. The
change in entropy of the gas in an isothermal expansion from volume V; to V, is
exactly the same as that in the free expansion (Eq. 4.11). But now because the gas
interacts with its surroundings, the reservoir, we have to compute its entropy change
to obtain the total entropy change of the universe. We showed that the entropy change
of a reservoir can be obtained by integrating Q,. /7"

AS szresd 1'[2 d 4.31
res_th_‘ilerest ( )

Here, Q,,, is the negative of that appropriate to the gas (cooling of the gas means
heating of the reservoir and vice versa), which from the first law for an ideal gas is
p dV/dt in an isothermal process. Thus the entropy change of the reservoir is

1 (2 d4dv
ASres_-ivJ; -p :17 dt (4.32)
which is (using the ideal gas law)

2
A= —Nk | %,‘—g{ dt= — Nk ln(%) 4.33)
When this entropy change of the reservoir is added to that of the gas in the cylinder
(Eq. 4.11), the result is zero net entropy change. On the basis of what we have done
to this point, we conclude that a reversible process is one in which the entropy of the
universe does not change. A process that is not reversible is irreversible.

The entropy of the universe did change in heating or cooling of a volume of a gas
in contact with an (infinite) reservoir (see Eq. 4.24). But in the limit as x approaches
unity (the small gas volume and reservoir approach the same initial temperature), the
entropy of the universe does not change. Could we carry out the heating or cooling
of the small gas volume in such a way that the entropy of the universe does not
change?

To answer this question, consider the following arguments. The small volume,
which henceforth we call our system, is brought into successive contact with N infi-
nite reservoirs having temperatures T; < T, < T; < - - - < Ty, separated in temperature
by AT/(N—1), where AT=Ty—T, (Fig. 4.3). Initially, the system is in equilibrium
with reservoir 1, then comes into equilibrium with each reservoir in turn. The succes-
sion of N equilibrium states of the system is an approximation to a quasistatic pro-
cess; in the limit as N approaches infinity this discontinuous process approaches a
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Figure 4.3 A set of N ideal gas reservoirs with temperatures T}, T,
. . . Ty, where the temperature difference between successive reser-
voirs is arbitrarily small. A rigid container filled with an ideal gas
is successively placed in contact with each reservoir and allowed to
come into temperature equilibrium with it. By this process the tem-
perature of the gas in the container evolves in small steps from T}
to Tn-

continuous process (i.e., a quasistatic process). The jth entropy change of the universe
is

T. T,
= jt1 _—J _
AS] CV[ln(___Tj )+7}+1 1] (4.34)

where Cy, is the heat capacity of the system. After a bit of algebra, the total entropy
change can be written :

y y ,Jj—1

AS=3,AS;= CV(In 1 ]%[ s, ;) (4.35)
1-y N-1

where y=T,/T;. What is the limit of the sum in this equation as N approaches infin-
ity? To answer this question first change the index in the sum in Eq. (4.35) from j to
k+1 and let N=M + 1. With these transformations of indices the sum becomes

1 oy |

Ml by ol E_"‘_‘Z‘; (4.36)

where z, =k/M and u is y/(1 —y). Because M >> 1, Eq. (4.36) is to good approxima-
tion replaced by
Az

>M ,
lutz

0=z=1 4.37)
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where Az=z,,,—2z,=1/M. In the limit as M becomes infinite, this sum becomes an
integral:

Az (' dz
M+ 7 o [.L+Z

lim,, ,..>¥ =—Iny (4.38)
which when substituted into Eq. (4.35) yields AS=0. To check this result we chose
y at random, then computed the total entropy change (relative to the heat capacity)
from Eq. (4.35) for various values of N. For N= 50,000, the entropy change (relative
to the heat capacity) was 0.0000221. This process can be said to be reversible. We
have a huge set of reservoirs, each differing in temperature from its nearest neighbors
by a small amount. We can successively put the system in contact with these reser-
voirs, one after the other arranged in order of increasing temperature, then reverse
the process to restore the system to its initial temperature. And all without any perma-
nent change in the universe. But note that to conjure up this reversible heating and
cooling process we had to invoke a considerable degree of unreality: an infinite num-
ber of infinite reservoirs.

Now what about the free expansion? We can imagine this process to be carried
out quasistatically: The space into which the gas expands is divided by partitions into
a set of thin chambers (Fig. 4.4). We puncture each partition in turn, allowing the
expanded gas to come into equilibrium between punctures. The result is a set of
equilibrium states, and in the limit of an infinite number of partitions this set of states
is continuous. Yet even in this quasistatic process, the entropy of the universe in-
creases according to Eq. (4.11). Moreover, this process would not be described as
reversible: If we were to repair each hole in the partition in succession, the gas would
not reoccupy its initial volume V;. Thus we conclude that for a process to be revers-
ible it is necessary for it to be quasistatic but not sufficient. Now we can define a
reversible process as one in which the entropy of the universe does not change. No
real process is reversible. Reversibility is an idealization. In all real (irreversible)
processes the entropy of the universe increases.

We can define the entropy change of any system between two states as

20
S2_Sl zf = dt (4.39)

1 T
where the only restriction on the process connecting states 1 and 2 is that it be
reversible (provided such a process exists). This definition is consistent with the en-

Figure 4.4 The volume on the left encloses an ideal
gas. The volume on the right initially encloses empty
space, subdivided into compartments by a set of very

many exceedingly thin partitions. Each partition is
punctured in turn and the gas is allowed to reach equi-
librium before the next partition is punctured. The
limit of an infinite number of partitions corresponds to
a continuous sequence of equilibrium states (i.e., a qua-
sistatic process).
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tropy change derivations for an ideal gas undergoing reversible processes. Note that
Eq. (4.39) is not in conflict with our assertion that a reversible process is one in
which the entropy change of the universe is zero. In such a process the entropy of a
system changes according to Eq. (4.39), and the change in entropy of its surroundings
is equal and opposite in sign so that the total entropy change of the universe, the
system together with its surroundings, is zero.

Alert readers may have noticed an apparent contradiction. Equation (4.39) applied
to a fixed volume of ideal gas heated or cooled by contact with a single reservoir
yields the correct value for the entropy -change of this volume even though the heat-
ing or cooling process is not reversible (the entropy of the universe increases). This
is because the volume could have evolved by a reversible process between the same
initial and final equilibrium states as in the irreversible process. For example, instead
of the volume interacting with a single reservoir, it could have evolved from a given
initial to a given final temperature by interacting with an infinite sequence of reser-
voirs, and this process, as we showed previously, is reversible. Entropy is a state
variable, it depends only on the state of the system, not on its history. Thus the
entropy change of the volume of gas when it is irreversibly heated or cooled (entropy
of the universe increases) is the same as when it is reversibly heated or cooled (en-
tropy of the universe is constant).

For a process to be reversible it is necessary that the working be reversible
(W= —p dV/dt) but not sufficient. Again, consider the example of a fixed volume of
ideal gas interacting with a single reservoir at a temperature different from the initial
temperature of the volume. Here the working rate is quasistatic (indeed, it is static
because the volume is fixed) and reversible, and yet the entropy of the universe
increases.

All the specific examples we have given for an ideal gas are special instances of
the second law of thermodynamics:

AS

It is with some trepidation that we present this law in the form of Eq. (4.40), for we
are well aware of Clifford Truesdell’s assertion that “Every physicist knows exactly
what the first and second laws [of thermodynamics] mean, but it is my experience
that no two physicists agree about them.” To forestall critics we merely note that Eq.
(4.40) is only one of the many forms of the second law of thermodynamics.

Another statement of the second law is that the entropy of an isolated system can
never decrease. Such a system, by definition, does not interact with its surroundings,
and hence is a universe unto itself to which the second law in the form Eq. (4.40) is
applicable.

=0 (4.40)

universe —

The Second Law and Stability

The second law of thermodynamics gives us a criterion for the stability of an isolated
system. One meaning of stability is resistance to change. A stable system will not
change its state spontaneously or when slightly perturbed. Thus an isolated system in
a state of maximum entropy is stable. According to the second law, a change in the
state of the system would entail an increase in its entropy (or, at best, no change).
But if the entropy of the system is a maximum, there are no states of higher entropy
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accessible to it. When you are on the summit of a mountain you cannot climb higher.
By a maximum here is meant a local maximum, not an absolute maximum. At the
summit you can go higher, but to do so you have to undergo a transformation from
the mortal to the immortal state. Similarly, a state of maximum entropy is one for
which the entropy is larger than that of all states accessible to the system.

As an example, let us apply this stability criterion to the free expansion considered
previously. When the partition separating the gas from a region of very low pressure
is removed or punctured, the gas evolves to a state of maximum entropy by filling
the entire volume accessible to it. Once the gas has done so, it does not retreat into
a smaller volume. To do so would entail a decrease in entropy, which is not allowed
by the second law. Departures from the second law are not prohibited absolutely;
they are merely exceedingly unlikely. Thermodynamics applies to macroscopic sys-
tems, and thermodynamic variables are averages for such systems. Pressure and tem-
perature, and hence entropy, are averages and have meaning only for systems com-
posed of many molecules. Wherever there are averages there are deviations from
these averages (fluctuations) lurking in the background. On average, the entropy of a
confined gas cannot increase, but there always will be fluctuations giving rise to
transitory (and small) violations of the second law. A fluctuation so large that all the
gas molecules in a room spontaneously migrate into one corner is not impossible,
merely exceedingly unlikely, for which we should be thankful.

