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Regular and chaotic advection in the flow field of a three-vortex system
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The dynamics of a passive particle in a two-dimensional incompressible flow generated by three point
vortices advected by their mutual interaction is considered as a periodically forced Hamiltonian system. The
geometry of the background vortex flow determines the degree of chaotization of the tracer motion. Two
extreme regimes, of strong and weak chaos, are specified and investigated analytically. Mappings are derived
for both cases, and the border between the chaotic and regular advection is found by applying the stochasticity
criterion. In the case of strong chaos, there exist coherent regular structures around Yeootiges corey,
which correspond to domains witkAM curves. An expression for the radius of the cores is obtained. The
robust nature of vortex cores, demonstrated numerically, is explained. In the near-integrable case of weak
chaotization, a separatrix map is used to find the width of the stochastic layer. Numerical simulations reveal a
variety of structures in the pattern of advection, such as a hierarchy of island chains and sticky bands around
the vortex coresS1063-651X98)03612-5

PACS numbeps): 47.32.Cc, 47.52;j, 05.45+b

[. INTRODUCTION using the stream functiod =V (x,y,t) that plays the role of
a Hamiltonian. Both the above mentioned cases belong to

tion, has been related in many recent publications to suc o-cr?lled Ha!]r\lltqnlan systems witt} ﬁegrﬁes .Of frdeedom. f
areas as fluid stirring, chemical reactions, pollution of the>Uch @ Hamiltonian system possesses chaotic advection for

atmosphere and the ocean, visualization of flows, etc. SpeaROMe domains of the phase space, which is simplyxa)

ing about a small particle, we have in mind a particle that'ane for case1.2). _

does not influence the flow. Other terms are sometimes used, APPlication of the methods of the dynamical system
such as tracers, passive particles, or Lagrangian particles. F}E0rY to the chaotic advection problem has become an es-
cases when the flow is stationary, incompressible, and invid@blished technique. By now chaotization of the tracer mo-
cid, an advected particle trajectory coincides with the streamtion has been observed and studied in a large number of
line of the flow, and the information obtained from the ad-SyStéms, including point vortex flowgl1-14, Rayleigh-

vection describes the structure of the flow. The general fornpenard convection 15,18, blinking vortices|1], an oscillat-
of the advection equation is ing vortex pair[5,6], and a vortex pair perturbed by another

point vortices[17], point vortex flows in bounded domains
(1.1) [18-20Q, etc. We want to emphasize that the correspondence
' of a trajectory of an advected particle in physi¢abordi-
. . . . . nate space to the phase-space trajectory of a Hamiltonian
wherer is a coordinate vector of the particle, ants a given system implies more than just the appearance of Lagrangian

velocity field which defines the flow. Formally, E¢L.1) chaos in a generic unsteady velocity field. One should also

describes a dynamical system which, generally speakm% pect the configuration space of a tracer to contain all the

possesses chaotic solutions for some parameter values andl ol structures of Hamiltonian phase space, such as is-

initial conditions. In this case the advection is known as chay, g of regular motion around elliptic points, cantori, hier-
otic. The notion of Lagrangian turbulence is also used for,

. . : . archy of island chains, thin stochastic layers inside the is-
chaotic solutions of Eq(1.1). Chaotic advection has been lands, etc. In fact, such structures were observed in a number

o_bserved in numerous .experiments '?”d computer Siml"ladf works devoted to the chaotic advection in the time-
tions, and a number of different theoretical descriptions hav%eriodic flows, where the possibility of constructing a

been FUbll'Shedseﬁ' fort e)f(e;rr?ple,tRelffjlt—lfO]_, Wh'ih :ep-bl' Poincaremap for the tracer motion provides us with a con-
resent only a smalfl part of the actual ist ot important publi-yapient visualization techniquib,18—23. The importance

catllzons). di f locity field (div=0 ¢ of this observation is due to the crucial role of these objects
or a divergence-free velocity field ( ), system for the transport process. For Hamiltonian systems wih 1

(kl'l) can t?_e _t\llvrl;tenthm tl;amll;cj(_)man _forml. Ihtl's form is degrees of freedom, one can establish connections between
nown explicitly for the three-dimensional stationary casey,q topology of the phase space and the properties of trans-
v=v(Xx,y,z), and for two-dimensional generic case

) ort [23], which makes a detailed study of the phase space
=v(x,y,t), when Eq.(1.1) can be rewritten as 'Itaopol[ogg/ more significant. y P P
Point vortex flows, a singular solutions of the two-

The motion of small particles in flows, known as advec-

r=v(r,t),

X=vy(X,y,t)=a¥/dy, dimensional2D) Euler equation, are one of the most natural
(1.2 and most frequently addressed examples of velocity fields,
y=vy(X,y,t)=—9V/X, generating the Lagrangian chaos of the tracers. A traditional
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subject matter of fluid mechanics for over a hundred yeardracer inside the coherent core. Applying the stochasticity
(see Refs[24—24 for a review, point vortex systems, on criterion to this map(see Refs[10,4Q concerning chaos in
the one hand, share certain features with the more involvedrea-preserving mapsve obtain the analytic expression for
case of coherent vortex structures in 2D turbulefg@®-31,  the radius of the coherent core, which is in a good agreement
and, on the other hand can be regarded as Hamiltonian sy#ith numerical results.

tems with few degrees of freedom; thus not only the advec- In Sec. IV, we address the case when the vortex motion is
tion, but the dynamics of the flow itsefin a Lagrangian ¢lose to a steady rotating equilateral triangle configuration.

frameworK, can be attacked by the machinery of the Hamil- The motion of the tracer is chaotic only inside the thin layer
tonian dynamics. around the destructed separatrices of the integrable “equilat-

The motion of a passive particle in a three point vortex€ral” case. The Melnikov method, used in REE2] to prove

system, sometimes called the restricted four-vortex problenq"e nonintegrability of a re;tricted four-vortex_problem,_ also
due to its analogy to the restricted three-body problem irFlllows one to obtain the width of the stochastic layers in the
celestial mechaniddl 3], is one of the oldest examples of 2D iji 0'; Wfﬁk tchaotlzatltqn. _To do :h|s,t tge separatrix map
chaotic advection. It is worthwhile to mention here that the[ N g or Ie tr%ger r.noR|o;1 |1$3C20n3 ructed. dth .
nonintegrability of the general four-vortex system was estab- umerical studies in Ref$13,27 emonstrated the exis-
lished in Ref.[32], and further discussed in Refi83,34. tence of coherent cores around th_e vor'glces, with a sharp
The nonintegrability of the equations for tracer trajectories inbprder betw_een regular af.‘d ChaOt'C. regions. In FEI;&]’,

the field of three vortices, and the existence of chaotic moghfferent regimes of advection were simulated, and Poincare

tion in this system, were demonstrated numerically in Refsections of the tracer trajectories were constructed to visual-

[11], and analytically, using the Melnikov methd@5], in ize the geometry of the mixing region. In Sec. V, we present

Ref. [12], actually before the term chaotic advection estab2 MOre detailed description of the structures in the advection
Iishéd itéelf pattern, paying special attention to the boundaries between

.the areas of chaotic and regular motion. Apart from typical

In Sec. Il the governing dynamical equations are speci-_,. ; . . .
fied. In the case of a three point vortex system, the flow par t|c_ky |s_Iand hierarchies on the border of |§Iands arou_nd el-
iptic points, we have found that, for certain geometries of

of the dynamics is integrable, and the velocity field can b . .
y g y the vortex motion, the boundaries of the regular cores sur-

found in an explicit form. We write the solution for the vor- di " tai | ingli p I
tex trajectories, and give a brief review of the types of vortex' ounding vortices contain a compiex mingiing ot smatl, €x-
tremely elongated islands, that create strong stickiness.

motion.

