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SLANTWISE CONVECTION

Until now, we have regarded convection as motions arising from an unsta-
ble distribution of mass in the vertical direction, with “vertical” meaning
along the direction of the gravitational acceleration. On a rotating planet,
such as the earth, a more precise definition entails the centrifugal as well as
gravitational acceleration, so that “vertical” really means along the direc-
tion of effective gravity, which is defined to be the sum of the gravitational
and centrifugal acceleration vectors.

This raises the important point that physical systems do not respond
differently to gravitational and inertial accelerations. Rotating systems ex-
perience centrifugal accelerations which the fluid responds to in much the
same way as it does to gravity, though the relevant conserved variable is
angular momentum instead of temperature or potential temperature. In
analogy to purely gravitational convection, there exists a form of convec-
tion that arises due to unstable distributions of angular momentum along
the vector of the centrifugal acceleration. In the atmosphere, convection
may be driven by either or both these mechanisms. In the following sec-
tions we develop the theory of purely centrifugal as well as “slantwise”
convection and examine observational evidence of slantwise convection in
the atmosphere.

12.1 Centrifugal convection

Suppose we have a cylindrical tank of rotating fluid of constant density, as
shown in Figure 12.1. We can characterize the motion of the rotating fluid
about a central axis by its angular velocity, €2, or its angular momentum,

M:

Q=

3 <

, (12.1.1)
M =rV =r%Q, (12.1.2)

where V is the azimuthal velocity and r is the distance from the axis of
rotation. Let €2 and M be arbitrary functions of 7.
The radial equation of motion in an inviscid flow may be written

— = —op— + —, (12.1.3)
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Fig. 12.1 A cylindrical tank of rotating, incompressible fluid showing the dis-
tribution of angular momentum and the displacement of an infinitesimal ring of
fluid.

where g is the specific volume, here constant. There will be no radial
accelerations, and hence the azimuthal flow is balanced, so long as

op V%2 M?
Qs = —=—. (12.1.4)
Now consider a radial displacement of a ring of fluid, as shown in Figure
12.1. What will be the acceleration acting on this ring? To calculate this,
we shall use the parcel method developed in Chapter 6, except that here
we assume that the “parcel” is actually a ring of fluid. As in the classical
parcel method, we shall assume that the environment is unperturbed by
the displacement of the ring, so that the pressure field is unaffected by the
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displacement. (This will actually be the case if the cross-sectional area of
the ring is infinitesimal.)
The azimuthal component of the equation of motion is

dM Op

W = —(10%, (1215)
where 6 is the azimuth. Thus for inviscid, azially symmetric motions (for
which 0p/06 = 0), M is conserved. Then, assuming that the pressure
distribution remains unaffected by the displacement of the ring, (12.1.3)
can be written

du N op N M?

) — — Qo7 Ta

d or ’”32 (12.1.6)
_ 1 (a2
o3 (M M ) ’

where the overbar signifies the state of the fluid before the displacement.
Equation (12.1.6) states that the ring will accelerate outward if its value of
M? is larger than that of the fluid into which it is displaced, and inward
if its M? is smaller than that of its environment. Since M is conserved, it
is easily seen that the radial acceleration will act in the direction opposite

=2 . .
to the direction of displacement, provided that M increases with radius.
This can be formalized for small displacements é7 by writing

——2
— — M
M?(rg + 6r) = Mz(ro) = M2(r0 +6r) — ddr or. (12.1.7)
Substituting (12.1.7) into (12.1.6) gives
du ~1dM°
6. (12.1.8)

dt lro+6r T8 dr

Thus if dM " /dr is positive, the acceleration acts in the direction opposite
that of the displacement, and the fluid flow is stable in this sense. On the

other hand, if dM’ /dr is negative, the fluid flow is unstable. The ensuing

motions are said to result from inertial or centrifugal instability.
Centrifugal instability is nothing more than convective instability, but

with inertial accelerations playing the role of gravity. The quantity (M? —

Mz) /r8 plays the same role as g(6yp — 044)/0va, the buoyancy, in gravi-
tational convection. The difference between centrifugal and gravitational
convection is the direction of acceleration and the nature of the conserved
quantity from which the acceleration is calculated. In particular, M? is
conserved for inviscid, azially symmetric displacements, whereas 6, is con-
served for all adiabatic displacements. By analogy, centrifugal convection
is driven by angular momentum fluxes, while gravitational convection is
driven by fluxes of heat. The analog to the Rayleigh-Bénard apparatus for
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centrifugal convection is a system composed of two concentric cylinders,
with the inner cylinder rotating somewhat more rapidly than the outer.
Angular momentum fluxes from these cylinders drive centrifugal convec-
tion cells that take the form of concentric rings whose vertical spacing is
comparable to the radial gap between the cylinders.