Entropy of Mixtures; Entropy of Mixing and Gibbs’s Paradox

Given that the atmosphere is a mixture of gases, we can hardly proceed without first
determining the entropy of a mixture of noninteracting gases. Although we could
make a judicious guess at the entropy of a mixture as a function of the entropies of
its components, the safest approach is to begin anew. We showed in Section 3.7 that
internal energies of ideal gases in a mixture are additive, and hence the total rate of
change of internal energy of a mixture is

dUu dT

—=3C,. — 441

dt i dt (44
where Cy,; is the heat capacity (at constant volume) of the jth component. From
Dalton’s law of partial pressures

p=2p; (4.42)

where p; is the partial pressure of the jth component. Equations (4.41) and (4.42)
together with the first law Eq. (4.1), yield

dT dv
0-2Cy, 2 +3p, ] (4.43)
Each component of the mixture satisfies the ideal gas law
N.kT
Pi="y (4.44)

where V and T are their common volume and temperature. If we combine the preced-
ing equations, we obtain
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Q_ s, LdT _(Nkdp, dS_d
T_EC”det 2 p; dt_dt—dtzsj (4.45)

where the entropy of the jth component is
$;=C,;In T—N;k In p; (4.46)

For simplicity we omitted the constants of integration. From inspection of Eq. (4.8)
it is evident that the entropy of the mixture is the sum of the partial entropies of each
of its components acting independently, which comes as no surprise.

Given that entropies of noninteracting gases are additive, we can determine en-
tropy changes upon mixing of different ideal gases at constant pressure and tempera-
ture. Suppose that the gases are initially in chambers with volumes V; separated by
impermeable partitions. Each chamber contains an ideal gas at the same pressure p
and temperature 7. The initial entropy S; of this system is the sum of entropies

S$;=3C,;In T-SkN; In p 4.47)

When the partitions are removed, the gases mix freely until they occupy the same
volume V=XV,. The final entropy S, is

where
NkT
Pi="y (4.49)
We also have from the ideal gas law
N,
Pi=y (4.50)
where N is the total number of molecules of all kinds. From Eqs. (4.49) and (4.50)
N.
S=3C, In T—SkN, In p— SkN, m(—ﬁ) @.51)
From Eq. (4.47) it follows that
N;
S;=S,— SN, ln(—ﬁ) 4.52)
The quantity
N,
—SkN, m(;vl) (4.53)

is called the entropy of mixing and is necessarily positive because N;/N < 1. The
origins of this entropy are not a deep mystery. After mixing, each component occu-
pies a greater volume than it did initially. Yet Eq. (4.53) does lead to a paradox.
Nothing in this expression for the entropy of mixing depends on any specific property
(e.g., molecular weight, specific heat capacity, etc.) of the molecules in the mixture.
Thus if we had taken all the molecules in the separate chambers to be identical, we
would have obtained the same entropy of mixing even though no macroscopic mixing
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had taken place. This paradox, called Gibbs’s paradox, can perhaps be made clearer
by considering a simpler example. A fixed volume 2V is divided into two volumes V
separated by an impermeable partition. Each subvolume contains N molecules of the
same kind of ideal gas at the temperature 7. The partition is removed. What is the
entropy change? There are two possible answers to this question. The first answer,
the obvious, common sense one, is that there is no entropy change because, in effect,
nothing has happened. The second answer comes about from applying (perhaps we
should say misapplying) Eq. (4.53). According to this equation, the entropy change
is

AS=2Nk1n 2 (4.54)

Both entropy changes cannot be correct. We arrive at this conundrum because we
applied Eq. (4.53) in the limit as the different kinds of mixing molecules become the
same. Yet this equation was derived under the implicit assumption that the molecules
are different. Once we decide they are different, they are forever different, and if we
decide they are not, no matter how small the difference, we cannot use Eq. (4.53).

Entropy Changes Upon Mixing of Two Gases with Different
Temperatures and Pressures

Now let us consider the entropy change when two gases, initially with different tem-
peratures and pressures, mix to form a gas with uniform temperature and pressure.
This problem is tackled most easily if we take the two gases to be in adjacent vol-
umes separated by a partition. Subscripts 1 and 2 are appended to the thermodynamic
variables of these gases before mixing. When the partition is removed, the gases mix
to occupy the same volume V=V, + V, and come to the same temperature 7. Because
this process occurs adiabatically and without any work being done, total internal
energy is conserved. It follows from Eq. (4.6) and additivity of entropy that the total
entropy change is the sum of two entropy changes, one resulting from a temperature
change, the other from a volume change:

AS=AS,,, +AS,, (4.55)
where
T T
AS = Cin ln(ﬁ) +Cy, ln(i) (4.56)
+
AS, =N,k ln(Vl L VZ) +N,k ln(u) (4.57)
Vi \Z:

Because V, +V, is greater than both V,; and V,, the entropy change Eq. (4.57) associ-
ated with the volume change is necessarily positive. The entropy change Eq. (4.56)
associated with the temperature change is identical to what we obtained previously

(Eq. 4.18):

AS,om=Cy [m(“ +x)+i ln( L 1:“:‘)] (4.58)
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where w and x are defined in Eq. (4.19). The quantity w, the ratio of heat capacities
of the two gases, is arbitrary. To determine the sign of the entropy change AS,,,,,, we
examine the extrema of the function f(x)=AS,,,,/Cy,;. The first derivative of this

temp
function
a 1 1
—= — 4.59
dx p+x x(p+x) (4.59)
vanishes only at x=1, and f(1)=0. The second derivative of f
d*f 1 2x+
— = -1 4.60
& el e ) (40

is positive at x=1. Thus the minimum value of fis zero only when the initial temper-
atures of the two gases are the same, but otherwise f is positive. In this mixing
process, therefore, the entropy of the universe always increases, and hence the pro-
cess is irreversible.

An Entropic Derivation of Joule’s Law

For a reversible process

dS_1dU pdv_oSdT S dv

dt Tdt Tdt oT dt 0V dt (4.61)
from which follow
oS 10U
T-TaT (4.62)
oS 10U
5"7—-?(-5/4- ) (4.63)

because V and T are independent variables. If we differentiate Eq. (4.62) with respect
to V and Eq. (4.63) with respect to 7, we obtain

#S 1 U

OVOT TovVaoT (464)
’5 _1( U +a—p)—l U, ) (4.65)
T oV T(aT oV oT TQ(aV P ‘
The cross partial derivatives of a function f(x,y) are equal
Pf  f
ax dy Jy ox (4.66)

if fis a continuous function of x and y. Thus with the assumption that S is a continu-
ous function of T and V, Egs. (4.64) and (4.65) can be set equal to each other. And if
U is a continuous function of T and V

—=TX_p (4.67)
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This is a general result, which we can apply to liquids as well as gases (see the
following paragraph). For an ideal gas

QD

p

p
—— 4-
oT T (4.68)
from which follows
oU
—= 4,
P, 0 (4.69)

This is the defining equation for an ideal gas. What we have shown by way of
entropy is that Eq. (4.69) is consistent with the ideal gas law, which is comforting
even if expected.

We now have enough tools to go beyond our discussion of specific heats in Sec-
tion 3.2, in which we obtained the general result

oU Vv
= — —_— 4.
C,=Cy+ (aV-}-p) 2 (4.70)
By using Eq. (4.67), Eq. (4.70) can be written
ap oV
= = — 4,
G, CV+T6T T 4.71)
From Eq. (3.60) it follows that
TVa? {
C,=Cy+ (4.72)
Kr

where the isothermal compressibility «; is the relative change in volume with change
in pressure
1oV
Kp= —— — 4.73
=V @473)
and the isobaric coefficient of thermal expansion « is the relative change in volume
with change in temperature

1oV
a= -‘; 57, (4.74)
The compressibility is positive for materials that shrink when subjected to increased
pressure (we don’t know of any exceptions). For such materials, the second term on
the right side of Eq. (4.72) is inherently positive, and hence C, = C,,. It also follows
from Eq. (4.72) that C, for liquid water is identically equal to Cy, at the temperature

(= 4°C) where the density of water is a maximum, and hence a=0 (see Fig. 3.8).

Entropy and Disorder: A Persistent Swindle

Generations of desperate teachers, faced with the cries of anguished students for an
immediate, concise, and readily digestible explanation of what this mysterious quan-
tity entropy really is, have seized upon a pacifier: Don’t fret, entropy is just a measure
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of disorder; in fact, entropy is disorder. The greater the entropy, the greater the disor-
der. Indeed, entropy used by people who are ignorant of science, as in the examples
with which we began this chapter, is merely a fancy scientific synonym for disorder,
and entropy increases are taken to be indications of increased disorder in all its forms,
ranging from a messy room to civil disturbances.

Good explanations often are characterized by the reduction of the unfamiliar to
the familiar. Thus those who propose to explain entropy (unfamiliar) by saying it is
merely disorder (familiar) are assuming that the consumers of this putative explana-
tion have an intuitive and unambiguous sense of what is meant by disorder. If only
this were true!

We began our discussion of entropy by showing that in an adiabatic free expansion
the entropy of an ideal gas increases. When the volume of such a gas increases, does
this unambiguously signal an increase in its disorder? Perhaps it does—to some peo-
ple. Yet it is not likely to be obvious to everyone that increased volume, and hence
increased entropy, means increased disorder unless we define this to be so. But if we
do, we have defeated our purpose of supposedly explaining entropy as disorder. That
is, we have defined disorder by means of entropy, not the other way around.

The entropy of an ideal gas increases with temperature. Does this correspond to
increased disorder? Again, it depends on what we mean by disorder. As the tempera-
ture of the gas increases, so does the mean kinetic energy of its molecules. If we
agree that when gas molecules move faster they are more disordered, we have an-
other correlation between increased entropy and increased disorder. But again, we
achieved this correlation by defining disorder in a particular way.

As we shall see in Section 5.3, the entropy per unit mass of a solid, such as ice,
is less than the entropy of its liquid at the same temperature, which in turn is less
than the entropy of the vapor phase. Here is an example in which greater entropy is
associated with an increase in what most people would probably intuitively accept as
increased disorder: A (crystalline) solid is more ordered than its liquid, which is more
ordered than its vapor.