The integrability of the underlying vortex motion makes it
possible to carry out a detailed analytical study of the advec- Il. DYNAMICAL EQUATIONS
tion. In Sec. lll, we consider the case of strong chaotization
of the tracer motion. We apply the traditional tools of chaotic  Point vortex flows are singular solutions of the 2D Euler
dynamics to the problem of the coherent vortex cores—th&duation, and Helmholtz's vorticity theorems allow one to
areas of regular advection around vortices. The appearanégduce the dynamics of such a flow to a Hamiltonian system
of nonmixing patches is by far not limited to point vortex With N degrees of freedom, wheleis the number of vorti-
flows; in fact, these constitute a robust feature of practicallyces. We denote the coordinates of the vortices in the plane as
any flow with regions of concentrated vorticifg7—30,36— Xm andyn,, and their strengths ds,. It is convenient to
39]. The comparative numerical study of advection in pointintroduce complex coordinate=x-+iy, and to specify the
vortex systems and in 2D turbulence carried out in [R&] positions of the vortices by means of complex-valued func-
revealed certain common features of advection patterns iHONs Of time: z,(t) =xy(t) +iyyn(t), m=1,... N. Then,
these two cases. Point vortex models have enormous adval® the unbounded domain, the motion of the vortices will be
tages for an analytical treatment of the tracer motion, and igoverned by the equatiorfd2,34
particular, for a study of coherent cores. These advantages
stem from the fact that the vortices themselves are advected 1 .
by the flow and thus, as we already mentioned, their motion 'Z’r;=ﬁ > - —]z- (mj=1...N). (23
can be described via Hamiltonian equations. The appropriate T i#m EmT
dynamical variable for the problem of a tracer moving co-
herently with the vortex is the displacement of the traceBelow we consider the system of three-point vortices of
from the vortex; in other words, the coordinates of the traceequal strengttk=k,,, m=1, 2, and 3. The dynamics of
in the moving vortex reference frame. It is clear that thethree-point vortices was studied extensively by several au-
equations governing the dynamics of the displacement wilthors, and by now we have a complete description of motion
be Hamiltonian, since those for both vortex and tracer aretypes for arbitrary vortex strengttig3—46. For the conve-
The possibility to study the problem completely explains thenience of our readers, we will briefly outline the solution of
origin of the near-vortex isolated nonpenetrable core. Its spe=q. (2.1) for the case of three identical vortices, following
cific structure possesses a level of universality which can béhe method of Ref34]. For vortices of different strength, in
efficiently used for a tracer dynamics in the multivortex sys-order to put Eq(2.1) into Hamiltonian form, physical coor-
tem. The existence of the cores as coherent structures can Bmates should be rescaled, which can be done in different
utilized for speculations on 2D vortex turbulence, since eachvays; see for example, Refd4,34,47. In the case of iden-
vortex can be considered as an advected particle in a mangical vortices, canonical coordinates coincide with the physi-
vortex system. Using the equations in the moving vortexcal coordinates in the plane, and E¢®.1) have a Hamil-
frame, we construct a mapping for the trajectories of thetonian form:
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2t =2 H]= o
m m?

27 [T Zm—Z (m,j=1.2.3),

(2.2
with a Hamiltonian function
H=—L > Injzp—z? (2.3
A Fm
and fundamental Poisson bracket
[Zm.Z]1=0, [zm,z}*]z—Zi&mj. (2.9
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vorticity, and below, by placing the origin of coordinate sys-
tem in this point, we will putQ=P=0. With this choice of
the coordinate originl.? equals to the average squared dis-
tance between the vortices:

L2=%j§mlzj—zmlz (j,m=1.23). 2.7

This defines the spatial scale of the motion, and can be made
equal to 1 by an appropriate rescaling of coordinates
—2z/L. The vortex strengtlk also can be scaled out by re-
defining the time variablet— (k/L?)t. The only parameter
that distinguishes different types of motion is the value of the

As a result of translational and rotational invariance of theHamiItonianH which can be related to the geometry of the

Hamiltonian(2.3), vortex “momentum”

3
Q+iP=2 7 (2.5
i=1
and “angular momentum?”
3
L2=2 |z|? (2.6
i=1

are conserved during the motion. Using Eg.4), one can
form three integrals in involution for systef@.2); they are

vortex configuration, e.g., to the product of side lengths of
the vortex triangleA:

e P ™M= A=|2,-2,/|2,- 2z5]| 23— 74, (2.9
written in the dimensionless form witk=L=1. These pa-
rameters vary fronH=0 and A =1, when vortices stay in
the vertices of uniformly rotating equilateral triangle, up to
the limiting valuesH = and A =0, when two of the three
vortices coalesce.

It is shown in Appendix A how systertR.1) can be re-
duced to Eq.(A19) for the “area variable”|(t), propor-

H, L2, andQ?+ P?. Thus the Liouville theorem guarantees tional to the square of the area of the triangle spanned by
the integrability of Eq(2.2). Components of the vortex mo- vortices [see definition(A17)], and eventually, solved in
mentum Q and P define the coordinates of the center of quadratures. The solution has the form

Zm(t) =6~ 1/2Lei ¢>2/2[(1 — 1/2) 1/2e7 2ai(m— l)/3e7 i ¢1/2+ ( 1+1 1/2) 1/26747ri(m7 1)/3ei ¢1/2] ,

with expressions fok(t), ¢4(t), and¢,(t) given in Appen-
dix A [formulas(A24), (A30), and(A32)]. This form will be

m=1,2,3, (2.9

relative motion of vortices in the “two plus one” casa,
<A, is distinctly different from the casé .<A. Now the

used in Secs. Il and IV to find the domains of regular andshape of the vortex triangle oscillates between two congruent

chaotic advection of the flow produced by three vortices.

acute isosceles triangles with different orientations, passing

The relative motion of vortices is described by the term inthrough the linear configuration in the midway. There is no

square brackets in E¢R.9), and is periodic for any\ except
for the separatrix casd =A.=1V2 [see Eq.(A24)]; its

period T, is given by Eq.(A29). Characteristic features of

the two types of relative motiofA>A, and A<A,) are
described in considerable detail in Ref43,26. We point
out, that, for the “triangular” caseA > A, the vortex con-

longer any equivalence between the three vortices—one of
them becomes special; it always stays in the sharp corner of
the triangle, never coming as close to either of the other two
as they come to each other.

The overall motion is quasiperiodic, since after one period
of relative motion a vortex triangle is rotated by a certain

figuration oscillates between two isosceles triangles—a@ngle®(A) [see Eq(A33)], which is in general incommen-
acute one, when the area of the triangle reaches its maxgurate with Zr. It is convenient to consider vortex motion in
mum; and an obtuse one with minimum area. During oned reference frame, corotating with vortices with frequency
period of relative motion, each of these shapes is repeateéd(A)=0(A)/T,. Trajectories of vortices in the corotating
three times, corresponding to three different cyclic permutaframe, which we denote &&,(t), are simply related to the
tions of vortices in the vertices of the triangle. Vortices neveraboratory frame trajectories:

reach a collinear configuration, and the orientation of vortex

triangle o, defined aso=+1 for the counterclockwise ar- Zm(D)=zn(e ¥ m=1,2,3. (2.10
rangement of vortices 1, 2, and 3 along the perimeter of the

vortex triangle, andr=—1 for the clockwise arrangement They satisfy

does not change during the motion. All three vortices are

equivalent; the trajectory of each one can be obtained from K 1

the trajectory of the others by a symmetry transformation y* = +iQZ, (2.11

2o =—— =
consisting of a rotation and a time shiftee Ref[48]). The M 2w T Zm— Y
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and are periodic with periodl . detailg. The other type of island, which we will refer to as an
Once vortex trajectories are found, the flow field is com-elliptic island, is as a rule irregularly shaped and extremely

pletely specified. Its stream function is given by a sum ofsensitive to the smallest variations A

stream functions corresponding to individual vorti¢ég]: The strongest chaotization occurs wherapproaches\ .

