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Clouds and atmospheric convection
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Clouds and atmospheric convection

clouds are diverse, ...

Shallow cumulus
and cumulus congestus




Clouds and atmospheric convection

... and coupled to circulations.




Clouds and atmospheric convection

1. Cloud types

2. Moist thermodynamics and stability

3. Coupling with circulation



1. Cloud types

Cumulus: heap, pile

Stratus: flatten out, cover with a layer
Cirrus: lock of hair, tuft of horsehair
Nimbus: precipitating cloud

Altum: height

Combined to define
10 cloud types




1. Cloud types

Clouds are classified according to height of cloud base and appearance
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1. High Clouds

Almost entirely ice crystals

Cirrus
Wispy, feathery .

Cirrostratus widespread, sun/moon halo




1. Middle Clouds

Liquid water droplets, ice crystals, or a combination of the two, including supercooled droplets (i.e., liquid
droplets whose temperatures are below freezing).

) Altocumulus
Heap-like clouds with convective elements in mid

levels
May align in rows or streets of clouds

Altostratus
Flat and uniform type texture in mid levels



1. Low Clouds

Liquid water droplets or even supercooled droplets, except during cold winter storms when ice crystals (and snow)
comprise much of the clouds.
The two main types includwhich develop horizontally, and cumulus, which develop vertically.

Stratocumulus
Hybrids of layered stratus and cellular cumulus

Stratus
Uniform and flat, producing a gray layer of

cloud cover

Nimbostratus
Thick, dense stratus or stratocumulus clouds

producing steady rain or snow
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1. Low Clouds

Liquid water droplets or even supercooled droplets, except during cold winter storms when ice crystals (and snow)

comprise much of the clouds.
The two main types include stratus, which develop horizontally, and which develop vertically.

Cumulonimbus

CUmU|US (humi") _ Strong updrafts can develop in the cumulus
Scattered, with little vertical growth on an otherwise sunny day  oud => mature deep cumulonimbus cloud
Also called "fair weather cumulus” i.e., a thunderstorm producing heavy rain.

Cumulus (congestus)
Significant vertical development (but not yet a thunderstorm)




1. Other spectacular Clouds...

Mammatus clouds (typically below anvil clouds)

Shelf clouds (gust front)

Question: Global cloud cover (%)?




1. Cloud types

Distribution of cloud amount
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1. Cloud types

Cloud amount was underestimated

Also note the latitudinal distribution
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1. Cloud types

Brightness temperature from satellite (white < cold cloud tops) Large

& cumersar \&Y ©) TR/ extratropical

storm
; :I- systems

subtropics: ~no
}high clouds

} ITCZ =

Intertropical
convergent
zone

« A year of weather » 15



1. Cloud types

Water vapor from satellite

extratropical

systems

Intertropical
convergent

... but not always that small!
Deep convective system over Brazil:

=> Large-scale extratropical
convection

=> shallow clouds

=> Small-scale tropical
convection




Clouds and atmospheric convection

1. Cloud types

2. Moist thermodynamics and stability

3. Coupling with circulation
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2. Atmospheric thermodynamics: instability

Dry convection T decreases with height, but p as well. Density = p(T,p). How
determine stability? The parcel method

Exercise : Temperature profile of a dry adiabat.

» Use the first law of thermodynamics and the ideal gaz law to show that under adiabatic
displacement, a parcel of air satisfies dT/ T—-R/c,dp / p = 0 (specify what the
variables and symbols are).

 Deduce that potential temperature 6 = T (p,/p) R'¢ is conserved under adiabatic
displacement (p, denotes a reference pressure usually 1000hPa).

* If we make the hydrostatif approximation, deduce the vertical gradient of temperature.

Z

Raise parcel adiabatically. Comes back to initial position?