Let us consider some examples that cast serious doubts on the notion that entropy
equals disorder. Suppose we have a subcooled liquid isolated from its surroundings.
A subcooled (or supercooled) liquid exists as a liquid at a temperature below the
nominal freezing point (we have more to say about subcooling in Chapter 5). Sup-
pose that some of this liquid freezes because of the introduction of a freezing nucleus.
According to the second law, the entropy of this isolated system cannot decrease. Yet
we end up with a system that is more ordered, at least as far as outward appearances
are concerned. It is indeed true that in the process of partial freezing of the subcooled
water, the temperature of the system increases, which corresponds to an entropy in-
crease. But now we have to argue that the entropy increase because of the tempera-
ture increase just happens to be greater than the entropy decrease because of the
phase transition from liquid water to ice, which is by no means obvious. For this
example, we could retain the entropy equals disorder equation, but only by stretching.

Now let us turn to an example that really knocks the correlation between entropy
and disorder into a cocked hat. Consider an isolated supersaturated solution, a liquid
in which a solid has been dissolved to a concentration greater than it would be for
equilibrium. Such a supersaturated solution is unstable (or, as is sometimes said,
metastable), but can exist that way more or less indefinitely. A crystal suddenly and
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spontaneously forms in the solution. Again, the entropy of the system cannot de-
crease. Yet the appearance of the crystal certainly would be regarded as an increase
in order. But in this example the temperature of the system could decrease. How on
earth can we retain the disorder interpretation of entropy when the system has under-
gone a partial transition from liquid to solid and its temperature also has decreased?
Only by heroic efforts might it be possible to do so.

Our heretical criticisms of the disorder interpretation of entropy are neither new
nor original. As long ago as 1944, K. K. Darrow, in a superb expository article on
the concept of entropy noted that “We cannot . . . always say that entropy is a
measure of disorder without at times so broadening the definition of ’disorder’ as to
make the statement true by definition only.”

Many years later P. G. Wright published a critical essay on the association of
entropy with disorder. He demonstrated by examples that “no exact correlation should
be expected between precise quantitative concepts and imprecise qualitative con-
cepts.” Entropy is a precisely defined thermodynamic variable that in principle is
measurable. Disorder is not such a variable. Wright draws one of his examples (crys-
tallization in a supersaturated solution) from an earlier paper by M. L. McGlashan,
whose criticism of thermodynamics taught as “muddled metaphysics” and “bogus
history” makes for great reading. Thus there have been a few lone voices crying out
against the dubious notion that entropy is disorder. Entropy is entropy, just as energy
is energy, unpalatable though this may be. To understand entropy, use it in as many
ways as possible, until entropy in your mind is an independent entity, complete and
whole in itself, not a mere synonym for the vague concept of disorder. (For another
example undermining the notion that entropy is synonymous with disorder, see Prob-
lem 31 in Chapter 5.)

Because our heretical remarks about equating entropy with disorder are likely to
stir up violent emotions, especially in the countless pedagogues who have resorted to
this shaky crutch, we briefly play devil’s advocate and criticize the critics. The exam-
ples adduced by some of them entailed matter in metastable equilibrium (e.g., sub-
cooled liquid, supersaturated solution), about which we have more to say in Section
5.4. It could be argued that entropy is not defined for matter in metastable states, that
entropy is strictly the property of matter in stable equilibrium, and hence that throw-
ing cold water on the equivalence of entropy to disorder by invoking metastable
states is fallacious. Yet entropy is just one among several thermodynamic variables.
If we argue that entropy is not defined for metastable states, we cannot stop there.
We also would have to argue that temperature, pressure, internal energy, and even
volume are not defined. But we would be highly reluctant to abandon the view that
the temperature and pressure of, say, subcooled water, are well defined—we measure
these variables.

“Integrating Factor and Entropy

At the beginning of this section we derived an expression for entropy by way of the
first law for an ideal gas. Yet the concept of entropy is not restricted to ideal gases.
For an ideal gas, the quantity 1/T transformed Q into the time derivative of a function
of thermodynamic state variables, which we called entropy. Yet such a transformation
is possible for any simple system.
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As our point of departure, we take the first law of thermodynamics in the form

Q=""-W

(4.75)

For a simple system, the internal energy U depends only on V and T:

dU oU dV+aU ar
dt aV dt oT dt

We assume that the rate of working W is

av
W= —p Z

(4.76)

@4.77)

The previous three equations can be combined to obtain

v P

Q_(aU )dV oU dT

Equation (4.78) has the form

dt T oT dt

(4.78)

dv dar

o=MWV,T) ——+N(VT)

4.79)

Although Q is not, in general, the time derivative of some function of state variables
T and V, it is possible to fiddle with Q for a simple system to obtain such a function.

Consider the differential equation

MWV,T) d—V+ N(VT) dT

Assume that this equation has only one solution
¢(V,T)=const
From this equation we have

dg_ogdv o dT
dt oV dt oT dt

It follows from Eq. (4.82) that

=0

_ 9 /o _dTI jav
v/ oT  dt/ dr

If we combine Egs. (4.80) and (4.82) we obtain

M_3¢ /o
N v/ oT

Equation (4.84) is satisfied if

¢ _
o7 = MVTN(VT)

(4.80)

(4.81)

(4.82)

(4.83)

(4.84)

(4.85)



154 Entropy

9_
— = MYMVT) (4.86)

where w(V,T) is a unique function (because of our assumption of the uniqueness of
¢). Now multiply Eq. (4.79) by u

nwO=pM —+ uN — (4.87)

By using Eqs. (4.85) and (4.86), Eq. (4.87) can be written

_d4dv_ o dT_dg

RO= T aT a dr

(4.88)
Thus although Q, in general, cannot be expressed as the time derivative of some
thermodynamic function, the quantity uQ can so be expressed. The function w is
called an integrating factor. Once we have found one such factor, we can find an
infinite number of them. Multiply Eq. (4.88) by some arbitrary continuous function

F of ¢:

d
Fu0=F($) 2L 4.89)

Define the function G by an integral:

$()
G(d() = f F(x) dx (4.90)
where a is a constant. If we differentiate Eq. (4.90), we obtain
dG do
—=F(¢) — 4.
=F®) (4.91)
Thus it follows that
dG
= 4.
Fug=%; (4.92)

Hence if w is an integrating factor for Q, so is Fu, and there are an infinite number
of such integrating factors.

When we derived an expression for entropy by way of the ideal gas law, we
introduced an integrating factor (not called such). This integrating factor was 1/7.
When Q was multiplied by this integrating factor, we obtained an expression for the
time rate of change of entropy

Q0 ds

T~ d (4.93)
But this was only for an ideal gas. The preceding analysis indicates that for any
simple system in which the rate of working is given by —p dV/dt, we have a hope
of finding an integrating factor.
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4.2 Entropy Changes of Liquids and Solids

We were able to obtain a simple analytical expression for the entropy of an ideal gas
as a function of temperature and pressure (or volume) because of the ideal gas equa-
tion relating pressure, temperature, and volume. We cannot follow the same path for
liquids and solids because there is no simple, universal equation relating their state
variables. Nevertheless, we can obtain simple expressions for entropy changes of
solids and liquids in the kinds of processes of interest to us.

The rate of change of entropy of a homogeneous substance undergoing a constant-
volume process is

dS_Q 1dU_CydT

ad T Tdt T dt (499
Similarly, for a constant-pressure process
dS 1dH C,dT
d Tdt T dt (4.95)
With a bit of algebra we can rewrite Eq. (4.72) as
2
Cv_y T (4.96)
G, PC,Kr

We showed in the previous section that C,=Cy, at the temperature of maximum
density of water (= 4°C), so let’s pick a somewhat higher temperature, say 20°C. At
this temperature the compressibility of water is about 5X 107 1% Pa~1, its coefficient
of thermal expansion is 2.1 X10™* K™, its density is 1000 kg/m?, and its specific
heat capacity at constant pressure is 4200 J/kg K. With these values in Eq. (4.96) we
obtain 0.994 for the ratio of heat capacities. Thus the two heat capacities of liquid
water are the same within less than one percent. What about ice? The density of ice
is slightly less than and its specific heat capacity about half that of water. The coeffi-
cient of thermal expansion of ice is about 1.7 X 107% K~! and its compressibility is
about 1.2 X 1071% Pa~1. With these values in Eq. (4.96) we obtain 0.966 for the ratio
of heat capacities of ice (at 0°C). Thus the two heat capacities of ice are the same
within a few percent.
Because C,~ Cy, for liquids and solids, Eqgs. (4.94) and (4.95) suggest that for any

process undergone by a liquid or solid, the rate of change of entropy is given by

ds CdT

dt T dt 437
where we need not worry about whether C is the heat capacity at constant pressure
or constant volume. If C is approximately independent of temperature over the range
of interest, we can integrate Eq. (4.97):

S—S,=C 1n(—TT—) (4.98)

where S is the entropy at temperature T and S, is the entropy at some reference
temperature 7.
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The previous arguments suggesting that Eq. (4.97) can be used to determine en-
tropy changes of liquids and solids for any process were of the quick and dirty kind.
If you are satisfied with these arguments, skip what follows, but if you would like
more convincing arguments, read on.