[Fig. 1(e)]. All elliptic islands dissolve in the stochastic sea,

. ) and the only structures remaining are vortex cores. After

V(zz" t)=—— mzzl Inz—zn(O]%.  (2.12 passing through the valud =A. the advection pattern

changes abruptly due to the change of vortex motion

3

The advection equatiofl.2) takes the form symmetry—now one of the vortex cores is essentially larger
then the other twgcompare Figs. (&) and 1f)]. As A be-
3 comes smaller, elliptic islands reappear and grow, the regular
Zr=[z*V]= 5= — (2.13  core around the isolated vortex becomes larger, and the cores

2 oy z—z(1) ! ’
m=1 m(t) around the other two vortices becomes smaller as vortices

come closer to each oth§Fig. 1(g)]. When A approaches
zero, the advection pattern starts to resemble the regular ad-
vection in the field of two point vortices with strengtks

wherez=x+iy is a complex coordinate of the tracer par-
ticle. In the corotating frame, E¢2.13 transforms to

K 3 1 =k andk,= 2k [Fig. 1(h)]. However, the region around two
7= V]=— 2 —+iQ7*, (2.14 coalescing vortice$with linear size of order\) has a com-
2ml m=1 2~ Zp plex structure for any\: inside, there are two vortex cores

_ o ) ) ~ separated by a thin stochastic layer from each other, and
whereZz=ze is the tracer coordinate in the corotating from a band of regular trajectories going around both
frame, and vortices—this piece can be regarded as advection in the field
L Q of E[yvolvortt:]qes slighglyt_ pe(turbed by. érefthitrg vorlt'i(ti_n f
Sy N o N2 T ek particular, this perturbation is responsible for the splitting o
V@Y= A 121 In[Z=Z(0)[*+ 2 ¥ (219 the inner separatr)x Around it there is a transition region
from scaleA to scaleL filled with a chaotic sea.

Ot

is the stream functiofiEq. (2.12], with an additional term
corresponding to rotational “energy.” Due to the periodicity lll. CASE OF STRONGLY CHAOTIC ADVECTION

of the vortex motion in the corotating fram@, is also peri-
odic with periodT,., and therefore Eq(2.14) represents a
periodically forced Hamiltonian system. The character of th
tracer particle motionregular or chaotic depends on the
geometry of the vortex flowspecified byA), and on the
initial position of the tracer relative to the vortices. The pe-
riodicity of the flow (in the corotating frameenables us to

Phase portraits, presented in Sec. Il, show that, in the
immediate neighborhood of vortices, advection is always
®redominantly regular—fluid around a vortex forms a coher-
ent structure moving together with it. What determines the
size of such a core? A general observati@i] is that the
size of the vortex core is approximately equal to the mini-
Y / ’ , ~ mum distance between the vortex and the nearest hyperbolic
construct a Poincamnap of tracer trajectories, and visualize point of the system of streamlines, which in the case of iden-
the structure of the advection phase spacplane. tical vortices is about half of the minimum distance between

Below, we will give a brief description of the vortex mo- 4 yortices during their motion. Chaotization of the passive

tion and the resulting advection pattern for different Va'“esparticles moving together with the core, can be achieved
of A. We start from a “triangular” type of vortex geometry, only by a direct “hit” by another core. In other words, there

/EC<A<1'_ For the lowest energy configuratioR,=0, A 5 g ‘jong-range chaotization; inside the cores motion is
=1, there is no relative motion—in the corotating frame vor-yeqjar, apart from thin stochastic layers near the border.
tices just stay in the vertices of equilateral triangle. Advec\,\/hy does this happen, and to what extent it is true? In this
tion in this case is reguldFig. 1(a)]. ForH close to zerdA  gotion we will answer these questions, based on an analysis

close to }, vortices perform small near-circular oscillations of the advection in three-vortex systef®.2) in the case of
around the vertices of the equilibrium triangle, destroyingustmng chaos.” whenA ~ A
) Cc*

separatrices of Fig.(&). Two stochastic layers are formed in y/ortex cores are filled with regular orbits, whose shape is

their place. Due to the fact that original se_paratrices are VerY|ose to circular, so we may speak about the radius of these
close to each other, these two stochastic layers merge Qgpits | et us define the radius of vortex cdteas the radius

gether for fairly small deviation of vortices from equilib- ¢ yhe |ast(most externalregular orbit in the core. Our aim
rium; see Fig. {b). The domain of chaotic advection grows s v, optain an analytical expression g, and investigate

rapidly asA decreases; a well-developed stochastic sea a‘fs behavior as a function of the vortex flow parameter
ready exists forA =0.990 656[Fig. 1(c)]. A typical phase  cqnsider such a core around a particular vortex numbered

portrait of the advection in the case>A [Fig. Xd)]is  yith m=p. Since we are interested in the relative motion of

characterized by a large connected region of chaotic motioghe tracer with respect to the vortex in the center of the core,
with immersed islands where regular dynamics dominatesy is convenient to consider the tracer dynamics in the refer-

Three islands around the vorticésortex cores are easily  once frame moving with this vortex. To do so, we introduce

distinguished: they have a smooth, near circular border, ang]e displacement of the tracer from the vort@x the coro-
are robust—they exist for ankx. Among the near-circular tating frame

KAM curves filling the inside area of the cores there are arcs
of narrow resonant island€ig. 1(d)] (see Sec. V Fig. 6 for (=77, (3.1
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(a) (c)

FIG. 1. Poincaresections of passive particle trajectori¢a) Regular advection foA =1 (vortices form uniformly equilateral rotating
triangle. (b) Destruction of separatrices and onset of chaotic advection]l —9.6x10™". (c) A=0.990 656; large mixing region already
exists.(d) Typical advection pattern\ =0.752 192. Arcs inside vortex cores are narrow resonant islands; see Fig. 6 for detaifed (f)
Strong chaotization foA~A.: () A=0.707 109>A.; (f) A=0.707 1066 & A.. (g) A=0605247; a permeable barrier separates the
atmosphere around the vortex pair from the rest of the mixing regiom =0.353 088.

and make a canonical transformation to new coordinates ushe new stream function is
ing the generating function

FoZ,0) = G=2,(0)C* +T2p(1). @2 o=T+inl?
The advection equatiof2.14) takes the form K ¢ o
=T i |n|§|2+2 (|n|§_7mp|2+'~_+~7}
. k [1 1 am 7 Zmp Zmp
§*=[§*,<b]=r{z+2 (5 5 +~—} 0
il m#p _Zmp Zmp -
o +5 i (35
iQ* (m=1,2,3), (3.3

where we have denoted the relative positions of vortices byvhere we have dropped the irrelevant term depending only

on time, and expressed the velocity of the vorigit) using
Znp=Zm—Zp - (3.4 Eg.(2.11.
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(g)

FIG. 1. (Continued.

The dynamics of the three-vortex system enters into Eq.

