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What are clouds? Key actors of climate
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What are clouds? A Grand Challenge
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Clouds and atmospheric convection

clouds are diverse, ...

Shallow cumulus
and cumulus congestus Cumulonimbus




Clouds and atmospheric convection

... and coupled to circulations.

Hadley circulation




Clouds and atmospheric convection

1. Cloud types

2. Moist thermodynamics and stability



1. Cloud types

Cumulus: heap, pile

Stratus: flatten out, cover with a layer

Cirrus: lock of hair, tuft of horsehair _ Combined to define
10 cloud types

Nimbus: precipitating cloud

Altum: height
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1. Cloud types

Clouds are classified according to height of cloud base and appearance

High
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| Base: 5
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1. High Clouds

Almost entirely ice crystals

Cirrus
Wispy, feathery .

Cirrostratus widespread, sun/moon halo




1. Middle Clouds

Liquid water droplets, ice crystals, or a combination of the two, including supercooled droplets (i.e., liquid
droplets whose temperatures are below freezing).

j Altocumulus
Heap-like clouds with convective elements in mid

levels
May align in rows or streets of clouds

Altostratus
Flat and uniform type texture in mid levels



1. Low Clouds

Liquid water droplets or even supercooled droplets, except during cold winter storms when ice crystals (and snow)
comprise much of the clouds.
The two main types includwhich develop horizontally, and cumulus, which develop vertically.

Stratocumulus
Hybrids of layered stratus and cellular cumulus

Stratus
Uniform and flat, producing a gray layer of

cloud cover

Nimbostratus
Thick, dense stratus or stratocumulus clouds

producing steady rain or show




1. Low Clouds

Liquid water droplets or even supercooled droplets, except during cold winter storms when ice crystals (and snow)

comprise much of the clouds.
The two main types include stratus, which develop horizontally, and which develop vertically.

Cumulonimbus

Cumulus (humili) _ Strong updrafts can develop in the cumulus
Scattered, with little vertical growth on an otherwise sunny day 5,4 => mature deep cumulonimbus cloud
Also called "fair weather cumulus” i.e., a thunderstorm producing heavy rain.

Cumulus (congestus)
Significant vertical development (but not yet a thunderstorm)




1. Other spectacular Clouds...

Mammatus clouds (typically below anvil clouds)

Shelf clouds (gust front)

Question: Global cloud cover (%)?




1. Cloud types

Distribution of cloud amount
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1. Cloud types

Cloud amount was underestimated

Also note the latitudinal distribution
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1. Cloud types

Brightness temperature from satellite (white <> cold cloud tops)
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1. Cloud types

Water vapor from satellite Large
R s extratropical ~ => Large-scale extratropical
' storm convection
systems

) } subtropics: ~no  _ shallow clouds
\ high clouds

1] ITCZ =
= Intertropical ~ => Small-scale tropical
convergent convection
zone

... but not always that small!
Deep convective system over Brazil:




Clouds and atmospheric convection

1. Cloud types

2. Moist thermodynamics and stability
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Cloud formation

Courtesy : Octave Tessiot




Cloud formation

Courtesy : Octave Tessiot




Atmospheric thermodynamics
Dry convection

T decreases with height.
But p as well.

Density = p(T,p).
How determine stability? The parcel method

Raise parcel adiabatically. Comes back to initial position?

>



2. Atmospheric thermodynamics: instability

Dry convection T decreases with height, but p as well. Density = p(T,p). How
determine stability? The parcel method

Exercise : Temperature profile of a dry adiabat.
» Use the first law of thermodynamics and the ideal gaz law to show that under adiabatic
displacement, a parcel of air satisfies dT /T - R/ c, dp / p = 0 (specify what the

variables and symbols are).

 Deduce that potential temperature 6 = T (p,/p) *¢r is conserved under adiabatic
displacement (p, denotes a reference pressure usually 1000hPa).

* If we make the hydrostati/ci approximation, deduce the vertical gradient of temperature.

Z

Raise parcel adiabatically. Comes back to initial position?

> 25




2. Atmospheric thermodynamics: instability

Dry convection

Potential temperature 6 = T (p, / p)?¥°° conserved under adiabatic
displacements :

Adiabatic displacement
1st law thermodynamics: d(internal energy) = Q (Dea/t added) — W (work done by parcel)
c,dlT = -/p d(1/p)
Sincep=pRT, c,dT =-pd(RT/p)=-RdT+RTdp/p
Since ¢, + R=¢c,, c,dT/T = Rdp/p
=dInT-R/c,dInp=d In(T/pRer) =0

= T/ pR/er = constant
Hence 6 =T (p,/ p)R° potential temperature is conserved under adiabatic displacement

(R=gaz constant of dry air; c,=specific heat capacity at constant pressure; R/c,, ~ 0.286 for air)
26



2. Atmospheric thermodynamics: instability

When is an atmosphere unstable to dry convection?
When potential temperature 6 =T (p,/ p)¥°* decreases with height !

The parcel method:

Small vertical displacement of a fluid parcel adiabatic (=> 8 = constant).
During movement, pressure of parcel = pressure of environment.