The change in entropy of a homogeneous system for any process in which temper-
ature and pressure change is approximately

aS aS
AS=— AT+—A 4.
o ap °F (4.99)
This equation is essentially the first two terms in a Taylor series expansion of entropy.
We rewrite Eq. (4.99) in a form more suitable for our purposes:

_ . 0S AT oS Ap
AS_TBT T +p o p (4.100)
The magnitude of the ratio
oS A
p P TaT (4.101)

tells us the relative contributions to the entropy change in the process for the same
fractional changes in temperature A7/T and in pressure Ap/p.
From the first law of thermodynamics for a reversible process and the definition

of entropy, we have

dS 1dH Vdp

— = —— 102

dt Tdt Tdt (+.102)
By using the chain rule to expand dS/dt in Eq. (4.102) in terms of d7/dt and dp/dt
and equating the coefficients of these two derivatives on both sides of Eq. (4.102),
we obtain

S_10H G,

oT TOT T (4.103)
oS 10H V

- To T (4.104)

Applying the same arguments to Eqs. (4.103) and (4.104) as those leading from Eqgs.
(4.62) and (4.63) to Eq. (4.67) yields

—=V-T_— (4.105)

This equation, the enthalpic counterpart to Eq. (4.67), combined with Eq. (4.104)
gives
a5 av

-2 4,
= " oT (4.106)

Now we have all the ingredients to determine the ratio Eq. (4.101), which with a bit
of algebra becomes
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95 /95 _ _pa

—= 4.107
op oT pc, ( )

p

Does the term on the right side of this equation look familiar? We obtained it in Eq.
(3.119) as the ratio of working to heating in a constant-pressure process. We also
showed that the magnitude of this ratio for water at one atmosphere is around 1075
This implies that for any atmospheric process undergone by a liquid or solid (but
not a gas) in which both temperature and pressure change, the entropy change is
overwhelmingly dominated by the temperature change. This provides the justification
for using Eq. (4.97) for determining entropy changes of liquids and solids in atmo-
spheric processes.

4.3 Potential Temperature: Meteorologist’s Entropy

Consider a height in the atmosphere at which the pressure and temperature are p and
T. The potential temperature ® of the air at this height is defined as the temperature
a parcel would have if it were brought adiabatically and reversibly to a reference
height where the pressure is p, (usually taken to be 1000 mb). From Poisson’s rela-
tion Eq. (3.82) it follows that

(y—1)/
®= (&) T (4.108)
p
With this definition of potential temperature we can write Eq. (4.8) in the form
_ T\ (p,\r—v] 9_
S SO—CV'y]n[(To)(p) ]_cp m(TO) (4.109)

where T, is some reference temperature. Given that our intended applications are to
the atmosphere, we write Eq. (4.109) in terms of intensive variables (i.e., specific
entropy and specific heat capacity at constant pressure):

s—s,=c, 1n($) (4.110)

o

Except for a scale factor, potential temperature (strictly, its logarithm) is the same as
entropy. Thus an isentropic process is also a constant-potential-temperature process.
The lapse rate of entropy is obtained by differentiating Eq. (4.110) with respect to z:

ds ¢, dO®

——=-t — 4,
dz O dz (111
The lapse rate of ® follows from differentiating Eq. (4.108):
d® Odr y-1 po)
— === 4.112
dz T(dz Yy pdz ( )
By using the equation of hydrostatic balance, Eq. (4.112) can be written
d® O /dr
2-3(Eer)
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where I'; is the dry adiabatic lapse rate. Thus if the temperature profile follows the
dry adiabatic lapse rate, potential temperature is constant. Because of Eq. (4.112) we
can express our previous criteria for static stability (see Section 3.5) in terms of the
gradient of potential temperature:

a9 > 0, stable _ (4.114)
dz
a9 =0, neutral (4.115)
dz
%?— <0, unstable (4.116)

A knee-jerk response to questions about stability is that the atmosphere is stable if
temperature increases with height because less dense air overlies more dense air.
Conversely, the atmosphere is unstable if temperature decreases with height. This
response is based on the notion that density is inversely proportional to temperature,
which is not true unless pressure is constant (which it is not in the atmosphere). But
if by temperature we mean potential temperature, which incorporates both pressure
and temperature, we obtain the correct stability criteria Eqs. (4.114)—(4.116). These
criteria are easier to remember than when cast in terms of temperature gradients.

As with entropy, once we have defined potential temperature, we need not dwell
on its origins and may treat it as another thermodynamic variable. Because entropy
is conserved in a reversible adiabatic process, and because the entropy of an ideal
gas is proportional to the logarithm of potential temperature, it follows that potential
temperature is also conserved in such a process. Indeed, it follows from the definition
of potential temperature and the first law of thermodynamics applied to an ideal gas
undergoing a process in which W= —p dV/dt that

d® 6
sz—? 0 4.117)

You will not find potential temperature mentioned in physics textbooks. Meteorol-
ogists can claim this quantity as their own. Its roots can be traced to an 1888 paper
by Herman von Helmholtz, one of the greatest scientists of his time and, indeed, of
all times. He used the symbol ® to designate a quantity he called Wirmegehalt, the
total heat contained in a mass of air. To measure this “heat” he considered the abso-
lute temperature a mass of air would have if it were brought adiabatically to “normal”
pressure. W. von Bezold suggested that Wirmegehalt be replaced by the more de-
scriptive term potential temperature, which met with Helmholtz’s approval. In 1908,
L. A. Bauer succinctly demonstrated the relationship between potential temperature
and entropy and suggested that entropic temperature might be a more appropriate
term. But he decided against pushing for this because by then potential temperature
had come into common use.
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Figure 4.5 A parcel of air with volume V is
Z, in stable equilibrium at height z,. When the
parcel is perturbed slightly, its displacement
from equilibrium z — z, will oscillate in time
with a characteristic frequency determined by

L s v 00, the gradient of potential temperature.

Parcel Oscillations

Whenever a mechanical system has a position of stable equilibrium, small-amplitude
oscillations are possible. Consider a parcel of sufficiently small volume V that its
properties are uniform. The equation of vertical motion of the center of mass of this
parcel (see Fig. 4.5) is

Py

F=—g(pp=p)V=M—5=pV >

(4.118)

where the subscripts p and s denote parcel and surroundings, respectively. Let z, be
the equilibrium position from which the parcel is displaced slightly upward or down-
ward. The previous equation of motion can be written

d> = Py
< (Z_Zo)=g(f’ P) (4.119)
p

By supposition, the pressure p of a displaced parcel is always that of its suﬁomdings:
p=p,T,R=p,T,R (4.120)

Equations (4.118) and (4.120) combined give
d? T,— Ts)

p

ﬁ(z—zo)=g( T

s

(4.121)

Because the parcel and its surroundings are always at the same pressure, the ratio of
their temperatures is that of their potential temperatures:

d? 0, - ®S)

p

Eﬁ(z—zo)Zg( 0

According to Eq. (4.117), the potential temperature of a system undergoing an adia-
batic, reversible process is conserved, and hence the potential temperature of the
parcel is constant. At z=z, the potential temperatures of parcel and surroundings are

(4.122)

s
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equal, so only the potential temperature of the surroundings changes. We can expand
the inverse of this potential temperature in a Taylor series

1 1 (ié@s

= (Z—z)+ - (4.123)
6, 0, \e2 )

and retain only the first two terms (small-amplitude approximation), which yields an
approximate equation of motion

L —e)=—s(a- 22
dr2 © %o g®s 0z

We previously showed that the condition for static stability is a positive gradient of
potential temperature. Equation (4.124) is the equation of motion of a simple har-
monic oscillator with frequency w, given by

) (z—z,) (4.124)

=g (é %g) (4.125)

where we omit the subscript s. This frequency is the Brunt—Vdisdld frequency, a
fundamental frequency of the atmosphere determined by the product of g and the
vertical gradient of potential temperature. The greater this gradient, the more stable
the atmosphere, the stronger the restoring force acting on a parcel, and the higher its
oscillation frequency. For a typical tropospheric potential temperature gradient of
3°C/km, the period (27/w,) of a buoyancy oscillation is about 10 minutes; for an
inversion layer in which the potential temperature gradient is 10°C/km, this period
decreases to about 3 minutes. Brunt in a 1927 paper derived the buoyancy oscillation
frequency (Eq. 4.125) and noted that the frequencies he obtained for typical tropo-
spheric potential temperature gradients were consistent with frequencies of pressure
oscillations sometimes observed in microbarograph traces. He also noted that after
submitting his original manuscript he learned that Viisild had published an article in
a Finnish journal 2 years previously, giving a similar derivation for the frequency
of buoyancy oscillations. Hence the designation Brunt—Viisild frequency, or, to be
historically accurate, Viisidldi—Brunt frequency.

The Brunt—Viisild frequency is related to the frequency of internal gravity (or
buoyancy) waves. As with simple one-dimensional buoyancy oscillations, the restor-
ing force associated with these waves is buoyancy, although parcel motions are not
confined to only vertical oscillations. These transverse waves can propagate both
vertically and horizontally in the atmosphere. Internal gravity waves should not be
confused with external gravity waves (such as those on the ocean), which propagate
along the interface between two dissimilar fluids. In recent years there has been a
move to call internal gravity waves buoyancy waves because buoyancy is the restor-
ing force (buoyancy requires both gravity and density differences). Furthermore, the
term buoyancy waves avoids confusion with the gravitational waves of general rela-
tivity.

Buoyancy waves are associated with mountain lee waves and can cause the clear-
air turbulence sometimes experienced by aircraft. Air deflected by mountain barriers
and convective elements impinging upon a stable layer are two mechanisms for gen-
erating buoyancy waves in the atmosphere. Lines of clouds parallel to mountain
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ridges often mark the upward-moving air associated with lee waves. The distance
between these lines is the wavelength, and the corresponding frequency is propor-
tional to the Brunt—Viisilad frequency.