Perturbations do not have to be perfectly axially symmetric to ex-
perience centrifugal instability. In the atmosphere, one can define more
local conditions for centrifugal instability based on the equations of motion
phrased on an f plane, on which the horizontal components of the earth’s
angular velocity vector are ignored together with gradients of the vertical
component. The inviscid equations of motion on an f plane are

du Op
E = _aa + f’U, (1219)
dv op
E = —(15':(; - fu, (12110)
dw Op
‘E = —aa - g, (12111)

where u, v, and w are the eastward, northward, and upward components
of velocity, and f is the Coriolis parameter:

f = 2 sin ¢y, (12.1.12)

where (2 is the magnitude of the earth’s angular velocity and ¢g is the mean
latitude of the area in question. (We are concerned with motions confined
to an area over which sin ¢ varies by a small fraction of its mean value.)

Let us further restrict our attention to an atmospheric flow for which
there is some direction, call it y’, in which the gradient of pressure, multi-
plied by a, does not vary with height. It is easily verified that the equations
of motion, (12.1.9) to (12.1.11) are invariant with respect to a rotation of
the coordinate system about the z axis. Thus in the new coordinate frame
(', v, 2), (12.1.9) to (12.1.11) may be written

du’ Op ,

— = —aps + fv, (12.1.13)
/

%’;- = Flug — ), (12.1.14)

dw Op

—_— = —a= — 12.1.15

dt aaz g, ( )

where u’ and v are the velocities in the =’ and y’ directions and uy is a
constant:

0
fug = —aa—;), = constant. (12.1.16)

The quantity uy is the geostrophic wind in the z’ direction and here
it is assumed to be constant. Finally, let us have the rotated coordinate
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system translate at a constant speed u, in the z’ direction, so that in this
new reference frame

' — " + ugt,
y =y,
z, — z*,
u' — u* + ug,
v, _)v*,

w — w*.

Then (12.1.13) to (12.1.15) become

du* Op

= — * 12.1.1
o a@x* + fv*, (12.1.17)
dv*

= —fu* 12.1.18
dt fut, ( )
dw* Op

= — —q. 12.1.1
dt Yo 9 (12.1.19)

(Hereafter we drop the asterisks and remember that we are in a coordinate
system rotated so that the pressure gradient in one direction is constant,
and which is translating at speed u,.)

Since u = dx/dt, (12.1.18) can be written

dv dzr
@ - Ta
or Y
— =0 12.1.20
=0, (12.1.20)
where
M=v+ fx. (12.1.21)

The quantity M, the absolute momentum, is conserved for inviscid
motions on an f plane on which one component of the geostrophic wind is
constant. This implies that the only component of the geostrophic wind that
varies height is the component in the (new) y direction. But the thermal
wind relation shows that the temperature gradient is orthogonal to this
component of wind. Therefore the y direction lies along isotherms on a
surface of constant pressure, and the z direction lies along the temperature
gradient, pointing toward warmer air.
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Suppose we perturb this flow by displacing a two-dimensional “tube”
of air in the z direction, as illustrated in Figure 12.2. In order to maintain
the condition that M is conserved, it is necessary that the geostrophic
wind in the z direction, uy, remain unperturbed by the displacement. From
(12.1.16), this implies that

% _ 12.1.22

=0 (12.1.22)
where p’ is the pressure perturbation associated with the disturbance. The
only disturbances that satisfy (12.1.22) exactly are those for which 8/9y =
0, that is, disturbances highly elongated in the y direction (the direction of
the mean flow shear). We may write (12.1.17), governing the accelerations
in the x direction, as

du Op

it~ Yo T
= f(v —vy)
= f(M - M,), (12.1.23)

where v, is the geostrophic wind in the z direction, and
M, = vy + fz, (12.1.24)

in analogy with (12.1.21). This quantity is the geostrophic absolute momen-
tum. If the displaced tube is elongated in y, then M is conserved, and if,
by the parcel hypothesis, the displacement does not perturb the environ-
ment, then the distribution of M, remains fixed. In this case (12.1.23) is
exactly analogous to (12.1.6), with the consequence that the flow is unsta-
ble if M, decreases with x. This is the special case of centrifugal instability
of a straight geostrophic flow on an f plane. In gravitational convection,
conservation of some adiabatic invariant (such as 6,) means that the ver-
tical pressure gradient and gravity will not generally be in balance when
a parcel is displaced vertically; if the resulting acceleration is in the same
direction as the displacement, the flow is said to be unstable to (gravi-
tational) convection. In parcel theory, we calculate the vertical pressure
gradient by assuming that the mass of the displaced parcel is so small that
the pressure distribution is unaffected by the displacement.