(3.5). through relative vortex positiorig, (). In the case
under consideration, whefi~ A ., vortices move in a typi-

T, 3.7

During the time between the flipg,,, are essentially con-

cal near-separatrix fashion—they stay for a long time in thestant, and Eq(3.5) has no explicit ime dependence. This

neighborhood of saddle points, periodically performing rel
tively fast solitonlike rearrangemeniiips). Thus the vortex
motion has two time scales—an interval between the flips
which is of the order of the period of relative motidib is
equal toT=T, /3 for A>A., andT=T,/2 for A<A.; see
Egs.(A27) and(A29)], and the time width of the flips [see
Eq. (A298)]:

(3.6

where we sekk=1 andL=1. As A approaches\., the
interval between the flips grows logarithmicall¥;e~ In|A
—AJ ! [see Eq(A27)], and we have

a_

suggests the following strategy. First we introduce action-
angle variablesl( ) for Hamiltonian(3.5), considering the
vortex motion to be frozen, i.e., treatiidg,, as fixed param-
eters. Let us denote by {,#,) the values of the action and
the angle right before theth vortex flip. Our next step is to
construct a “flip map”

Ti(lns 1yt ) =T(ln,thn) (38
relating the values of action-angle palr ) before two con-
sequitive flips. Finally, we will apply the stochasticity crite-
rion for area-preserving maps to Eg.8), and find the value

of I=1. when regular trajectories around the vortex break
down.
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Below, we briefly outline necessary calculations, leavingthe next order, we rewrite stream functi(@11) in variables
some details for Appendix B. For the tracers inside the core(J, ) [see Egs.(B2) and (B3)], and look for a canonical
the distance to the center of the cdtgis always smaller  transformation to new variables (), such that dependence
than the distance between two vortid,|, and we can ot g, 405 s eliminated in the lowest order /20| The

formally use|{/Zy| as a small parameter. T.O indicate the required transformation is given by the generating function
real small parameter, we have to look at the time scale of th?see Appendix B

tracer motion and compare it to the vortex flip width The

tracer in the core rotates with the angular frequencin- o . |zj|ezie

versely proportional to the square of the distance to the vor- S(J,6;t)=J6+ . ———+c.c.|,
tex[see Eq(3.15 below]. Since the tracer is much closer to 8miw(J) m7p Zmp

the central vortex than the vortices are to each other, its (3.13

rotation is fast compared to the typical vortex tie and

we may write, for all three time scales of the problem, ~ Where the new actiod is related to the old oné by

1 |23|e?'?

4rwd) wZp  Zop

T>t> o L (3.9 J=J+

+c.c.|. (3.19

An important implication of the second inequality in Eq.
(3.9 is that the time dependence of stream funcii®rb) is  The generating functiori3.18 depends explicitly on time
adiabatic, sinc&y, vary much more slowly than the charac- through relative vortex positiori,(t). The new Hamil-
teristic time of the tracer motion. The adiabaticity parametetonian, describing tracer dynamics, is given by

(wtgy) " 1<1 (3.10 - S __
A o0=03.0.0)+ = (3.0.). (3.20
. ot
is a real small parameter of the problem.
We start by splitting stream functiof8.5) into two parts  Thg equation for the evolution of the adiabatic invariant fol-

(putting vortex strengtt=1): lows immediately from Eqs(3.20 and (3.18):
@ 1 *’t :H L * +H L *It 1 3-1 ~
(6.8 D=Ho({.0) HHIL D, (31D s ae
whereH,, is an autonomous part, J=- (9_3(‘“): - saat (J3,6,0)
Ho(.0)=— o= nlg*+ 5 Q1% (312 29 o
oo 4 2 ’ ' = e?? =Pcel, (3.21)
27w(Jd) | m#p Zmp

andH; depends on time through parametégs(t): o
where we have replacei by 6 on the right-hand side with

3
1 ¢ an accuracy of the first approximation.
H(,, 5 )=—— IN[=Zmo|?+=—+=—|. (3.1 —. . .
AU 4 ngp |£=Zml Zmp z:,;p .13 The rate of change of is practically zero when vortices

_ _ stay near the saddle point, and the re_lative vortex velocities
Note thatH, is of second order if{/Zy|; see Eq(B10). In Zyp are negligible. The total change dfduring the vortex

the zero-order approximation we dréfy, and consider the  fjiy can be evaluated by integrating right side of E8.21)
motion governed by the time-independent Ham”ton'anthrough the time of the flip:

(3.12. In this case solutions are circular rotations,

. = : 129 e
_ wt+ 69 (0)) — — 2i ¢
{={,€ , (3.19 AJ(J,60"7) fm‘]dt 2mo(d) [e A(J)+c.cl,
with the frequency (3.22
1 1 where
w(J)= HS—Q: m—ﬂ, (315) . 2
— 2i ()t mp
AQ)= | ety Pt (323
where the zeroth order action variatdlés defined by At m#p  Zmp

i 1 and the unperturbed tracer trajectdBy. (3.14)] is substi-
J== fﬁ (*dg—¢de*)=—= &, (3.16  tuted under the integral. Note that we can use relative vortex
8w 2 o - . .
positions for the separatrix vortex motioh=A. in Eq.
and the zeroth order angfahich is just a polar angle in the (3-23, i-€., S€Zn(t;A)=7n(t;A) and extend the integra-
3 . tion to £, since during the time of the flip they are practi-
{-plane as 6. P
cally indistinguishable from each other. Now we can close
f=arg . (3.17 the contour of integration, and the integral in E8.23 will
be given by the sum of contributions from singular points in
This approximation is too crude for our purpose—the effecthe upper part of the complex plane. Due to the fast decay of
of the other two vortices is completely neglected. To move tahe integrand up in the complex plafe is large; see Eq.
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(3.10], it is enough to take only the singularity, which is =Q(A)=3/(2w%). (The inaccuracy of the final result intro-
closest to the real axis. It turns out to be at the point duced by this substitution turns out to be negligiblEhus,
the tracer rotation frequency is given by

to=i —=i —, (3.24 1 3

and, for integral3.23, we obtain . L . .
gral3.23 The stochasticity criteriori3.32, rewritten in terms of the

AQ)=Ajo(d)e” Tk, (3.25 tracer orbit radiug = /2|J|, takes the form
where constanté,,, depending on the particular vortex and 2|Ap|exp( wV316) ar
i i i : K= ———exp — )>1,
particular flip, were evaluated numerically: 2 V372 (
A= A;~148 corner-center flip (3.26 (3.39
P' [Ag~2.4 corner-corner flip; ' where we have used Eg&.6) and (3.33.

In the limit of small orbit radius {—0), K is exponen-
tially small, and motion is regular no matter what the param-
eters of the problem are. Chaotization occurs only for the
orbits with radius{> ¢, where the critical radiug; (radius
of the regular vortex cojds defined by

Jne1=dn+AJ(Jy,,60,), 627 K(Zo)=1. (3.35

Oni1= Oh T 0(Jn 1) T(A), Using Eq.(3.34), we obtain the following equation for the
radius of the vortex core:

here the first valué; should be taken when the vortex under
consideration stays near the central equilibrizys 0 before
or after the flip, and the second valdg¢ when it stays out-
side.

The flip-map(3.8) now can be written

with AJ defined by Eq(3.22 andw(J) by Eg.(3.15.
To find whether a trajectory with a given initial value bf p( a ) 2|A,|exp(mv3/6)
is regular or chaotic, we note that the change of the adiabatic e - 5= 2
invariant per puls¢Eg. (3.22] is small, and the chaotization 6v3{
occurs mainly due to phase instability, so the stochasticit;N

T(A). (3.39

ote that Eq(3.36) has no solutions if the right-hand side is

criterion can be written in a forrfil0] less thanC,,;,=m7ev3/18~0.82 . . ., andhere are two solu-
86+ 1 tions if the right-hand side is larger tha&y,,;,. In our case,
K= max 5; —-1|>1. (3.28 constants, are fairly large[see Eq(3.26], and the interval

0e[0,27] n

between the vortex flip(A) is bounded from below by a
number of order 1, so the second possibility is realized—Eqg.
(3.36 has two solutions. It is the smaller one that defines the
dw(J) dAI(J, .0 )‘ vortex core radius; the larger one should be discarded, being
N MI>1. (329 outof range of approximations made for
dJ don ‘ The geometry of the background vortex flow enters into
the equation for{. only through the interval between the
vortex flips T(A). This dependence seems quite strong,
since T diverges logarithmically whemA—A. [see Eq.