4.4 Atmospheric Applications of the Second Law

The first law of thermodynamics, energy is conserved for an isolated system, usually
is emphasized more than the second law, entropy cannot decrease for an isolated
system. Yet the first law by itself is a rudderless ship, adrift in a boundless sea. To
show this, and to set the stage for an entropy maximization problem of relevance to
the atmosphere, we consider the simple example of what happens when two bodies,
denoted 1 and 2, with initially different temperatures, are allowed to interact with
each other but not with their surroundings (Fig. 4.6). We take this process to occur
isobarically. When the composite system comes to equilibrium, what are the tempera-
tures T, and T,; of its two components for given initial temperatures 7;; and T,
where subscripts i and f denote initial and final? Until we invoke some kind of physi-
cal law, we cannot answer this question. All we can say is that the point (77.,75)
lies somewhere in the first quadrant in Fig. 4.7. The first law narrows this range of
possibilities, but not as much as you might think.

The actual process of isobaric interaction between the two bodies is irreversible.
But each body proceeds from a definite equilibrium state to another such state. We
may not know how the bodies traverse thermodynamic space, but we do know their
points of departure and eventual destinations. Enthalpy is a state function that de-

(b) Figure 4.6 Two bodies with differ-
ent initial temperatures 7; and Ty,
(a) are brought into contact (b).
What are the final temperatures T';
and T, of these bodies if the inter-
action between them is isobaric?
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Figure 4.7 The possible outcomes allowed by the first law of thermodynamics of the thought
experiment depicted in Fig. 4.6.

pends only on thermodynamic variables (temperature and pressure). The one body
evolves by inscrutable processes from a state specified by (p,T;;) to a state specified
by (p,T}s), and the other body evolves from a state specified by (p,T,,) to a state
specified by (p,T,/). Let us set aside the actual process and assume that body 1 can
undergo a reversible, isobaric process from the initial equilibrium state (p,T7,) to the
final equilibrium state (p,T; £)s and similarly for body 2. This could be achieved, for
example, by placing body 1 (or 2) in contact with a series of many reservoirs having
arbitrarily small temperature differences beginning with a reservoir at temperature 77;
(T;) and ending with a reservoir at temperature T, (T,/). As far as body 1 is con-
cerned, it could just as well have undergone this idealized process instead of the real
irreversible process: The end result is the same. From the first law, it follows that for
the idealized isobaric process, total enthalpy is conserved because the process under-
gone by the composite system is adiabatic:

AH=0 (4.126)

Let us assume that the heat capacities (at constant pressure) for the two bodies, C,;
and C,, are independent of temperature. With this assumption, Eq. (4.126) yields

which can be solved for T,
Co1 Co1
T =(—”T,.+T,.)——”T (4.128)
2f Cr 1 2 Co 1f

Although we obtained this result for the idealized reversible process, it is also true
for the real irreversible process because enthalpy is a state variable: It depends only
on the state of the system (as determined by its temperature), not on how it evolved
to that state.

The first law shrinks the range of possible outcomes from any point in a rectangu-
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lar domain to any point on the straight line Eq. (4.128). But we still are very much
at sea. The first law allows for the possibility that the initially colder body will get
hotter and the initially hotter body will get colder, or no change in temperature of
either body, or the initially colder body will get colder and the initially hotter body
will get hotter. All these qualitatively different outcomes are equally likely if our only
guide is the first law. Not very satisfying, is it? To find our way along a line of
possibilities to a single point requires invoking the second law.

Again, the real process undergone by the two bodies in contact is irreversible. So
to determine the total entropy change we have to resort to reversible processes that
take each body from its initial equilibrium state to its final equilibrium state. In a
reversible, isobaric process, the heating rate is given by

dH ar
Q0= E C, I (4.129)
The corresponding entropy change is
c
AS= f £ 17: dt (4.130)

which can be integrated under the assumption that C, is independent of temperature
over the range of interest:

Tf
AS=C, 1n(7) (4.131)

The total entropy change in the idealized reversible process undergone by the com-
posite system of two bodies is

AS=C 1n(&)+c ln(T f) (4.132)
r1 Tli 2 T21

But again, because entropy is a state variable, the entropy change Eq. (4.132) for the
reversible process is the same as for the irreversible process connecting the same
initial and final states.

To find the final state for which the entropy is an extremum, dlfferentlate Eq.
(4.132) with respect to T, ;, making use of Eq. (4.122) specifying T, as a function of
T, 4, and set the result to zero:

— A§=-2 P2 Pl_( (4.133)

which has the solution
To determine if this extremum is a minimum or a maximum, take the second deriva-

tive

& 1 Gy 1
277,88 (7 + ) =0 (4.135)

from which it follows that the extremum is a maximum.
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We conclude from this analysis that when the two bodies reach the same tempera-
ture, no further entropy increase is possible. And if we believe the second law,
namely, that the entropy of an isolated system cannot decrease, we conclude that
equality of temperature characterizes the final equilibrium state of the two bodies in
contact. No further evolution (on average) of the composite system is possible be-
cause a change would entail a decrease in entropy, which is not allowed by the
second law. )

We have not explained anything. Our thermodynamic analysis tells us what hap-
pens, not why or how fast. Thermodynamics tells us nothing about the detailed mech-
anisms by which the initially hotter body cools and the initially colder body warms
until they both reach the same temperature. Moreover, this equalization of tempera-
ture could occur in the blink of an eye or over the age of the universe. Thermodynam-
ics by itself is powerless to predict the rate at which temperature equalization occurs.

At this point you may be saying to yourselves, All that we have done with the
first and second laws and a bit of mathematics is show what everyone knows (and
what we previously assumed): Bodies in contact eventually come to the same temper-
ature. This is indeed true, and it is also not surprising given that thermodynamics is
firmly rooted in observations of macroscopic systems. We should not be surprised
when thermodynamics tells us what everyone knows because this is what went into
the making of thermodynamics.

To show that learning about entropy maximization is worth our effort, let us apply
this principle to an atmospheric problem for which not everyone knows the answer.

Entropy Maximization in the Atmosphere

The total mass (per unit area) of atmosphere (on a flat earth) between two altitudes
7y and z, is

f "pdz (4.136)
Under the assumption of hydrostatic equilibrium, Eq. (4.136) becomes
2 1dp 1
—| —=dz=—(p,— .
| % = pap) (4.137)

Thus if we consider a layer of the atmosphere between two constant-pressure surfaces
(planes), the total mass of this layer is constant. Suppose that the layer is isolated
from its surroundings, neither heated nor cooled by radiation nor by interaction with
adjacent air (or ground). What is the equilibrium temperature profile in this layer? To
answer this question we need only two tools: the first and second laws of thermody-
namics.

The total enthalpy (per unit area) of the layer is

z2
J pc,T dz (4.138)
21

where ¢, is the specific heat capacity of air. If the layer were not in a gravitational
field, total enthalpy would be conserved. But because of Earth’s gravitational field,
the atmosphere also possesses potential energy (per unit area):
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ZZ
f pgz dz (4.139)

21

Equations (4.137) and (4.139) account for all the forms of energy the layer can have,
and because it is isolated, the sum of these energies must be constant:

z?.
f p(c,T+ gz) dz=const (4.140)

Note that the quantity ¢, T+ gz is the dry, static energy discussed in Section 3.4.
The total entropy of the layer is the integral of the specific entropy (entropy per
unit mass) Eq. (4.110):

ZZ ZZ
S=f ps dz=f pc, In O dz (4.141)
21 21

where additive constants are omitted and we are being sloppy by taking the logarithm
of a quantity with dimensions.

Now we can formulate our entropy maximization problem as follows: What tem-
perature and pressure profile maximizes the total entropy Eq. (4.141) subject to the
constraint Eq. (4.140)? To answer this question requires casting the problem in a
more felicitous form.

First, we transform from height to pressure by way of the hydrostatic equation.
With this transformation Eqs. (4.140) and (4.141) become

by
(¢, T+ gz) dp=const (4.142)
P>
c, [P
S=L| In®dp (4.143)
8 'p

If we combine Eqs. (4.111) and (4.112) and use the ideal gas law together with the
relation

y—1_R (4.144)
Y 6
we obtain
ds d
T;lz_d_z (c,T+g2) (4.145)
or, in pressure coordinates,
ds d
T 5 = Zi—]; (c,T+g2) (4.146)

Equation (4.111) in pressure coordinates is

ds ¢, d®
D0 dp (4.147)

which, when combined with Eq. (4.146), yields
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T dO® d

= 4.148
e, b (c,T+gz) ( )
From the defining equation for potential temperature
(y—1)/ 0.28
Zz(ﬂ) R (2) (4.149)
C Po Do/

According to this equation 7/® decreases uniformly from 1 to about 0.64 over the
range of pressures from 1000 to 200 mb (about 80% of the atmosphere). Thus if we
restrict our attention to layers several hundred mb thick, we make no serious errors
if we set the factor 7/0 in Eq. (4.148) equal to 1:

d® d
p E ~ Zi;(CPT+ 82) (4.150)
which can be integrated to yield
c,® =~ c,T+gz+ const (4.151)

Because of Eq. (4.151), Eq. (4.142) is equivalent to
p,
® dp=const (4.152)
D2

One more step makes our problem mathematically simpler: Transform the variable
of integration from p to x, where

p=x+’% (4.153)

With this transformation of variables, the mathematical statement of our problem is
as follows: Find the function ® for which the entropy (divided by the constant c,/g)

S=f_aaln O dx (4.154)
is a maximum subject to the constraint
fja('ﬂ dx=const (4.155)
where
a=l% (4.156)

To make this maximization problem mathematically simple, we confine ourselves
to the restricted set of linear potential temperature profiles:

®O=a+bx (4.157)
where a and b are arbitrary. Equation (4.157) in Eq. (4.155) yields

f (a+ bx) dx=2aa=const (4.158)
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and hence a is constant and S depends on b only. The condition for S to be an
extremum is that its derivative vanish:

as d ¢ @ x
r— L e—— — = 4‘
b= db _aln(a-i-bx)dx —aa-!-bxdx 0 (4.159)
which yields
2ab=ln(a+b 0‘) (4.160)
a—ba

The solution to Eq. (4.160) is b=0. To determine the nature of this extremum, we
differentiate dS/db:

d2S J‘a x2
=] —— 4.
T Gt BT dx < 0 (4.161)

Thus the extremum is a maximum.