Likewise, in the case of centrifugal convection, conservation of some an-
gular momentumlike invariant means that when a ring of fluid is displaced
in a direction orthogonal to the axis of rotation, the pressure gradient and
the centrifugal (or Coriolis) acceleration will not generally be in balance,
and if the net acceleration is in the same direction as the displacement, the
flow is said to be unstable to centrifugal convection. In parcel theory, we
again calculate the pressure gradient by assuming that it is unaffected by
the convection.
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Fig. 12.2 A quasi-two-dimensional “tube” of air, with the y coordinate defined
to run along its axis.

12.2 Theory of slantwise convection!

Suppose we take the “tube” of air in the last example and displace it ver-
tically as well as horizontally, once again neglecting pressure perturbations
arising from the displacement. Then the equation governing horizontal ac-
celerations of the parcel is (12.1.23), while the vertical acceleration is gov-
erned by

dw _ g(at——ae)’ (12.2.1)

dt Qe
where a; is the specific volume of the tube and a. is that of its environ-
ment. We would like to rephrase (12.2.1) in terms of conserved variables, to
make it look more like (12.1.23). This we can do using Maxwell’s relations,
developed in Section 4.5. Assuming that a; — a, is small compared to c.,
and recognizing that the difference a; — a, is to be taken at constant pres-
sure, and regarding « as a function of pressure, entropy, and water content,

1 The development in this section closely follows that of Emanuel (1983a,b).
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then
Oa Oa
@-ap>(55) st (gm) Gr-rro, (222

where s and rr are the entropy and total water content. The quantity s
should be interpreted as the dry entropy if the air is unsaturated and the
moist entropy if otherwise. To streamline the following development, we
hereafter neglect the contribution of r1 to specific volume, though this is
not necessary. Thus, we will neglect the last term in (12.2.2) and replace
the specific volume, o, by the specific volume of dry air, ay. Then (12.2.2)
becomes

Oag
(at - ae)p ~ (a—> (St - Se). (1223)
5/p
Using one of Maxwell’s relations, (4.5.30), this can be written
oT
(o — ae)p =~ (B_I))s (st — Se). (12.2.4)
Using this and the hydrostatic approximation, (12.2.1) becomes
dw
- = C(s: — se), (12.2.5)
where
(— (%—Z)s'l = f; = dry adiabatic lapse rate,
unsaturated tube,
=< (12.2.6)
— (%—7;)8, = moist adiabatic lapse rate,
L saturated tube,
cplné unsaturated tube,
cplnb; saturated tube,

where 0] is the value of the equivalent potential temperature air would
have if it were saturated at the same pressure and temperature. Since 6
is conserved in dry adiabatic displacements and 6] is conserved in moist
adiabatic displacements, s; is always conserved following the displacement
of the tube, provided that the displacement is reversible.

In summary, the parcel equations for the tube aligned in the direction
of the mean-state isotherms on isobaric surfaces are:

d

d_’t‘ = f(M, - M,) (12.2.8)
and

dw _ [(s; — se), (12.2.9)

dt
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with I and s given by (12.2.6) and (12.2.7).

One can immediately see the analogy between these two equations. In
both cases, the accelerations are proportional to the difference between a
quantity conserved in the displacement of the tube and the same quantity
in the tube’s environment. (But remember that M is only conserved for
a “tube” of air elongated in the direction of the thermal wind.) This is
a manifestation of the dynamic equivalence of inertial and gravitational
accelerations.

Now consider a fairly typical atmospheric condition in which the tem-
perature increases in the z direction in the troposphere (Northern Hemi-
sphere). Associated with this is a flow in the y direction in thermal wind
balance, so that v, (and therefore M,) increases with altitude in the tropo-
sphere. (There may also be an x component ug, but under the conditions
imposed here this must be constant. We consider ourselves to be in a co-
ordinate system moving in the z direction at velocity u,.)

We will impose two conditions on the stability of the flow: that it be
stable to both gravitational and centrifugal instabilities. From (12.2.8) this
means that M, must increase in the  direction:

OMy _ ., Ov
or ox

This is simply a statement that the geostrophic absolute vorticity must
have the same sign as f (e.g., positive in the Northern Hemisphere). The
requirement of gravitational stability, from (12.2.9), is that the relevant
form of entropy increase upward.

It can now be demonstrated that this flow nevertheless may be unstable
to slantwise convection.