For the flip map(3.27), this gives

K=
0e[0,2m]

From Eq.(3.22, we obtain

dAJ—(Jnﬁn)’ 29| A27)]:
max =2 A(J)|, 3.3 ( )):
pe[0.20] d0n | ’7Tw(J)| ( )l ( Q
21
and Eqs(3.15 and(3.16) give T(A)= 3 In|SA| =1+ C1+O(|SA[In|SA|), (3.37)
dw(J) 1

= . (3.3)  Where we have denoteA=A—A.. However, the expo-
dJ 4732 nential dependence on the left-hand side of 36 makes
o ) the core radius essentially independentT¢f\). In Fig. 2,
After substitution of Eqs(3.30 and(3.31) into Eq.(3.29,  we plot solutions of Eq(3.36) versus the flip interval. The
we arrive at the following condition for the motion of the solid line corresponds to the case when the vortex under
tracer to be chaotic: consideration participates in corner-center flips, and we
should takgAy|=A; in Eq. (3.36). This happens to all three
_|Alexp(=mo(I)ty) - vortices in the “triangular” case\ > A, and to the pair of
= 5 (A)>1. (3.32 . : C "
] vortices which are close to each other in “two plus one
caseA <A.. The dashed line gives the radius of the isolated
To obtain the final form of Eq(3.32, we have to substitute vortex for A <A, when|Ap| =A,. In the same picture we
the frequency of the tracer rotatian(J) from Eq. (3.15. plot several “experimental” values of,, obtained by mea-
For the frequency of overall rotatidd(A), entering into Eq.  suring the size of the cores in the numerically constructed
(3.15, we can use its value at=A., i.e., to setQ(A) Poincaresection. The error bars are due to the slightly oval
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in practice; direct simulation of the advection equation

shows no visible variation of the core size as the initial po-

¢ - ! ! sitions of vortices are taken to be closer and closer to the
¢ e critical configuration[see Fig. 1d), where SA~5x10 2;

03

02 i i 1 and Fig. 1e), wheredA ~2x 10 ¢]. The form of the asymp-
e totics of £, provides an explanation for this effectde-
‘ creases extremely slowly, as— A . [note the double loga-
04 rithm in Eq. (3.38], and the accuracy of the simulation is
insufficient to notice any significant decrease in core radius.
Even machine precision calculatiofA~10"16, T~45)
will result in less than a 10% change &f.
= “° The radius of the external boundary of the mixing region
T can be found in a similar way. The flow field, generated by
FIG. 2. Radius of the coherent core around vortices vs. intervayortices far from the center of vorticity, is close to that of a
between vortex flip§ (A). Dashed line—radius of the outside vor- Single point vortex of strengthk3located at the origin. For
tex core(only for A<A. andm=1) according to Eq(3.36. Two particles near the outer border of chaotic region, we can con-
data points for this caséstarg correspond toA =0.707 097 897,  sider the ratidZ,,/Z| as a small parameter. This suggests the
T=14.80 andA =0.707 106 780 96T =27.60. Solid line—radius following splitting of the stream functiof2.15 into a main
of the vortex core in other cas¢according to Eq(3.36]. Data  time-independent part and perturbation,
points (diamond$ correspond toA =0.707 108 878T=16.54 and
A =0.707 106 783 15] =24.97. V(2,25 ) =Ho(Z,2*) + H(Z,7* 1), (3.40

shape of the real cores—the lower limiting value was takerwith [settingk=1 and substitutind)=Q (A ;)= 3/27]

as a minimum half-diameter of the core, and the upper as a

maximum half-diameter. Experimental values agree with Eq. e ~ -

(3.36) up to 10% accuracy, which is the same accuracy with Ho(2Z")=~,— ,Zl Infz[?+ i 2* 34D

which the radius of the core can be defined; however, they

are systematically larger as a result of the approximationand

being made while deriving Eq3.36), in particular, the use

of the zeroth order adiabatic invarigfq. (3.16)] to define e 13 N 5

the core radius. It is possible to make corrections to Eq. Hi(ZZ" )=~ 21 In[1-Z(t)/z|*.  (3.42

(3.36) using first order adiabatic invaria8.19 instead of =

Eq. (3.16; in this case the equation for the core border The unperturbed pafEq. (3.41)] describes circular rota-

J(J,0,Znp)=Jc describes an oval, which periodically tions in the field of a point vortex of triple strength:

changes its shape with time due to periodic changes of

Zp(1)- Z(t)=RdeRH00— Hggiedt+o
Note that wherT is changed fronT =5.04 in Fig. 1d) to

T=16.57 in Fig. 1e), the sizes of the cores practically do not With frequency

change, while the pattern of elliptic islands becomes totally

different with the smallest. change h On the oth_er hand, w(J)=— i (1-1R?)=— i (1-2/3)), (3.44

when we pass from Fig. (8 (A>A.) to Fig. 1f) 2 2

(A<A), there is a drastic increase in the radius of one of . . . )

the cores due to the change in the type of its motion. where action-angle variables),) are defined in a way
In the limiting casesA —0, the right-hand side of Eq. Similar to Eqs.(3.16 and(3.17:

(3.36 becomes large due to the logarithmical growthTof

and within a good approximation we can write an explicit

formula for the core radius in terms of the geometrical pa- Expanding the logarithm in E3.42 in powers ofz; /z,

3

(0)

(3.43

J=—[2]?12, 6=argz. (3.4

rameter of vortex motiomA: we obtain, in the lowest order,
[ w3 v (3.38 1 3 2 ’
= . 5 % = — — <
© | 18(n In|SA| L+ In 4C,) M2 0= g 2, @(O/F+co)

where 1 3

T 16a(J] ,21

Z(t)e % %+c.c).
Co=2|A,|expl V3/6)/ 7. (3.39 :

3.4
Formulas(3.36 and (3.38 indicate that the core radius (249
should tend to zero a8A —0 andT—-ce. Thus, in principle, Note that first order terms cancel due to the conservation of
regular cores around vortices can become much smaller thahe center of vorticitf Eq. (2.5)].
the half-distance between the vortices—the chaotic sea can The dependence of the Hamiltonian on the angle variable
reach any orbit with a finite radius. Nothing like this happenscan be eliminated by a canonical transformation to the new
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variables Eﬁ) The corresponding generating function

S(J,6;t) can be found fron{compare to Egs(3.18 and
(B11)]

35__y 3.4
w(J) 90 v (3.47
(The averaged part of perturbati¢H)=0 in this case, and
{H.}=H;.) The dynamics of the new action variable is
given by[compare to Eq(3.21)]

3
> e 3% +ccl,
j=1

(3.48

where 6 is replaced byd in the same way as in E¢3.21).
The change of action during the vortex flip is

87Tw(J)|J| [

20”B(3) +c.c],
(3.49

AJ(J 0<°>)=f jdt=L[e
’ At 8mw(J)|J|

3
fﬁ ~2ie() (2 (A7 (A, |d
(3.50

We use separatrixA\=A.) values for vortex trajectories,
and extend the integration limit in Eq43.50 in the same
manner as we did for Eq3.23).

In contrast with Eq.(3.23, integral (3.50 depends
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4BT(A)

™

(3.595

1/6
max ) .
For A=A, a typical value of the vortex flip intervar
=16 givesR,;,=1.60. This agrees within 10% error with
the results of direct simulation; see Figge)land Xf). The
asymptotics of Eq(3.55 for A— A can be obtained, using

Eq. (3.37:
1/6
e

this indicates a slow growth of the size of the mixing region
as A—A; and T—o. This tendency is more pronounced
then the asymptotic decrease &Kfgiven by Eq.(3.38), and

can be verified numerically, but to a very limited extent—the
value of R,,,, stays between 1.5 and 1.7, and its further in-
crease is checked by the finite accuracy of the computation.