> 18




2. Atmospheric thermodynamics: instability

Dry convection

Potential temperature 8 = T (p, / p)R° conserved under adiabatic
displacements :

Adiabatic c_lqisplacement

1st law thermodynamics: d(internal energy) = Q (Dea/t added) — W (work done by parcel)
7

c,dT = - pd(1/p)

Sincep=pRT, c,dT =-pd(RT/p)=-RdT+RTdp/p

Since ¢, + R =c,, c,dT/T = Rdp/p
=dInT-R/c,dInp=d In(T/pRer) =0

= T/ pRcr = constant
Hence 6 =T (p,/ p)¥eP potential temperature is conserved under adiabatic displacement

(R=gaz constant of dry air; c,=specific heat capacity at constant pressure; R/c, ~ 0.286 for air)
19



2. Atmospheric thermodynamics: instability

When is an atmosphere unstable to dry convection?
When potential temperature 6 = T (p,/ p)R° decreases with height !

The parcel method:

Small vertical displacement of a fluid parcel adiabatic (=> 6 = constant).
During movement, pressure of parcel = pressure of environment.

- _ 8(2)
ZA 0(z) A 0(z)
__________ ep: 0 9p> é_
= pp =P = pp <p
________ ep ep
> >
STABLE NEUTRAL UNSTABLE
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2. Atmospheric thermodynamics: instability

Convective adjustment time scales is very fast (minutes for dry convection) compared to
destabilizing factors (surface warming, atmospheric radiative cooling...)

=> The observed state is very close to convective neutrality

Dry convective boundary layer over daytime desert
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But above a thin boundary layer, not true anymore that 6 = constant. Why?...
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2. Atmospheric thermodynamics: instability

Convective adjustment time scales is very fast (minutes for dry convection) compared to
destabilizing factors (surface warming, atmospheric radiative cooling...)

=> The observed state is very close to convective neutrality

Dry convective boundary layer over daytime desert
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But above a thin boundary layer, not true anymore that 6 = constant. Why?...

Most atmospheric convection involves phase change of water ”
Significant latent heat with phase changes of water = Moist Convection



2. Atmospheric thermodynamics: instability

d@s B L.U(T)Cs where:

5 e €, is saturation vapor pressure,
RvT e ‘[’ is a temperature,
5 Lv is the specific latent heat of evaporation,
eS(T) » R, is water vapor gas constant.

Clausius Clapeyron

e, depends only on temperature
e, increases roughly exponentially with T

Warm air can hold more water vapor than
cold air

23



2. Atmospheric thermodynamics: instability
When is an atmosphere unstable to moist convection ?

Exercise : Temperature profile of a dry adiabat.

« Show that under adiabatic displacement, a parcel of moist air satisfies
dT/T-R/c,dp/p=-L,/(c, T)daq,.

 Deduce that equivalent potential temperature 6, = T (p,/p) R etvav/(epT) js
approximately conserved.

Some helpful values and orders of magnitude :

- specific heat capacity at constant pressure ¢, = 1005 J kg K1

- gaz constant of dry air R = 287 J kg™! K-

- latent heat of vaporization L,=2.5 x 10° J kg™

- water vapor mixing ratio (kg of water vapor per kg of dry air) q,= O(10-3)
- temperature T = O(3 x 102 K)

24



2. Atmospheric thermodynamics: instability

When is an atmosphere unstable to moist convection ?

Equivalent potential temperature 6, =T (p, / p)?¥cP e Lvav/(eeT) js conserved
under adiabatic displacements :

1st law thermodynamics if air saturated (q,=q) :
d(internal energy) = Q (latent heat) — W (work done by parcel)
c,dT =-L,dq,- pd(1/p)
=dInT-R/c,dInp=d In(T/pRer)= —L,/(c, T)dq,
=-L,/c, dqs/T)+L,qs/(c, T)dInT=-L,/c, d(as/T)

since L, qs/(c, T) <<1.
= T /pRler glvas/(ceT) ~ constant

Note: Air saturated => q,=q,
Air unsaturated => g, conserved

Hence
0, =T (p,/ p)¥er e Lvav/(ce T) equivalent potential temperature is
approximately conserved 25