First consider the distributions of M and s shown in Figure 12.3. As
in the case of conditional gravitational instability, we shall examine the
stability of the atmosphere to finite displacements of a particular sample
(in this case, “tube”) of air.

We note that an upward displacement of the tube, by the conditions
imposed in the example, leads to a downward acceleration, since s; — s,
is a negative quantity above the position of the tube. Similarly, horizontal
displacements lead to accelerations back toward the initial position.

But because of the baroclinity of the atmosphere, the quantity s, in-
creases in the z direction and the quantity M, increases vertically. Thus, in
this example, M, and s, both increase upward and in the positive x direc-
tion. Surfaces of constant M, and s, therefore slope upward in the negative
z direction.

Consider the environmental M, and s, surfaces that happen to pass
through the sample, as shown in Figure 12.3. This particular M, surface is
one along which the displaced tube experiences no horizontal acceleration,
since its M value, which is conserved in the displacement, will always be
the same as its environment. Similarly, the particular s surface is one along

f+=2>o0. (12.2.10)
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Fig. 12.3 Hypothetical distributions of M (dashed line) and neutral-buoyancy
(solid line) surfaces for a tube located at the lower right. Domain is approximately
100 x 10 km.

which the displaced tube experiences no vertical acceleration. (This is, in
fact, a more general definition of the s surface associated with the sample:
It is one along which the reversibly displaced tube feels no buoyancy force.)

It is evident that the tube, when displaced an arbitrary distance in
some arbitrary direction, will accelerate vertically toward its s surface and
horizontally toward its M surface.

By this simple rule, if our sample tube is displaced to position A in
Figure 12.3, it will experience a downward and rightward acceleration which
acts to return it to its initial position. If it is displaced to B, however, it
experiences no acceleration. When displaced beyond B to, say, C, it is
subjected to an upward and leftward acceleration away from its initial
position. Finally, at D, the tube experiences no acceleration. It is seen that
the initial point and point D are stable equilibria, while point B is an
unstable equilibrium.

The state of the atmosphere represented in Figure 12.3 is said to be
one of conditional instability to slantwise convection. The instability is con-
ditional on the sample tube being displaced beyond point B, which may
be called the point of free convection. This state is in every way analogous
to the state of conditional instability to purely gravitational convection,
but we must move from one to two dimensions in considering the stability
of the atmosphere, and we must consider a one-dimensional “tube” rather
than a zero-dimensional “point” of air.

What is the magnitude and geometry of slantwise convection? Clearly,
from Figure 12.3, the ascending air will travel somewhere between its
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“home” M and s surfaces, but where, precisely? Here it is instructive to
consider a very simple example of an atmosphere that is unstable to dry
slantwise convection, with the geometry of M and s surfaces shown in
Figure 12.4. Let M and s vary in a simple way given by

M =7,z + 7z, (12.2.11)
s = s+ %sz + 5.2, (12.2.12)
where T,, 7, 5z, So, and N? are all constant. If this basic state is stationary,

then the thermal wind equation must be obeyed. This takes the form

8M_F83_iﬁ

— =T = . 12.2.13
0z 0or cp0r ( )

Comparing (12.2.13) with (12.2.11) and (12.2.12) shows that
3, = Eg’lfﬁ,_. (12.2.14)

Substituting the distributions (12.2.11) and (12.2.12) into the tube equa-
tions (12.2.8) and (12.2.9) and using (12.2.14) gives, for a sample tube
initially located at x = 2 = 0,

du d’z _ —
E = -dt—2 = —f('UZZ + ’I']IU), (12215)
dw d%z 9
—_— = — = - — fu,z. 12.2.16
il Nz — fo,x ( )
Eliminating the variable z from (12.2.15) and (12.2.16) gives
diz d%zx

St (N? + £7) -+ (fAN? - f22)z=0 (2 < H). (12.2.17)

This is valid up until the point where z = H, at which dz/dt = 0 and thus,
from (12.2.15),

d*x

—5 =—f@H+7)  (:=H). (12.2.18)

The solution of (12.2.17) that satisfies u = w =0 at £ = z¢, z = 20 is
x = —cj coshot + ¢ cosoat, (12.2.19)
z = czcosh o1t + ¢4 cos o, t, (12.2.20)

where o; and o, are the positive real roots of

o= [\/ (N2 — f7)* + 4f2%% — (N? + fﬁ)] ., (12.2.21)

o= [\/ (N2 - f7)? + 4202 + N2 + fﬁ] . (12222
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and c,, are constants defined
c1 = [fU.20 + (7 — 03)x0] /(0F + 03),
c2 = [fUz20 + (f7 + 0})z0] /(0F + 03),
c3 = (f1 + o)er/f7s,
C4 = _(fﬁ - 03)02/]“52-
Thus, from (12.2.19) and (12.2.20), the sample tube executes a complex
trajectory, accelerating in the negative £ and positive z directions and also
oscillating about this trajectory. The oscillatory part will, however, vanish

if we choose the slope of the initial displacement just right so that ¢, (and
thus c4) vanish; that is, from (12.2.23) and (12.2.21),

R [\/ (N2 _ fm)2 1 4f752 - (N? - fﬁ)] /2fv, (12.2.24)

= —,BIII().