Of all linear potential temperature profiles, a constant potential temperature maxi-
mizes the entropy of an isolated layer of the atmosphere in hydrostatic equilibrium.
Could we have guessed this without appealing to entropy maximization? Stability
considerations alone would not lead to this result. We probably would not guess that
an unstable layer corresponds to maximum entropy, yet a constant potential tempera-
ture is merely the dividing line between stability and instability.

Entropy maximization requires the equilibrium temperature of an isolated atmo-
spheric layer subjected to mixing with no condensation or evaporation of water to
decrease with height at the dry adiabatic rate. This result might appear to be at odds
with our everyday experiences. Why isn’t the equilibrium profile isothermal? If a
solid is isolated from its environment and initially has a nonuniform temperature,
conduction eliminates all temperature gradients. But in the atmosphere, energy trans-
fer in an isolated layer is dominated by convection rather than conduction. Lord
Kelvin recognized this in an 1862 paper on the convective equilibrium of temperature
in the atmosphere: “The particles composing any fluid mass are subject to various
changing influences, in particular of pressure, whenever they are moved from one
situation to another. In this way they experience changes of temperature altogether
independent of the effects produced by the radiation and conduction of heat. When
all parts of the fluid are freely interchanged and not sensibly influenced by radiation
and conduction, the temperature of the fluid is said to be in a state of convective
equilibrium.”

Energy transfer in the atmosphere and other fluids differs fundamentally from en-
ergy transfer in solids, in which mass motion is absent. Because pressure decreases
with height in the atmosphere (a consequence of gravity) and air is fluid and com-
pressible, ascending parcels expand (cool) and descending parcels compress (warm).
Thus the example of conduction in solids can impede our understanding of atmo-
spheric convection.

To show how dry convection produces a dry adiabatic lapse rate in the atmosphere
consider an isolated layer that is stable, and hence has a lapse rate less than dry
adiabatic. Suppose that a parcel moves from one level to another within this layer
and then mixes with its surroundings. The temperature of parcels is not conserved as
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they move up or down. If a parcel moves to a higher level and then mixes with the
air at that level, the layer is destabilized (i.e., the lapse rate increases) because a
rising parcel cools at the dry adiabatic rate, and hence will be cooler than its sur-
roundings. Similarly, if a parcel moves to a lower level and then mixes with the air
at that level, the layer is also destabilized because a descending parcel warms at the
dry adiabatic rate, and hence will be warmer than its surroundings. Mixing therefore
increases the entropy of the layer even though it is stable. Only in the absence of
gravity would the dry adiabatic lapse rate be zero and the equilibrium temperature
profile isothermal.

A few points must be added to this brief description of mixing in the atmosphere.
The potential for mixing to occur in a layer depends on its stability and wind shear
(variation of wind velocity with height). Mixing is much slower in a stable than in
an unstable layer. In the free atmosphere we routinely observe stable layers but rarely
observe unstable layers. Why? An unstable layer (if unsaturated) would quickly mix
to the dry adiabatic rate. For a stable layer with little wind shear, however, mixing is
suppressed, which allows other processes (e.g., radiation, advection) to play a larger
role in the vertical temperature profile. In our idealized treatment of entropy maximi-
zation of an isolated layer we can ignore motions within the layer and the rate at
which the equilibrium state is reached. We have all the time in the world. But we
cannot ignore processes other than mixing if we attempt to explain observed tempera-
ture profiles. Globally averaged tropospheric and stratospheric temperature profiles,
for example, can be explained as a consequence of radiative~convective equilibrium
with the additional complication of condensation and evaporation of water. Further-
more, horizontal and vertical advection and energy transfer from the surface can
substantially affect local vertical temperature profiles. But regardless of how other
processes alter air temperature, local mixing can only increase entropy and, for dry
processes, force the temperature profile closer to the dry adiabatic lapse rate.

Although our discussion has focused on the maximum entropy state of an isolated
layer, well-mixed layers are most often observed near Earth’s surface, where there
may be substantial energy transport to and from the layer. Over land, for example,
heating of the surface by solar radiation during the day can result in the formation of
a shallow, very unstable layer near the surface. Convection generated in this layer
can penetrate and stir the air above to form a well-mixed (constant-®) layer. This
convection also can transport energy into the layer from the surface and cause the
mixed layer to warm and deepen as the temperature of the surface increases. This
example illustrates the danger of invoking conduction or processes that depend on
gradients to explain the vertical transfer of energy in the atmosphere because energy
transports are large even though ® (or equivalently, dry static energy) is constant
with height in the mixed layer. Parcels close to the surface can be heated and thus be
warmer than air near the bottom of the mixed layer. As these positively buoyant
parcels rise, they cool at the dry adiabatic rate. But because temperature in the mixed
layer also decreases at this rate, the rising parcels remain warmer than the mixed
layer. Thus as they mix with surrounding air, they increase the temperature of the
mixed layer even though there is no gradient of ®. This process is different from
conduction in a solid. Although the example given here is associated with warming
of the surface by solar radiation, mixed layers also can form and be maintained as
cold air moves over a warmer surface. An example of a mixed layer maintained in
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Figure 4.8 Potential temperature profile calculated from temperature and pressure measure-
ments obtained from an instrumented aircraft flown about 500 km off the coast of California.
The solid circles are from 10-min averages flown at constant-pressure levels in the same air
mass but at different times. The sounding (solid line), from data taken during a slow descent
of the aircraft over about 5 min, was obtained before the constant-level measurements were
made. A shallow stratus cloud (indicated by dashed lines) was present in the top 200 meters
of the mixed layer. Consequently, potential temperature in this part of the layer increases
slightly because the lapse rate is less than the dry adiabatic lapse rate due to condensation of
water vapor. The sea surface temperature is only about 14°C (@ = 285.5 K), but colder air
advected into the study area resulted in a positive energy flux at the surface, which helped
maintain a well-mixed boundary layer. Radiative cooling at the top of the thin cloud also may
have enhanced mixing.

this way is illustrated in Fig 4.8, a potential temperature profile obtained from an
instrumented aircraft flown off the coast of California where strong winds advected
colder air over relatively warmer water. In oceanic regions like this the boundary
layer is often fairly moist, resulting in the formation of clouds at the top of the mixed
layer. Strong radiative cooling near the tops of these clouds can further promote
convection, which helps maintain a mixed layer even if surface heating becomes
small.

*Entropy Maximization in the Atmosphere: General Case

In the previous section we showed that among all linear potential temperature pro-
files, a constant potential temperature maximizes the entropy of an isolated layer of
the atmosphere. In this section, we give a more general proof without the restriction
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of a linear profile. Let ®,, be the function for which the entropy Eq. (4.154) is an
extremum and let 7 be a function that specifies the deviation of ® from ®,;

O(x) =0, (x) + en(x) (4.162)

where € is a parameter. The function 7n(x) is arbitrary subject to the restriction that it
must yield a constant integrated potential temperature:

J(e)= f [0,,(x)+ en(x)] dx (4.163)
which requires that
d‘]' o
S|y a0 (4.164)
Equation (4.162) substituted into Eq. (4.154) yields
S(e)= f In[®,,(x) + en(x)] dx (4.165)
The condition for an extremum is therefore
ég-—-O, e=0 (4.166)
de
which yields
69
——— dx= 4.
0 (%) dx=0 (4.167)

The extremum is a maximum if the second derivative of S with respect to € at e=0
is negative. This derivative is
2 « 2
%E—f=— _a@n—% dx, €=0 (4.168)
and hence if the extremum exists, it must be a maximum. Now our problem reduces
to finding the function ®,, such that Eq. (4.167) is satisfied, where 7(x) is arbitrary
subject to Eq. (4.164). A sufficient condition that these equations be satisfied is that
®,, be constant.

To show that constant ®,, is the only solution, we assume that there is a function
1/@,,, continuous on the interval [—a,a] but not constant, such that Eq. (4.167) is
satisfied for all functions 7 restricted by Eq. (4.164). Because 1/0,, is continuous and
positive, there is a positive number M such that 1/0,,>M on a subinterval I; of
[—a,a] having length 6. Moreover, there is a positive number m such that 1/0,, < m,
where m < M, on another subinterval 7, of length &/2. Because 7 is arbitrary subject
to Eq. (4.164), we may take it to be as follows: n(x)=1 when x is in I;; n(x)= —2
when x is in I,. This discontinuous function satisfies Eq. (4.164). With this choice of
7, the integral in Eq. (4.167) becomes

* nx) , 1 1

-0 _(x) B 1, 0,.(x) dx—2 5 0,,(x)

dx (4.169)
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Because M is the minimum value of 1/6,, on the interval /;, we have
f —-l—dx>M8 (4.170)
L0
and because m is the maximum value of 1/, on the interval I,, we have
f 1 dx < m§ 4.171)
I

When the inequalities Eqgs. (4.170) and (4.171) are combined with Eq. (4.169), the
result is

f L gy > (M—m)8> 0 (4.172)
-a®,
But this contradicts our assumption that there is a function ®,, not constant (but
continuous), such that Eq. (4.167) is satisfied for all arbitrary functions 7 restricted
by Eq. (4.164). Hence our original assumption must have been false, and the only
potential temperature that satisfies Eq. (4.167) is a constant. We owe this proof by
contradiction to George Greaves, a mathematician at the University of Wales, Cardiff.