ZA 0(z) A 0(2)

STABLE NEUTRAL UNSTABLE
27



2. Atmospheric thermodynamics: instability

Convective adjustment time scales is very fast (minutes for dry convection) compared to
destabilizing factors (surface warming, atmospheric radiative cooling...)

=> The observed state is very close to convective neutrality

Dry convective boundary layer over daytime desert
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But above a thin boundary layer, not true anymore that 6 = constant. Why?...
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Atmospheric thermodynamics: instability

inversion

Fig. 3.5 Lockng down omo widespread hase over south-
ern Alrica during the bomassburnng season The haze is
confined below a temperature inversion. Above the iwersion,
the air i remarably dean and the visbilty » excellent
(Phote: PV, Hobds.)

Smoke rising in Lochcarron, Scotland, is stopped by an overlying layer of warmer air (2006).




2. Atmospheric thermodynamics: instability

Convective adjustment time scales is very fast (minutes for dry convection) compared to
destabilizing factors (surface warming, atmospheric radiative cooling...)

=> The observed state is very close to convective neutrality

Dry convective boundary layer over daytime desert

<1km ALBUQUERQUE AUGUST 03 1993 SALOS
00 e v A B | LI LR ARy i g L
| #, |
3 * -
£
%0 - o4
&3
: -3
s |}
& *
>zt
k ' o"(. P
200} *‘a_o,{ J [Renno and Williams, 1995]
Y 'o'c 4
1 .
¥ ]
. 'N
- R
0 ~ . -
4 e e L1 20 2 24 32e 328
VHTUAL POTONTIAL TEMPORATLRE (DXG K)

But above a thin boundary layer, not true anymore that 6 = constant. Why?...

Most atmospheric convection involves phase change of water 30
Significant latent heat with phase changes of water = Moist Convection



2. Atmospheric thermodynamics: instability

des 3 L.U(T)CS where:

> e €, is saturation vapor pressure,
RvT e ‘[’ is a temperature,
B Lv is the specific latent heat of evaporation,
eS(T) » R, is water vapor gas constant.

Clausius Clapeyron

e, depends only on temperature
e, increases roughly exponentially with T

Warm air can hold more water vapor than
cold air

31



2. Atmospheric thermodynamics: instability
When is an atmosphere unstable to moist convection ?

Exercise :

» Show that under adiabatic displacement, a parcel of moist air satisfies
dT/T-R/c,dp/p=-L,/(c, T)dq,.

« Deduce that equivalent potential temperature 6, = T (p,/p) Rce etvav/(epT) js
approximately conserved.

Some helpful values and orders of magnitude :

- specific heat capacity at constant pressure c, = 1005 J kg K-

- gaz constant of dry air R = 287 J kg K-

- latent heat of vaporization L ,=2.5 x 108 J kg™

- water vapor mixing ratio (kg of water vapor per kg of dry air) g, = O(10-3)
- temperature T = O(3 x 102 K)

32



2. Atmospheric thermodynamics: instability

When is an atmosphere unstable to moist convection ?

Equivalent potential temperature 6, =T (p, / p)R¥/°° e Lvav/ (e T) js conserved
under adiabatic displacements :

1st law thermodynamics if air saturated (q,=q,) :
d(internal energy) = Q (latent heat) — W (work done by parcel)
c,dT =-L,dqgs- pd(1/p)
=dInT-R/c,dInp=d In(T/pRer)= —L,/(c, T)dq,
=-L,/c, d(qs/T)+L,qs/(c, T)dInT=-L,/c, d(qs/T)

since L, qs/(c, T) <<1.
= T /pRiee glvas/(cpT) ~ constant

Note: Air saturated => q,=q
Air unsaturated => q, conserved

Hence
0, =T (py/ p)Re e Lvav/ (e T) equivalent potential temperature is
approximately conserved 33



2. Atmospheric thermodynamics: instability
When is an atmosphere unstable to moist convection ?

Skew T diagram (isoT slanted), atmospheric T in red

EL equilibrium Moist adiabat 6.= cstt

level

Positive ared
(CAPE)

pressure

Temmgerature .
S erence . Dry adiabat 6 = cstt

LFC level of free convection
(= LCL lifted condensation
level for simplicity)

CAPE: convective available potential energy 34



2. Atmospheric thermodynamics: instability

Parcel = yellow dot

EL equilibrium S
level

<—LFC level of free
convection

CAPE: convective available potential energy
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2. Atmospheric thermodynamics: instability

If enough atmospheric instability present, cumulus clouds are capable of producing serious

storms!!!

Strong updrafts develop in the cumulus cloud => mature, deep cumulonimbus cloud.
Associated with heavy rain, lightning and thunder.

Developing Stage Mature Stage Dissipating

Evaporative driven cold pools

The COMET o":-/ -~

For more: see « atmospheric thermodynamics » by Bohren and
Albrecht 3



Atmospheric thermodynamics: instability

Note that thunderstorms can be :

single-cell (typically with weak wind shear)
Developing Stage Mature Stage Dissipating

/

[
&
e ——————
’ “ ! | f
i i

D

or supercell, characterized by the presence of a deep, rotating updraft

Typically occur in a significant
vertically-sheared environment

[See Houze book: Cloud Dynamics;
Muller — Cloud chapter, Les Houches
Summer School Lecture Notes]