In this case, c; = ¢4 = 0, ¢c; = xo, and c3 = 2zp. Then differentiating
(12.2.19) and (12.2.20) in time also yields

u = xgop sinh ot = —0’1\/1‘2 — 13(2), (12.2.25)

w = 2901 sinhot = ?u, (12.2.26)
0
where 2¢/zo is given by (12.2.24). Thus, in the limit of vanishing initial

displacement,

(12.2.23)

u=-017,
w = PBoz,
or, equivalently,
Jg12
u=—— 12.2.27
5 ( )
w = 012. (12.2.28)

Thus the tube accelerates upward and leftward along a trajectory whose
slope is -

[\/(NZ — a2+ 4f25§ — (N2 - fﬁ)] (12.2.29)

2fv, '
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Fig. 12.4 Configuration of M (dashed line) and s (solid line) surfaces used in
the calculation of a sample tube’s motion, as described in text.

Now all of this clearly pertains only to the case that o1, given by (12.2.21),
is real. The condition for this to be so is

0% > faN?,

or
. f
Ri < =, (12.2.30)
1
where )
Ri= % (12.2.31)
()

The dimensionless quantity R: is the Richardson number. Thus the cri-
teria for slantwise convection in an unsaturated atmosphere with straight
geostrophic flow is just that the Richardson number be smaller than f di-
vided by the absolute vorticity. Instability is favored by low statlc stability,
strong vertical shear, and anticyclonic relative vorticity.

A large simplification of this solution occurs if

f3,
s (12.2.32)
In that case, from (12.2.21) and (12.2.29),
252 =
o2 ~ f —fi=f? ( ! ?) (12.2.33)
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and
ZO_fﬁz_ f1

o N2 NVRi
Comparison of (12.2.34) with (12.2.12) and (12.2.14) shows that in this

case, the slope of the motion is identical with that of surfaces of constant
s (isentropes, in this example). Also, (12.2.16) gives

(12.2.34)

dw d’z _ 0

dt — dt?2 ~
in this limit, so the motion is hydrostatic. We may generalize from this
finding, and state that when the slope of the s surface associated with a
particular tube is small, the motion is hydrostatic and slantwise convection
occurs very nearly along the s surface.

When the ascending tube reaches z = H, its horizontal and vertical

velocities will be, by (12.2.27) and (12.2.28),

0’1H
Uu=—-——, 12.2.35
3 ( )
w = o1 H. (12.2.36)

Thereafter, w will be zero because of the upper boundary, but the tube
will continue to accelerate in the negative x direction, at a rate given by
(12.2.18). The solution to this equation with the initial condition w = 0,
u = —o1H/( is the negative root of

Hf’UO
ﬂ b
where vy = 7, H is the value of v at 2 = H. The maximum value of u? is

2 _ fvg _ H fug
max -_— ﬁ b)

n
occurring at (12.2.38)

u? = — fax? — 2fvex — (12.2.37)

Tmax = —— -

This is just the point at which the M surface intersects the tropopause,
z = H. In the hydrostatic limit, 3 = fv,/N? and thus

u . =vl (é — Rz’) . (12.2.39)
n
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Unless the instability is marginal, then, the horizontal velocities associated
with the instability will be comparable to those of the mean flow.

If the atmosphere is completely saturated, then this analysis also
works, but with N replaced by the moist buoyancy frequency, N,,, defined
by Eq. (6.2.10).

This analysis shows that slantwise convection takes the form of thin
sheets or tubes of air accelerating along trajectories in between the M and s
surfaces, but much closer to the latter if the s surfaces have a small slope, in
which case the hydrostatic approximation works well. Unless the instability
is marginal, slantwise convection may attain velocities comparable to those
of the baroclinic flow in which it occurs.