8B In|SA|

3.
3v3 (359

IV. CASE OF WEAK CHAQCS, A~1

When the vortex configuration is close to one of the lim-
iting casesA~0 or A~1, the amplitude of the vortex mo-
tion in the corotating frame is small, and the advection in the
resulting flow field is predominantly regular. Below, we will
consider the onset of chaotic tracer dynamics in the dase
~1, when vortices perform small oscillations around the
equilibrium equilateral triangular configuratigrig. 3). The
appearance of chaotic trajectories in the area around the
separatrices of the integrable case 1 can be demonstrated
analytically [12], via the Melnikov method35], and the
width of stochastic layers, replacing destroyed separatrices,

weakly onJ if the passive particle is not too close to the can be found using the separatrix nid, 10 (see also Ref.

origin. For such particles, the advection frequergyd) [in
the corotating frame; see E¢B.44)] is close to its limiting
value

w(J)~—-Q=-3/2m, (3.5)

and we can approximat(J) by B(«), which is evaluated
numerically:

B(\])%BEth 3|t/11'2 Z

=0411a... .

A)Z;(t;Ao)dt

(3.52

The flip map for the far region now can be written
Jn+1=dn+B@mw(J)|J)) " *cos ¥,

Ot @(In+ 1) T(A), (3.53

where w(J) is given by Eq.(3.44). Stochasticity criterion
(3.28, applied to Eq(3.53), gives the following equation for
the boundary value of actiod.:

On1=

BT(A)

7T|‘]c|3

K(Jo)= (3.59

The radius of the mixing regioR,=2|J.| is equal to

[49)).

Vortices are in a stable equilibrium wheh=1; their
positions in a corotating frame are constdirtdeed, Eg.
(A24) yields I (t)=1, and the rest follows from Eq2.9)]:

L i
'zm(t) - e7(4m/3)(m7 1)

m=1,2,3).
7 ( )

4.9

The stream function of the flow in the corotating frafks.
(2.15] has no explicit time dependence, and is equal to

~ Q
=Sk — <53 _ 3|12 3|2
Vo(Z,2%)= yp In[z°—p°|*+ > 1z, 4.2
where the frequency of the overall rotatibhis
0= 3K 4.3
=512 4.3

and we have denoted hythe distance from vortices to the
origin:

p=LIV3. (4.9
Advection is regular—tracers follow the level lines Wf,.

Figure 3 shows singular points and separatrices of this case.
Below we consider the deviation df from unity,
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1 0 1 e {I, B k 3*22 -
rEEVIE e a2
_ (6€)12 p*(p*+ 27 o-int
1 1 27i (“Z‘B_p3)2 .
(4.10
y Below we setk=1 andL=1. The unperturbed systefrA
0 0 =1, €=0) has two sets of three saddle poiltsee Fig. 3,
which we denote as
2 4 . .
Zs(m)= ‘73 cos? exp(7ri/3+2(m—1/2)i 7/3),
-1 -1
m=1,2,3 (4.11
~ 2 ™ :
-t 0 1 Zso(m)= 1/_3 cos§ expl2(m—21)i7/3), m=1,2,3.
T
FIG. 3. Stable vortex triangld = 1. Separatrices of the stream (412
function [Eq. (4.2)]. Asterisks—vortex positionfEg. (4.1)]; solid . . ~
circles—nhyperbolic point§Eqs. (4.11) and (4.12)]. Corresponding values of separatrix enetjy are
1 3
e=1-A, (4.5) Pi=— yp In[z3,—p%%+ = [Z5,1/%~0.2681,
. 4.1
as a small parameter, and look at the advection for the case 4.13
e<1. In the lowest order irg, corrections tdZ,,(t) can be 1 3
found by consequitive expansion of the corresponding for- Pi=— yp In[z2 ,— p%2+ yp [Zs 2|2~ 0.2653.
mulas of Appendix A(see Appendix C for details; compare m m 4.14
to Ref.[12)): ’
I For €#0, near-separatrix motion becomes chaotic. To
5 ()= L ~(4mif3(m-1) ﬁ find the width of the chaotic layers, we construct the separa-
Zm(t)= V3 € 3 trix map in a usual way: we define a pah(t,), whereh,

is the deviation of the unperturbed stream function from its

. . separatrix value,
X e (2mRM-Le i = m=123. (4.6 P

h,=F,— ¥, 1=12, (4.15
Up to this order the stream function of the flow in the rotat- ) _
ing frame is: at the point when the advected particle comes closest to the
saddle point in itsnth passage through the saddle point
_ k . neighborhood, ant, is the moment of the center of the next
Yz )=- - InfZ3~ p*+ (6¢) "%~ 2p?|? velocity pulse. The dynamics of the above defined variables
is governed by the mappingTeey (Nnsa,tnsa)
+% %21 0(e). 47 = Tsedn o), which has the form41,10)
hny1=hy+Ah(t,;04),
If we stay out of the immediate neighborhood of the vor-
tices, i.e.,[2—%,|/L> e, m=1, 2, and 3, we can expand thri=thtm/w(hy,q). (4.1

Eq. (4.7), and rewrite it as i o ]
The change in energy per pulad is given by the Melnikov

T (23 1) =T o(27) + €42, (23 1)+ O(e), (4.8 ntegral s
_ Abttyiom=e| " (i, Ty - o) D
where the autonomous patty(zZ,Z*) is given by Eq.(4.2), th—e "
and the perturbation is (4.17)
~ k 2[)2 . . 1/2ft + 5@0 a{ifl
=5 — 1/2| —iQ = - - —
\I’l(Z'Z**t)=_EG m e "Mice.l. (49) 2ie - 7 I C.C.

seps
Equations of the tracer motion following from E@t.8) are X Z5Rt—1o),b)dt, (4.18
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where the sign variable,= =1 indicates on which branch 1 0 1
the separatrix solutioﬁf,ip(t—to) should be taken. Expres- (a)

sions forAh(t,;o,) andw(h) (asymptotic for smalh) are
derived in Appendix (Jsee Eqs(C16) and(C12)]:

k .
Ah(t, ;o) = - (6¢€)Y%p%sin Qt,M,, (4.19

by~ 2T 4.2 g °
w(h)~ in[h[ T (4.20
where constants andM(,n, evaluated numerically, are listed
in Appendix C. The width of the stochastic layers is found y 4
from the equatiorisee Refs[41,10Q)
dt,.1 7 |dw dAh(t,)
ma% dtn -1 —max? %d—tn ~1. (42])
-1 o 1
Using Eqgs.(4.19 and(4.20), we obtain the full width(both z
sides of separatr)xof the stochastic layer in the stream func-
tion:
(b)
6 M + M B 1.125 5
hs.:—ﬂ M) e (4.22

472\

Substitution of the constan{see Eqgs.(4.20, (C18), and
(C19)] yields, for the first(innen set of three saddle points,

Y
hg11=0.33¢"2 (4.23
and, for the secon¢butey, 1025
hg; 2= 0.2%2. (4.24 1

The visible width of the layer, i.e., its space width on a plane,
near the saddle points, is given by

0.975

Ax=|hg /P"|}?2, (4.29 0% To7s 005 0025 0 0025 005 007  o0d

where the derivative is taken along the direction transversal z
to the bisectrix of the angle between the separatrices. The g, 4. (a) Stochastic layers foA =(1-2.4)x 1077, (b) Mag-
separatrices of the system are very close to each other; s@gication of the area around the saddle point.
Figs. 3 and 4 and Eq$4.13 and(4.14); for fairly small e
=€,~1075, their stochastic layers merge togetfisee Fig. be described as domains of chaotic motistochastic sea
1(b)], which puts a limit on the use of E@¢4.22. We also  mingled with islands, inside which stable quasiperiodic mo-
have to keep in mind, that in reality the stochastic layer doe§on dominates. Transport of the passive particles in the sto-
not grow smoothly, but step by step, absorbing thin stochaschastic sea depends not only on such coarse characteristics of
tic layers around the island chains of the resonances jushe chaotic domain as its size and general shape, but also on
outside the main layer. Figurg) shows a closeup of the the fine scale formations, like singular zones around island
outer stochastic layer near the saddle point fer boundaries, which may act as particle quasitraps and cru-
2.4X1077. Its width agrees with Eq4.25 up to the factor ~ cially affect all kinetic properties.
1.5. A numerically constructed Poincaneap of the tracer mo-
tion is an expedient tool for a search of fine-scale topological
V. STRUCTURES IN THE ADVECTION PATTERN structures in the phase space of a Hamiltonial system with
13 degrees of freedom. Once it enters into a quasitrap, a
The Hamiltonian form of advection equati¢oh.2) allows  trajectory has little chance to escape, so it stays there for a
one to identify the coordinates of the passive particle withlong time, resulting in a higher than average point density in
the canonical pair “coordinate-momentum,” and the flow this area of the Poincamsection(dark regions The ergodic
plane can naturally be regarded as a phase space of a Hanpkoperty would destroy this effect if the time of computation
tonian system with 1 degrees of freedom. In general, the is much longer than trapping time.
phase space of such systems is highly nonuniform, and has a We mentioned in Sec. Il that the typical advection pattern
multiscale hierarchy of topological structures. Roughly it canof the three-point vortex system contains regular islands of
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-0.46