2. Atmospheric thermodynamics: instability
When is an atmosphere unstable to moist convection ?

Skew T diagram (isoT slanted), atmospheric T in red

EL equilibrium Moist adiabat 6= cstt

level

Positive ared
(CAPE)

pressure

Temgerature
diflerence : Dry adiabat 6 = cstt

LFC level of free convection
(= LCL lifted condensation
level for simplicity)

CAPE: convective available potential energy 26



2. Atmospheric thermodynamics: instability

Parcel = yellow dot

EL equilibrium S
level

<—LFC level of free
convection

CAPE: convective available potential energy

27



2. Atmospheric thermodynamics: instability

If enough atmospheric instability present, cumulus clouds are capable of producing serious
storms!!!

Strong updrafts develop in the cumulus cloud => mature, deep cumulonimbus cloud.
Associated with heavy rain, lightning and thunder.

Developing Stage Mature Stage Dissipating

Evaporative driven cold pools

The COMET ™ < -

For more: see « atmospheric thermodynamics » by Bohren and
Albrecht 28




Clouds and atmospheric convection

1. Cloud types
2. Moist thermodynamics and stability

3. Coupling with circulation
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3. Clouds and Circulation

Recall : spatial distribution

Brightness temperature from satellite (white < cold cloud tops) Large

& cumersar \&Y ©) TR/ extratropical
storm
; :I- systems
subtropics: ~no
}high clouds

} ITCZ =

Intertropical
convergent
zone

« A year of weather »

Question: Where are deep clouds more frequent? Why do
you think that is?

30



3. Clouds and Circulation: Tropics and Subtropics

Cloud cover (%

Hadley cell 1 o
15
12 ‘

GOCCP data,
§ 9 from satellite
. '
§ 6 i ’ ' | o o

¥ . o e ‘ (Calipso):
3 44 C 1 1
)
0SS 30N

subtropics (30°)

Cloud types:

"

=0n average. Deep cumulonimbus Fair weather cumulus stru
Deep clouds are favored where there is large-scale ascent ; 31
Shallow clouds are favored where there is descent.



3. Clouds and Circulation: Tropics and Subtropics

Total column water vapor (TCWYV) and precipitation (mm/day)

January (left) July (right)
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Small in Subtropics (descent)

Large in Tropics (ascent) 32
[Trenberth 2011]



3. Clouds and Circulation: Tropics and Subtropics
double ITCZ

Single ITCZ: Atlantic sector in boreal summer Cloud cover (%)
* . : 1 . . - ’

GOCCP data,
from satellite
lidar

(Calipso):

33
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3. Clouds and Circulation: Tropics and Subtropics

in the equatorial Pacific

Walker cell

J0000000




3. Clouds and Circulation: Tropics and Subtropics

Walker cell

: (green=cloud cover)
| Wa!mckculluoq.wuf A

CEE T N A

35
Courtesy Gilles Bellon



3. Clouds and Circulation: Tropics and Subtropics

El Ni no Normal conditions El Nifo conditions
in the equatorial Pacific Eastward shifl / extemmion of convection

Contineny Wex! Pacific
warm le

36




3. Clouds and Circulation: Tropics and Subtroplcs
Monsoons

Asian monsoon

©
‘

-
mneows o BRERS

West-African monsoon

GOCCP data,
from satellite

(Calipso):
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3. Clouds and Circulation: Tropics and Subtropics
Equatorial waves shading < convergence/divergence

Lincarized shallow-water equations on a -plane: Kelvin wave

» Classical formulation:
3u~pyv=-gd h
O,v+Pyu=~gd h

o,h+ H(alu +8_,v)= 0

A

_ » Tropical atmosphere: u first baroclinic mode
Ou~pPyv=~ad T, - R '
10 v+ fyu=-ad T,