In nature, we might expect such a flow to become turbulent, as in the
case of gravitational convection. On the other hand, in contrast to grav-
itational convection, there may be considerable stability to displacements
orthogonal to the slantwise flow and this may inhibit mixing. In the hydro-
static limit, the convective flow will be nearly horizontal, and displacements
orthogonal to the flow will be essentially vertical. From (12.2.16), these will
feel a stability nearly equal to N2. Unfortunately, there are very few direct
observations or laboratory experiments of slantwise convection.

As in the case of gravitational convection, a CAPE-like quantity may
be defined for slantwise convection, giving the total amount of potential
energy available for conversion to kinetic energy following the displacement
of a tube of air. Consider the work done in displacing a tube of air, labeled
t, to some point a in -z space. The work done, per unit mass, during this

displacement is
W=/ (£>.dz=/ A (12.2.40)
;. \m ; dt

where m is the mass of the sample and dl is a unit distance along the
displacement. Using (12.2.8) and (12.2.9) for the accelerations, (12.2.40)
becomes

W = / [f(Mt — M,)i +T(s¢ — se)ic] . dl, (12.2.41)

where i and k are unit vectors in the z and z directions. To evaluate
(12.2.41), we need to know the endpoint a. At first, it might seem that one
also needs to know the path of integration in order to evaluate (12.2.41).
But a well-known theorem of vector calculus states that the evaluation of
a line integral, such as (12.2.41), is independent of the path of integration
if the integrand s irrotational. This is easy to prove. Suppose we integrate
the vector field A along two different paths /; and [5:

W1=/ A .- dl,
1

a
W2=/ A - dl,.
)
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The difference between these evaluations is

W1—W2=/ A-dll—/ A.dzzzj[A-dz,

where the closed line integral goes up path 1 and comes down path 2. But
by the Stokes theorem,

Wl—szfA-dlzﬂ(VxA)-ﬁda,

where 7 is a unit vector normal to the area enclosed by the curve and do
is a differential area under the curve. Thus, if V x A = 0, W; = W, and
the line integral is independent of the path.

In (12.2.41), M, and s; are constants. Thus the curl of the integrand

oM, 0se
f 0z r ox
by the thermal wind equation (12.2.13).
Thus the evaluation of W depends only on the endpoint a. We may, if
we so desire, evaluate (12.2.41) by integrating along the tube’s M surface,
where My, = M;. Then
a
e
1

as long as a lies on the M surface. The notation ‘ ), reminds us that the
integral is taken on an M surface.

Now referring to Figure 12.3, it is evident that s; > s. along the M
surface between points B and D. Thus W is maximized in (12.2.42) if we
take point a to be point D in Figure 12.3, the point of neutral buoyancy
(PNB). [If we had integrated (12.2.41) along the s surface instead, we would
still find that W is maximized by taking point a to be point D.] In analogy
with CAPE, we define this maximum potential energy as the slantwise
convective available potential energy, or SCAPE; for short:

is

=0,

MI‘(si — Se) dz, (12.2.42)

PNB
SCAPE; = / | Dsi —se)dz. (12.2.43)

If we go back to the original definition of buoyancy, and include the correc-
tions for the effect of water substance on density, a more general definition

would be-
PNB o
SCAPE,; :/ W (a‘ ae) dz,
i M Qe

PNB
=/ | (e~ ) dp, (12.2.44)
p M

i

/P.’
PNB

Rd(Tpi - pe) dlnp,

M
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where T),; and T). are the density temperatures of the tube and its environ-
ment, respectively. Comparison to Eq. (6.3.5) shows that this is the same
as the definition of CAPE;, except the evaluation is made on M surfaces
rather than along the vertical. When the atmosphere is barotropic, M sur-
faces are vertical and so in this special case, SCAPE; = CAPE;. Thus, the
SCAPE of the tube is the more complete definition of its potential energy,
as it includes the centrifugal as well as gravitational potential of the tube.?

Another way of evaluating SCAPE; is to choose the integration path
to consist of two legs: a purely vertical leg extending from the sample’s
position vertically to the pressure of its PNB, and a purely horizontal leg
extending from this point to the PNB itself. Thus

pi z;—L
SCAPE,; = Rd(Tp,; —Tpe)dlnp+/ f(M; — Mg)dl‘,
PNB

:B,'—L
= CAPEFNB 4 / f(M; — M,)dz, (12.2.45)

T;

where CAPEFNB js the CAPE; of the sample lifted to pressure PNB (which
is not, in general, its LNB) and L is the horizontal distance from the z
position of the original sample, x;, to the PNB. Since Mpng = M;

vpNB + fTPNB = Vi + fzi,
or
UPNB — V;

f

The second integral in (12.2.45) can be approximately evaluated using in-
tegration by parts:

L= Iy — TpPNB = (12.2.46)

z;—L ) .:z:,‘—L z;—L
/ f(M; — My)dx = / fd[(M; — My)z] + / frdM,

T; T

:t:.'—L
=Lt -y + [ g2

Ti

1

1o
= fL(My — M) - 5 fL*7,,

(12.2.47)
where M,, is the absolute momentum evaluated at the pressure of PNB but
at the initial horizontal position of the sample, z;,

M, = M,(z;, PNB),

2 Note that M is proportional to the geostrophic coordinate X, used in semi-

geostrophic theory, so that SCAPE is the CAPE of samples lifted vertically in geostrophic
space.
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and 7], is the average absolute geostrophic vorticity at the pressure of the
PNB between z; and z; — L. If we make the approximation

Lﬁg = Lf + Un — UPNB,

then, using (12.2.46) for L, (12.2.47) becomes

z;—L
: 1
/ f(M,L — Mg) ~ §(vPNB — vi)(vn — 'Ui).
Thus (12.2.45) may be written
SCAPE; ~ CAPEFNB 4 %(’UPNB — ;) (vn — v;). (12.2.48)

In a baroclinic atmosphere, viyg > v? and v2 > v2, so that SCAPE;
s always greater than or equal to C’APEf NB If the atmosphere is stable
to gravitational convection, CAPEf NB will be negative, but SCAPE; may
still be positive. If CAPE:’NB is positive, indicating an atmosphere that is
unstable to gravitational convection, then SCAPE; will also be positive, and
in general, greater than CAPE; (which, even in this case, will not usually be
equal to CAPEF™B), The second term on the right side of (12.2.48) is the
mean flow kinetic energy available for conversion into slantwise convective

motion. In strongly baroclinic atmospheres, this may contribute on the
order of 1000 J kg™! of energy to SCAPE;.

12.3 Observational evidence of slantwise convection

The parcel theory of slantwise convection shows that the motions should
assume the form of sloping circulations along neutral-buoyancy surfaces. In
the case of conditional instability to moist slantwise convection, applica-
tion of the slice method (Section 6.5) shows that the motion should consist
of thin, ascending sheets of cloudy air interspersed with thicker layers of
unsaturated, more slowly descending air, though partial evaporation of pre-
cipitation falling from the ascending sheets should drive stronger, sloping
downdrafts. The horizontal scale of the convection in all cases scales as

= (12.3.1)

f

where Av is the shear of the ambient wind across the depth of the unstable
layer. For typical atmospheric values of Av and f, this is of order 100 km,
so that slantwise convection is considered to be a mesoscale phenomenon.
Note also that the Rossby number based on L is of order unity; this may
be regarded as a dynamic definition of mesoscale.

When and where would we expect slantwise convection to occur? As in
gravitational convection, we may distinguish between triggered and statis-
tical equilibrium convection. In the former case, large amounts of SCAPE;
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should be in evidence before the convection occurs, and the convection
could be triggered by any of a number of conditions, such as low-level as-
cent and removal of a temperature inversion. In the latter case, we would
expect the convection to occur when and where other physical processes
tend to destabilize the atmosphere to slantwise convection, and in analogy
with gravitational convection, we should expect this to occur in conditions
very close to neutrality (zero SCAPE;).

Also in analogy to gravitational convection, we can define a state of
potential instability (see Section 6.7) as one in which 6, decreases upward
along M surfaces. This does not imply positive values of SCAPE, nor does
it imply the existence of available potential energy (Section 6.6) for slant-
wise convection. But if a potentially unstable air mass is bodily lifted to
saturation, the potential instability can be converted to actual instability.
In statistical equilibrium, the activity of convection will be related to the
rate at which potential instability is converted to SCAPE.

Often, the warm sectors of baroclinic cyclones are potentially unstable
to either or both slantwise and gravitational convection. As this air rises
over frontal systems, the instability is converted to slantwise, and perhaps
gravitational, parcel instability. (If the atmosphere is baroclinic, slantwise
instability will always appear before gravitational instability, but if the
forcing is strong, slantwise convection may not be able to prevent the at-
mosphere from progressing into a gravitationally unstable state.) Thus the
ascent regions of baroclinic cyclones may often exhibit slantwise convection.

One manifestation of slantwise convection might be the multiple layers
of sloping sheets of cloud observed ahead of warm fronts. Although these
are very much what one might expect to see, there are no quantitative
studies that prove or disprove this conjecture, at the time of this writing.