(a) (b)

-0.48

-0.52

-0.54

-0.476

-0.478

-0.48

-0.482

-0.484

0.962 0.964 0.966 0.968 0.97
T

FIG. 5. (a)—(c) Hierarchy of islands forA =0.709 688.

two types. Elliptic islands vary considerably in number, size,Our simulations have shown that in certain range of values
and shape with small changes in the parameter of the backf A, the boundary of the cores exhibits strong stickiness
ground vortex flow(see Fig. 1. Their general outlook is very (Fig. 7). A tracer particle which enters into the region of dark
typical—similar kinds of structures are observed in manynarrow bands around the cores in Figa)7moves coherently
other cases of Hamiltonian chaos. An important feature ofvith the vortex for a long period of time, before being
these objects is a singular zone around the boundary, consigjected back into the mixing region. These bands are not
ing of a sticky island-around-island chain. The fractal struc-uniform; magnification of a piece of the boundary in Fig.
ture of this singular zone may have a strong effect on trace¥(b) shows a multitude of small stretched regular subislands,
transport. Several island generations around a large elliptiembedded into the background of the chaotic motion. These
island in Fig. %a) (A=0.709 688) are presented in Figs. subislands, in turn, have a complex structure, very sensitive
5(b) and Fc). Dark bands around the higher order islandsto variations of the system parameters. A closeup of one of
indicate the strong stickiness of these areas. Contrary to ththe subislands is shown in Figs(cY and 7d) for two close
elliptic islands, vortex cores are very robust. As shown invalues ofA.

Sec. Ill in the range of parameter values where the strong An interesting effect is observed far<<A . when two of
chaotization of the tracer motion occurs, the size of thes¢he vortices are somewhat isolated from the third. In this case
near-circular islands depends only slightly on the back{excluding the situatiol ~ A ), they form a separate struc-
ground flow. The inside area the cores has a structure chatdre, with a common boundary which develops from the
acteristic of the phase space of a near-integrable lowseparatrix, dividing their cores. When the third vortex is
dimensional Hamiltonian system—it is filled with KAM brought closer, this boundary is connected to the main sto-
curves, and stratified with thin stochastic layers; see Fig. 6¢chastic sedFig. 8), but does not dissolve in it until the third
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O T T T T T T e T T s the sufficient number of independent conservation laws. The
MO R e O advection equatioitl.2), written in a reference frame coro-
iR T e . tating with vortices, has the structure of a periodically forced
Hamiltonian system, which allows one to carry out its de-
tailed analytical and numerical study, using a well developed
methods for Hamiltonian systems with} Hegrees of free-
dom. In particular, it is possible to derive an expression for
the radius of the mixing region and the radii of the regular
islands around the vortices in the case of strong tracer chao-
tization. The formation mechanism of the vortex cores, or
rather a reason for their extreme stability, is clear from the
derivation: tracers inside the cores spin so rapidly that typical
perturbations turn out to be adiabatic, and are averaged out.
Inside the cores, tracers move in a typical pattern character-
Chena P G SO BT istic of a near-integrable low-dimensional Hamiltonian
PR D O system—the core is filled with near circular KAM curves,
N e e narrow resonant islands, and thin stochastic layers.
o o2 Y B e— Among other structures observed in the advection pattern,
. sticky bands around the vortex cores deserve special atten-
tion. These strong quasitraps affect transport properties of
-0.5468 - particles in the mixing region—and thus, whenever we have
\ (b) a regular core around vortex, we may expect an influence of
its boundary on the kinetic properties. It is tempting to gen-
eralize this result for multivortex systems and other flows
0547t W / with coherent cores around concentrated patches of vorticity.
AW However, the numerical construction of Poincaeetions is
A \ impossible for quasiperiodic and chaotic velocity fields, and
‘ / // some other method should be used for an analysis of the

02l

-0.3

0.4

0.5}

05472 structure of the core boundaries in this kind of system.
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The homoclinic orbit(second from outsideis in fact a narrow
stochastic layer with a complex structutb) Magnification of the

piece of this layer in the vicinity of th& point. Two close-by KAM APPENDIX A: DYNAMICS OF THREE IDENTICAL
curves are shown for contrast. POINT VORTICES
vortex is brought even closer, up to~0.7. This indicates Below, we derive the solution of the equations of motion

that, in the multivortex system, a pair of vortices of the same2-1) of three point vortices of identical strength and polar-
sign traveling together, apart from individual cores, possess %ation using the change of variables introduced3al. We
common coherent “atmosphere,” and allows one to estimatéePeat the solution for the area variab(¢) [see Eq.(A17)

how close the perturbing vortex should approach the pair i?€/oWl, presented there, and write expressions for the “con-
order to break it. figuration angle” ¢4(t) and “rotation angle” ¢,(t) [see

Egs.(A30) and(A32)], thus completely specifying the posi-
tions of vortices as functions of tin{&g. (2.9)].
Let us start from Eq92.1), where we can put=1 with-
Analysis of advection in the flow field of three identical out loss of generality:
point vortices, performed in this paper, reveals a number of
features which are relevant in the case of more general 2D 1 1
incompressible flows, and particularly in multivortex sys- = 2 — (j,m=1,2,3). (A1)
tems. The case of three-vortex flow is special—it is one of 2mi {7 (Zm=7)
the simplest systems generating Lagrangian chaos. The mo-
tion of the vortices, specifying the flow, is governed by aThree independent integrals in involution for this system are
Hamiltonian system, which turns out to be integrable due tdhe Hamiltonian function

VI. CONCLUSION
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FIG. 7. (a) Stickiness of the vortex core boundarids+0.716 66.(b) Magnification of the central part. Thin white areas inside the bands
are regular island structures. Their zodstretched in the direction is shown for two close vortex geometrigs) A =0.716 82,(d) A

=0.716 917.

1
=_ 12 (i om—
H= =gy 2, Mzn—zf® (m=123, (A2

and two quadratic invariants

3
Q%2+ P2= > 7zt (A3)
ij=1
and
3
L2=2) |z? (A4)

Quadratic formgQ?+ P2 andL? can be simultaneously di-

3
L . .

Poisson brackets for new canonical variallgs P, are

[Qn.Qml=0, [P,,Pn]=0

[Qn.Pml=6nm.,

(m,n=0,1,2). (AB)
Forn=0, transformatior(A5) shows thalQ, andP, are
proportional to the coordinate® and P of the center of
vorticity [Eq. (2.9]:
QO:Q/‘/Z!