Thermodynamic Efficiency: The Carnot Cycle

The mass of the atmosphere per unit area of Earth’s surface is approximately p,/g,
where p, is the surface pressure and g is the acceleration due to gravity. If we take
the average surface pressure to be about 1000 mb (10> Pa), the mass of the atmo-
sphere (per unit area) is about 10 kg/m?. The mean radius of the earth is about 6400
km, which corresponds to a surface area of about 5X 10'* m?2, and hence the total
mass of the atmosphere is about 5x 1018 kg.

The specific heat capacity of air (at constant pressure) is about 1000 J/kg K. Thus
every one-degree change in average temperature of the entire atmosphere corresponds
to an enthalpy change of about 5 102! J. This enthalpy change occurring over one
year (~3X 107 s) corresponds to about 2 X 10* W, or 2 X 108 MW. A yearly change
in the mean temperature of the atmosphere of only 0.1°C is equivalent to 20,000
1000-MW power plants. And this number pales in comparison with what we obtain
when we consider temperature changes of the oceans, with 1000 times the mass and
4 times the specific heat capacity of the atmosphere.

Why do we bother to burn coal and oil in power plants when the atmosphere and
oceans are vast reservoirs of energy? By lowering the temperature of the atmosphere
a mere 0.1°C per year, we could generate a staggering amount of power and at the
same time mitigate the effects of global warming. Why aren’t engineers beavering
away at schemes for extracting energy from the atmosphere and the oceans? Is this a
consequence of a giant conspiracy among OPEC, oil-refining companies, the coal
industry, and automobile manufacturers to deprive the world of breakthroughs that
would release enormous quantities of cheap but hitherto untapped energy? Why is all
the energy in the atmosphere and oceans, free for the asking, going to waste? Scan-
dalous, is it not?

It is indeed true that according to the first law, the atmosphere and oceans are vast
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reservoirs of energy, and this law places no restrictions on our ability to tap these
reservoirs. The second law, unfortunately, throws cold water on grandiose schemes
permitted by the first law. To show this, we must take a closer look at just what is
meant by the efficiency of power generation.

Thermodynamic internal energy is disorganized energy, not in a form suitable for
many activities in which humans engage. To get something useful to us, this disorga-
nized energy must be transformed into organized energy. An automobile that bucked
back and forth and sideways violently would possess kinetic energy but would not
take its occupants anywhere. To be useful, the center of mass of the automobile must
move mostly in one direction.

Let us consider the simplest conceptual device that transforms disorganized ther-
modynamic internal energy into organized energy capable of turning electric power
generators, driving tractors, trucks, automobiles, airplanes, and an endless variety of
machines, from giant steel mills to lawn mowers.

As our system we take a fixed mass of a working fluid, which could be a gas or
a liquid. This system undergoes a cycle, by which is meant that its state changes in a
series of processes such that the initial and final states are the same. The particular
cycle of interest is made up of two isothermal and two adiabatic processes, all as-
sumed to be reversible. To aid our thinking, it is helpful to represent this cycle on a
pressure—volume (p-v) diagram (Fig. 4.9).

The system begins its cycle at point 1 and undergoes an isothermal compression
at constant temperature 7,,,. We can imagine the system to be compressed while in
contact with a reservoir at this temperature. At point 2, the system is further com-
pressed, but this time adiabatically to point 3, where it then expands isothermally at
temperature 77,,,,>T,,, . Again, this expansion may be imagined to occur while the
system is in contact with a reservoir at this temperature. At point 4, the system is
isolated from the reservoir and further expands adiabatically back to the starting
point. And on and on forever.

Pressure

Figure 4.9 Carnot cycle undergone by an
ideal gas. The cycle is illustrated by a closed
curve in p—v space formed by the intersec-

tion of two isotherms (Ty;,p, and T,y,) with .
two adiabats (Q=0). SpelelC Volume
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Because the process is cyclic, the total working is, from the first law, the negative
of the total heating:

Wiot= = Qo (4.173)

The total heating in the isothermal process between states 1 and 2 must be negative
in order to maintain constant temperature in a compression. Thus for this process

2
Oow=— fl Q dt (4.174)

where Q,,,, is positive. For the high-temperature isothermal process we have

4
thgh= —L Q dt (4.175)

where Q. is positive. Two of the processes are adiabatic, and hence do not contrib-
ute to the total heating. The total heating over the cycle is

1ot = Dnigh — Llow (4.176)
which, from Eq. (4.174), yields

Wtot = - ( thgh - Qlow) (4 177)

Negative total working means that work is done by the system, which is certainly
necessary if the cycle represents the operation of an engine.

What is the efficiency of this cyclic process? The answer depends on what is
meant by efficiency. And it also depends on the desired output of the engine. We
have to agree that this desired output is W,,,. To maintain a reservoir at an elevated
temperature requires doing something that results in the expenditure of resources, for
example, burning coal or gasoline or oil. Once a fuel has been burned, it cannot be
burned again. The most economical use of fuels results when W,, is as large as
possible relative to O, The low-temperature reservoir need not cost anything: It
could be the atmosphere or a large body of water. We may define the efficiency of
this thermodynamic engine as the ratio of the desired result, the magnitude of W, ,,
divided by what it costs in energy units:

n= IWtotl _ thgh B Qlow
thgh thgh
The efficiency in the form of Eq. (4.178) is not expressed in terms of readily measur-
able thermodynamic variables. So let us go a step further.

Because entropy is a state variable, the change in entropy of the system is zero in
a cycle. This total zero entropy change is made up of separate entropy changes:

AS=AS12+AS23+AS34+AS41=O (4179)

(4.178)

Neither of the two reversible adiabatic processes contributes to the total entropy
change. The entropy change in the low-temperature isothermal process is

2 Q Ql
= = _ <low 4.
AS;, fl = di= (4.180)
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The entropy change in the high-temperature isothermal process is

4 ,
AS34=f Qg (4.181)

3 Thigh Thigh

From Egs. (4.179), (4.180), and (4.181) it follows that

Qi _ Qrigr (4.182)
T’low Thigh

With Eq. (4.182), the efficiency Eq. (4.178) becomes
(4.183)

This efficiency is often called the thermodynamic or Carnot efficiency, and the corres-
ponding cycle is called the Carnot cycle.

All the separate processes in the cycle were taken to be reversible. Real processes
are irreversible. We showed previously that in at least one irreversible process (free
expansion) work was required to restore the system to its original state. This result,
together with our intuitive feelings about entropy gained from having considered its
behavior, lead us to postulate that the Carnot efficiency Eq. (4.183) for an idealized
cycle is greater than that for any real cycle operating between the same two tempera-
ture limits. And in fact, no one has ever constructed an engine more efficient than
permitted by Eq. (4.183), which sets an upper limit to the efficiency of a thermody-
namic engine that transforms disorganized energy into organized energy. The practi-
cal utility of the Carnot efficiency is that it puts an end to fruitless searches for a
substance or cycle that will yield high efficiencies. The Carnot efficiency is indepen-
dent of the working fluid and the cyclic process it undergoes.

If only the good die young, Sadi Léonard Nicolas Carnot (b. Paris, 1796; d. 1832)
must have been very good. Dispatched to an early grave by cholera, Carnot lived not
more than 2 years longer than Mozart, another candle that burned briefly but brightly.
Unlike Mozart, Carnot’s fame was almost entirely posthumous. During his life he
published but one short monograph, Reflections on the Motive Power of Fire and on
Machines Fitted to Develop this Power, which received favorable initial reviews
(1824) and then was mostly forgotten for 10 years until Clapeyron (whom we shall
meet in Chapter 5) resuscitated it, putting Carnot’s mostly qualitative arguments in a
more analytical form. Yet although Clapeyron was himself a steam engine engineer,
and surely understood and appreciated the implications of Carnot’s work for engi-
neering practice, neither Clapeyron nor any other French engineers were markedly
influenced by it. Only when this work was resuscitated for a second time in the
middle of the nineteenth century by William Thomson (later Lord Kelvin) and Rudolf
Clausius were the originality and profundity of Carnot’s ideas fully appreciated, by
then too late for him to enjoy the fruits of fame even though he would have been
comfortably middle-aged. Carnot’s monograph, which he took pains to make accessi-
ble to as wide an audience as possible, still repays reading today even though its
theoretical underpinning is the officially discredited caloric theory according to which
heat is a weightless fluid that can be neither created nor destroyed.

The p—v diagram Fig. 4.9 provides a graphical means of visualizing the work done
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by a thermodynamic engine in a cyclic process. From the definition of the rate of
working in a reversible process we have

2 dv f?‘ dv f“ dv fl dv
= — — — — 4.1
Wior flpdt dt+ zpdt dt+ 3pdt dt+ 4pdt dt (4.184)

where w,,, is the (positive) work done per cycle per unit mass of working substance.
Equation (4.184) is often written compactly as

wwt=3£p dv (4.185)

where the circle intersecting the integral sign denotes integration around a cycle (in
a clockwise sense for w,,, to be positive). According to Eq. (4.184) or (4.185) the
work done in any cyclic process is proportional to the area enclosed by the closed
curve representing the process on a p—v diagram.

Now we have all that is necessary to answer the question posed at the beginning
of this section: Why can’t we extract energy from the atmosphere and oceans? The
naive answer is that they would have to serve as both high- and low-temperature
reservoirs. According to Eq. (4.183), the Carnot efficiency of an engine operating
between these two reservoirs would be zero. Reality, although bleak, is not quite this
bleak. There are finite temperature differences in both the atmosphere and the oceans.
For example, the difference between the surface air temperature and that at 5 km
might be 30-40 K. For an average temperature of 300 K, the corresponding Carnot
efficiency is about 10%, the maximum attainable. A real engine exploiting this tem-
perature difference would be less efficient. Similarly for the oceans. From the surface
to a depth of about 1 km, the temperature may decrease by about 20 K, which
corresponds to a Carnot efficiency less than 10%. It also has been pointed out by G.
F. R. Ellis that the clear night sky is a low-temperature reservoir. The equivalent
blackbody temperature of the clear sky often is taken to be about 250 K. If the mean
surface temperature is 280 K, a 30 K difference could be exploited, but the associated
Carnot efficiency would be low.