8T +AT(Bu+dv)=0

[Matsuno 66] &
\
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g
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Dispersion $)2
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dureenionden mavenarmber



3. Clouds and Circulation: Tropics and Subtropics
Equatorial waves shading < convergence/divergence

Lincarized shallow-water equations on a -plane:

Kelvin wave

» Classical formulation:
8,u~pyv=-gd h
O,v+ fPyu=~gd h

o,h+ H(alu +6,v)= 0

A

g u first baroclinic mode
8Py =-adT. L
< a,V'fﬂyu:—w;T. £ pﬂ’Tn MQAT -3 b A | : ":r:‘:.:

0T +AT(d u+8,v)=0 . A .
Coherence squared (NOAA OLR + ERA Imterim winds)
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Kelvin =~ g 40 -
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3. Clouds and Circulation: Tropics and Subtropics

MJO

Coherence squared
(NOAA OLR + ERA Interim winds)

eastward phase speed (4-8 m/s)

MJO composite life cycle
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3. Clouds and Circulation: Tropics and Subtropics

Kelvin wave

Equatorial

Rossby wave

Madden-Julian
Oscillation

41



3. Clouds and Circulation: Tropics and Subtropics

Outgoing Longwave Radiation (filtered) anomaly
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3. Clouds and Circulation

Recall : spatial distribution

Brightness temperature from satellite (white < cold cloud tops) Large

& cumersar \&Y ©) TR/ extratropical

| storm

; _ systems
subtropics: ~no

}high clouds

} ITCZ =

Intertropical
convergent
zone

« A year of weather »
Extratropics: low and high pressure systems within the polar jet

Question: What explains different behaviors between tropics and extratr%)’pics?



3. Clouds and Circulation: Extratropics

atmospheric jet (near tropopause)

44
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- Clouds and precip are found where low/high pressure systems ‘advect warm, moist
air into northern colder latitudes => East of lows

- Note that highs are typically associated with reduced rain and cloudiness.
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3. Clouds and Circulation: Extratropics

Exercise
Here is a map of the 500hPa geopotential height.

* Indicate the lows, the highs, and the circulation around them.

* Where do you expect the strongest precip to occur? The weakest?

8 8 8 83833 8

=

o

-150 100 50 0 50 100 150
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3. Clouds and Circulation: Extratropics

500hPa geopotential height
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Convective organization

Note:
Many more interesting phenomena associated with clouds!
For instance, clouds are also often spatially organized at the mesoscale ...

Mesoscale Convective System - )- ‘#‘_' .

"/




Mesoscale
convective systems:
include Mesoscale
Convective
Complexes (MCCs),
squall lines,

e NUrricanes...

Convective organization: MCCs

Czech Republic

Slovakia

Austria




Convective organization: squall lines

Squall lines

Sheard

15 Clouds (grvy surfncea), nene surfnce temperatire (colees)
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[Rotunno et al. 1988; Fovell and Ogura 1988; Garner and Thorpe 1992; 50
Weisman and Rotunno 2004, Houze 2004, Moncrieff 2010]



Convective organization: squall lines

Color: PW

Color: Tsfc

No shear

Top view
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Convective organization: squall lines

Z 4 Critical shear
_ i y Top view
n=tkm £ s
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Color: PW > 9

Color: Tsfc >
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Convective organization: squall lines

Z,

H=1km :/

—» X
dU=20m/s

Color: PW

Super critical shear
Top view
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[Robe & Emanuel 1996;
Muller 2013]

53



Convective organization: hurricanes

Hurricanes

_ Sloping
— ) eyewall "
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Convective organization

Transitions between organized structures

from Mosee (20100
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Transition mesoscale vortex - tropical cyclone
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A Mesoscale convective t.’uoms

95



Convective organization
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Hurricane Isabel off the coast of Africa




Clouds and atmospheric convection: THE END
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