Precipitation in baroclinic cyclones is often organized into mesoscale
bands, which may not always be direct manifestations of frontal circula-
tions. An example of such bands is presented in Figure 12.5. A review of
the mechanisms proposed to explain such features is provided by Parsons
and Hobbs (1983). Although there is much circumstantial evidence that
some of these mesoscale bands are manifestations of slantwise convection,
there has been no direct evidence proving it.

The strongest circumstantial evidence for the occurrence of slantwise
moist convection in the atmosphere is the observation that large regions
of baroclinic flow are almost exactly neutral to slantwise ascent (Emanuel,
1988); presumably, this is not a coincidence but an indication that slantwise
convective adjustment has occurred or is occurring. Figure 12.6 shows an
example of a baroclinic flow in which a condition of slantwise convective
neutrality was observed by flying an instrumented aircraft downward along
an M surface, indicated by the bar in the figure. The sounding is shown
together with a vertical sounding in Figure 12.7. The M-surface sounding
falls along a moist adiabat, indicating neutrality to slantwise convection,
while a vertical sounding through the midpoint of the M-surface sounding
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Fig. 12.5 Constant altitude display (a) of radar reflectivity (dBZ) in a layer
from 2 to 4 km from a radar located in Cambridge, Massachusetts, at 0729 GMT
February 12, 1983. Hatched regions show reflectivity greater than 30 dBZ. Heavy
line shows location of vertical cross section in (b), which shows the Doppler-

derived radial component of velocity (m s™!), with positive values indicating
flow away from the radar.

is clearly quite stable.

Figure 12.8 shows a vertical cross section through the same flow, show-
ing the distribution of M and 8 surfaces, as well as surfaces of constant ..
The stippled region is characterized by parallel M and 8} surfaces, indicat-
ing moist adiabatic lapse rates on M surfaces and slantwise neutrality. But
the 6. cross section shows regions of negative 6, gradient along M surfaces,
indicating potential (but not parcel) instability. Evidently, the slantwise
convection was efficient enough in this case to eradicate instability as fast
as the large-scale frontal ascent acted to generate it through the conver-
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Fig. 12.6 Surface pressure (solid lines) and 1000 to 500-millibar thickness
(dashed lines) at 1200 GMT January 26, 1986. Heavy bar through Fayetteville,
North Carolina (FAY), shows path of M-surface sounding in Figure 12.7.

sion of potential instability. Thus the convection in this case was almost
certainly of the statistical equilibrium kind. The observations suggest that
slantwise convection almost always occurs in conjunction with large-scale
cyclonic systems and may be difficult to separate from motions directly
produced by frontogenesis.
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Fig. 12.7 M-surface sounding by instrumented aircraft between 1543 and 1630
GMT January 26, 1986. Solid line shows temperature and Xx’s denote dew-point
temperature. Heavy solid line is a pseudoadiabat. Numbers to right of sounding
indicate departures of M (m s~!) from initial value. Dashed line shows vertical
temperature sounding at Fayetteville, North Carolina, at 1700 GMT.

EXERCISES

12.1 An incompressible fluid is rotating with a constant angular velocity
Q2. What is the oscillation frequency of a small ring of fluid displaced
radially in this flow?

12.2 Linearize the strictly incompressible, inviscid momentum equations
about a resting state on an f plane. Find an expression for the os-
cillation frequency of small disturbances that vary sinusoidally in all
three spatial directions. What combination of wavenumbers makes the
oscillation frequency the same as that derived from parcel theory? Can
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S /7 7/ 0 x2S S

E12.1 Hypothetical configuration of M surface (solid line) and neutral-

buoyancy surface (dashed line) for a sample located at bottom right.

12.3

12.4

12.5

you explain this in terms of perturbation pressure gradients?
Consider the displacement of a small tube of air aligned along the
direction of the thermal wind, which may be considered constant, fol-
lowing the analysis of Section 12.2. Find expressions for the motion of
the tube in the case that N? = 0. What direction of the tube’s motion
eliminates oscillations? Supposing that there is a lid at z = H, find the
magnitude of the motion when the tube reaches the location where its
value of M equals that of its environment.

Show that the requirement for slantwise instability in a dry atmo-
sphere, given locally by (12.2.30), is equivalent to fq < 0, where q is
the potential vorticity, defined

q=o(fk+V x V). V.

Potential vorticity is conserved in adiabatic, inviscid flows. How does
an atmosphere that is unstable to dry slantwise convection become
stable?

Figure E12.1 shows the configuration of an M surface and a surface
along which the particular sample shown would be neutrally buoyant if
displaced adiabatically (including the effects of condensation of water).
Describe qualitatively the trajectory of the indicated sample and the
nature of the ensuing convection.
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