Devices could be constructed to exploit natural temperature differences. But how?
This could be done only with turbines and pipes made of steel or aluminum, which
would have to be designed, built, and maintained. Given the low Carnot efficiency of
such devices, the investment in resources is not likely to yield a sufficient return.
Schemes for generating power by exploiting ocean temperature differences have been
promoted for over half a century. These schemes even have inspired their own acro-
nym: OTEC (Ocean Thermal Energy Conversion). Presumably, adherents of OTEC
hope to break the back of OPEC, but this happy event has yet to occur, and we
suspect that at least part of the reason is the fundamental limit imposed by the Carnot
efficiency.

Entropic Derivation of the Dry Adiabatic Lapse Rate

In Section 3.4 we derived the dry adiabatic lapse rate by means of the Poisson rela-
tions and the hydrostatic equation. The process underlying this derivation was adia-
batic and reversible, and hence isentropic. Thus we should be able to derive the dry
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adiabatic lapse rate by invoking conservation of entropy. We shall do so as a prelude
to obtaining the moist adiabatic lapse rate in Section 6.5.

The specific entropy s of an ideal gas can be expressed as a function of the two
intensive thermodynamic variables, temperature and pressure:

s=c,InT—RInp (4.186)

where additive constants are omitted. The total entropy of a parcel of dry air mixed
with water vapor is therefore

S=8,+8,=Myc,gIn T—-R;M,In p;+M,c,, In T-R,M,Ine  (4.187)

Conservation of the entropy of the parcel in ascent (or descent) requires that

d
212 (Sy;+S5,)=0 (4.188)
from which follows
Ldr Ldpg, lde, .
T & (Mdcpd+Mvcpv) o dz R,M, pn R.M,=0 (4.189)

Both the dry air and the water vapor components of the parcel obey the ideal gas law

Pa=paR,;T, e=p,RT (4.190)
We also have
My;=pV, M,=p,V (4.191)
where V is the volume of the parcel. If Egs. (4.188)—(4.190) are combined
1dr Vdp
T Myc,u+M,c,,) T2 (4.192)

where p=p,+e. The density p of the parcel is
M+ M,

4.
p v (4.193)
and its specific heat capacity at constant pressure is
Mdcpd+Mvva
c,= (4.194)
P M,+M,
Equations (4.190)—(4.192) and the hydrostatic equation then yield
dr
—=_& (4.195)
dz c

in accordance with what we obtained previously when we were innocent of any
knowledge of entropy. This gives us confidence that entropy conservation sometimes
can take us where we want to go.

In this derivation of the dry adiabatic lapse rate, for which, by definition, water
vapor does not condense, separating the water vapor and dry air components was not
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necessary. We would have obtained the same result if we had expressed the entropy
of a parcel in terms of the average properties (specific heat capacity and gas constant)
and total pressure of air. But water vapor in the atmosphere can and does condense,
and when we allow for this, treating water vapor and dry air as separate components
becomes necessary because the vapor can be transformed into liquid water or ice, the
specific entropies of which are not equal to that of the vapor phase.
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PROBLEMS

1.

The boilers for the earliest steam engines were not much different from ordinary
tea kettles. Estimate the maximum efficiency of such steam engines.

Suppose that you want to increase the efficiency of an engine operating between
two temperatures, 7}, and 7T),.,. You have two choices: You can decrease T},
by a given amount AT or you can increase 7, by the same amount. Which
would you choose in order to obtain the greatest increase in efficiency? Hint:
This question is easy to answer by applying simple calculus.

In Chapter 1 we asserted without explanation that the so-called energy crisis is
really an entropy crisis. You now should be able to explain what we meant by
this. Please do so.

The atmosphere has been likened to a giant thermodynamic engine in which
disorganized energy is transformed into the organized kinetic energy of the
winds. The general circulation of the atmosphere is driven by temperature differ-
ences between the polar and equatorial regions. Estimate the maximum efficiency
of the atmospheric engine. Do this for both summer and winter in the Northern
Hemisphere. On the basis of your calculations, what would you predict for the
relative strength of winds in summer and winter? Keep in mind that in the equa-
torial region there are no seasonal changes comparable to those at mid-latitudes.

The specific entropy (entropy per unit mass) of liquid water is greater than that
of solid water (ice) at the same temperature. This is true at 0°C, and would also
be true at any temperature. That is, the entropy of ice at, say, —20°C is less than
that of liquid water at —20°C. Why, therefore, doesn’t ice in surroundings at
—20°C spontaneously melt? What is special about 0°C from a thermodynamic
point of view? What is wanted here is an argument based on the proper use of
the second law of thermodynamics. Hints: The enthalpy of water is greater than
that of ice at the same temperature. You may assume that this enthalpy difference
is approximately independent of temperature. Assume that this hypothetical melt-
ing of cold ice takes place at constant pressure in surroundings at constant tem-
perature. You may also assume that the entropy difference between ice and water
is approximately independent of temperature.

Many years ago one of the authors used to drive regularly through Yuma, Ari-
zona. Outside town he would pass a strange orange grove. Scattered among the
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orange trees were large towers onto which were mounted propellers driven by
engines. The scene was that of a flight of silent airplanes mysteriously hovering
over the orange grove.

The purpose of these propellers (huge fans) is to prevent frost damage on
clear, cool nights. During such nights, air near the surface is cooled as the ground
cools because of net longwave radiation. Since air higher in the atmosphere may
be relatively unaffected by surface cooling, air near the surface can become very
stable. How are fans used to keep the air near the surface warmer than it would
be otherwise? At first glance, this seems crazy: Aren’t fans used for cooling?

To show that these fans can yield the desired results, you must support your
arguments with calculations. Consider a situation where at sunset air temperature
near the surface is 10°C and the lowest several hundred meters of the atmosphere
is well mixed. At sunrise, many hours later, air near the surface has cooled to
—5°C while the air temperature at 50 m and above is unchanged (you may as-
sume that temperature varies linearly with height between the surface and 50 m).
Now turn on the fans. Can this result in a surface temperature above freezing?
Hints: This is a potential temperature problem. Do not be disturbed if your sim-
ple analysis leads to a temperature discontinuity. This corresponds to a very thin
inversion layer.

In his delightful book The Simple Science of Flight Henk Tennekes asserts on
pp. 117-18 that “The colder the air the better. The efficiency of jet engines
improves as the difference between the intake temperature and the combustion
chamber increases . . . This fact has far-reaching consequences for jetliners. The
coldest air is found in the lower stratosphere, about 10 kilometers . . . The tem-
perature there is about 55°C below zero.” Estimate the change in efficiency of
jet engines as a consequence of flying at 10 km instead of, say, at 3 km. You
will have to guess or look up the temperatures in the combustion chamber of a
jet engine. Keep in mind that if the intake air is colder at the higher altitude, so
will be the air in the combustion chamber.

We are so accustomed to thinking of energy as being conserved and ehtropy as
increasing that we may lose sight of the fact that the converse is possible. In
what kind of a general process is the entropy of a system conserved but its
internal energy is not? This is a simple and straightforward question, not a trick.

You may have encountered the assertion that according to the second law of
thermodynamics you cannot unscramble an egg. Yet with a bit of thought you
should be able to devise a very simple method for unscrambling an egg. After
you have done so, try to reconcile the supposedly impossible unscrambling of an
egg with the second law of thermodynamics.

A refrigerator is the reverse of an engine: Work is done on rather than by the
working fluid in a refrigerator. Devise an efficiency for a refrigerator. Keep in
mind that such an efficiency (for refrigerators called coefficient of performance)
is the ratio of what is desired to what this costs (in energy). After you have
obtained this efficiency for any refrigerator, determine what it is for an ideal
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11.

12.

13.

Carnot refrigerator (one that operates on a Carnot cycle). Estimate the Carnot
coefficient of performance for a typical refrigerator. If you express the Carnot
coefficient of performance as a function of the Carnot efficiency, a striking dif-
ference between the two becomes obvious. Discuss and interpret.

The so-called heat pump is essentially a refrigerator. In winter a heat pump func-
tions as a heater, the low-temperature reservoir being the outside environment,
the high-temperature reservoir being the inside of a house. In summer, a heat
pump functions as an air conditioner, the low-temperature reservoir being the
inside of a house, the high-temperature reservoir being its outside environment.
Obtain an expression for the coefficients of performance of a heat pump acting
as a heater and as an air conditioner. Estimate values for these coefficients of
performance. See the previous problem.

You sometimes encounter assertions that a refrigerator “transfers heat from a
cold body to a hot body” (in seeming defiance of the second law of thermody-
namics). Is this assertion literally true? Hint: The easiest way to answer this
question is to consider carefully each step of a Carnot cycle on a p—v diagram.
For simplicity, take the working fluid to be an ideal gas. Ask yourself if at any
point of the cycle energy is transferred from a cold to a hot body by virtue of
direct interaction between the two.

The author of a newspaper article on heat pumps (see Problem 20 in Chapter 1)
asserts that “new models are so efficient they produce up to four units of heat
for every one unit of electricity they use.” This statement seems false but is in
fact true. Convince yourself that it is true (see Problem 11) but misleading.
Someone reading this article and taking it at face value might conclude that
burning fuel oil (or natural gas) to heat a house in winter is madness. Why burn
oil when you can use a heat pump and get four times as much heating? This
statement is true but incomplete. Please discuss.