Po=P/v3, (A7)

agonalized by a discrete Fourier transform of an array ofind are identically equal to zero, since we agreed to chose

vortex positions:

the origin of coordinates at the center of vorticity.
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FIG. 9. Roots of the cubifEq. (A21)] vs A.
1
H=— 72— In[16(2(13+319) — (13- 19)¥%c0s 3py)],
(A14)

FIG. 8. A=0.568 000. The vortex pair atmosphere is a coherendoes not depend o#,. Variablel; has a geometrical inter-
structure, traveling with the pair; individual cores are wrapped by goretation, which is very helpful in the analysis of the types of

less rigid coherent structure.

vortex motions. From EqgA5), (A8), and(A13) it follows
that

We have already reduced the number of variables to only

two pairs Q,,,P,,), =1, and 2. It is convenient to use polar

coordinates {,,,,,) instead, defined by

2J,eh=Q,+iP, (n=1,2. (A8)
Invariant(A4) is linear inJ; andJ,:
L2=2(J;+J,). (A9)

Vortex positions in terms ofJ, , 8,) follow from the inverse
of Eq. (A5):

L 2
. z 2Jnei Hne—Ziﬂ-n(j—l)/S (J — 1,2'3)

Zj:
\/§ n=1

(A10)

The Hamiltonian functiofA2), written in new variables, is

1 3, .3 32
H=— 2~ In[8(33+33—2(J;3,)*%c0s 36, 61))],

(A11)
with Poisson brackets
[Im:0n]=6mn: [Im:Jn]=0, [04,0,]=0 (mn=1,2).
(A12)

Since Eq.(A11) depends only on the angle difference

¢,=06,— 61, new canonical variables are useful:
11=(32=31)/2, $1=0,—01,
(A13)
|2:(J2+Jl)/2, ¢2502+ 01.
It follows from Eq.(A9) thatl,=L2/4 is an integral of mo-
tion. Indeed, a Hamiltonian, expressed in new variables,

l1=0A103/V3, (A15)
whereA,,3 is the value of the area of the triangle with ver-
tices in the current position of the point vorticertex tri-
angle, ando= *1 is the orientation, which we chose to be
o=+1 for the counterclockwise arrangement of vortices,
with m=1, 2, and 3 along the perimeter of the vortex tri-
angle, andr= —1 otherwise.

The equation governing the dynamicslgffollows from
Eq. (A14):

dH 12¢*™H

Yo,

(12-12)%%sin 3¢,.  (A16)

The angle variable; can be excluded from the above equa-
tion, using the conservation of Hamiltoni&éA14). It is con-
venient to introduce a new “area variable”

I=(1;/1,)%=2ALdL*, (A17)
and use the geometrical parametedefined in Eq.(2.8),

A=e 2™ (A18)
instead of the value of the Hamiltoniad. The resulting
equation forl has the form

dl\?
d—T) =—1[13+612+3(3—-8A%) | +8A%(2A%—-1)]

=P4(1;A) (A19)
where the rescaled time variabtas
3 t (A20)
7= —7-—- 1.
2mwA?L2
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The dynamics of coincides with the motion of a particle of
mass 2 in the potentiat P,(l;A) with zero total energy, Eq. =
(A19) being a law of energy conservation.

The potential —P4(I;A) has zeros at =0 and atl
=M, wherel™ is the roots of the cubic in E4A19):

5 -1
1+ ‘73 coshv3(r— 7-0))1

2 r( 3v3 H‘l
1+ — cos (t—to) , (A28)

V3 2aL2

IMW(A)=2[(1+8A?)Ycoq3(2mn+8))—1], n=0,1,2,
(A)=2[( ) L(2m D=1l (A21) where 7, (or ty) corresponds to the center of the soliton, and

the scalind Eq. (A20)] was used withA2=A2=1,
with After one periodT, the vortex triangle, repeats its shape,
cosS(A)=(—8A*—20A2+1)/(1+8A2)32 (A22)  but the vortices are redistributed among the vertices of the
triangle. It takes several periods to return to the initial
They are always real and satigf)<|@<|(©) As A grows  arrangement. This time defines the period of relative motion
from 0 to 1, the largest rodt® increases from 0 to 1,?>  of the vortices, when the initial order of the vortices is re-
increases from-3 to 1, andl® decreases from-3 to —8.  stored, and is equal to
At A=A.=1W2, root |® crosses zero, this value corre-

sponds to the unstable collinear configuratienO (saddle 2T if 0<A<A,
point) and aperiodic separatrix motigeee Fig. 9. Tel(M)=137 i A <A<l (A29)
To write the solution of Eq(A19), we arrange the zeros ¢ '
of the potential in decreasing order, defining To specify the motion completely, we have to supply ex-
pressions for the angle variableés and ¢,. Conservation of
JO=10" 3B =max0,?}, H immediately yields, for the “configuration angleé;,
(A23) )
I@D=min{01?}, J®=1D), _(1+31)—4A
, ; = A30
Cos 3p; (1-1)% (A30)

Now I(t) can be expressed in terms of Jacobi elliptic func-
tions: For the “rotation angle” ¢»», we have to go back to the
Hamiltonian in the form of Eq(A14), from which we obtain

0)_ 13,2
I(T;A)ZJ J asnz(yr), (A24)

1—a®sr’(yr aH 3 4A%-12-3]
(y7) o= = TR (A31)
Where 2 47A‘L
a?=(30— 30y (33— 3D Using Eq.(A19) we can rewrite this as a quadrature,
(A25)
y=3((39=3)( V-3, ()= Jlm AN%—12-3] di (A32)
and the modulus of the Jacobi elliptic function is 2 2(1-1)\P,(1)

where the polynomiaP,(l;A) is defined by Eq(A19).
During one period of relative motion, the vortex triangle
rotates by an angle

k=[(IO=JD)(IJD - IO [(JO—-J2)JD—-33)].
(A26)

Solution(A24) is periodic, with a period’ equal to
O(A)=a(Tre) — ¢2(0), (A33)

(A27) which can be found from Eq$A31) or (A32). This defines
the frequency of the overall rotation of the vortex triangle:

_ AmAPL? K(k)
=—3 =

T(A)

whereK (k) is the complete elliptic integral of the first kind.
During the motion,| stays betweed® and J®; it never Q(A)=O(A)/T o= (o Tre) — h2(0)) Ty, (A34)
reaches 0 foh <A, and does so periodically fok> A .

CaseA=A. is special[k=1, and period(A27) has a Performing the inverse transformatid¢Al10), we arrive at
logarithmic singularity; there is an unstable equilibrium so- the final expression for vortex positions in terms of constants
lution | =0, and a family of aperiodic solitionlike solutions of motion and functions(t), ¢,(t), and ¢,(t) defined by
given by Egs.(A24), (A30), and(A32):

Zm(t) =6 1/2Lei ¢2(t)/2[ (1 — 1/2(-[))1/2e— 27i(m— l)/3e— i ¢1(t)/2+ (1 + l/Z(t))1/2e—4'n'i(m— l)/3ei ¢1(t)/2] (m: 1’2,3) )
(A35)
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APPENDIX B: DERIVATION OF ADIABATIC INVARIANT

Here we derive the adiabatic invariaf®19 and gener-
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Now we expandH;(J, ) [the second term in EqB7)],
defined by Eq(B3) (we can set9= 6 in the first ordey, in

ating function(3.18 of the corresponding coordinate trans- Fourier series i, and introduce the averaged part

formation. Let us start from the stream functit®11), ex-
pressed through the zero order action-angle varial3d®
and(3.17), considering the slow time dependencezgf, to
be frozen:

W (J,60;t)=Hq(J) + eH (3, 6;1), (B1)
with Hy(J) obtained from Eqgs(3.12 and (3.16),
Hy(J)= ! In|2J B2
ol )__E n|2J| - (B2)
andH,(J,0;t) from Eqgs.(3.13, (3.16, and(3.17):
iel?\]2J
Hy(J,0)=— — Z Inlie'?\/]2J]— mp|2+#
Zmp
—|0 |2J|
- T (B3)
Zmp

(Hl)——f do Hy( =—— 2 In[Zpn %,
(B9)

and the oscillating part

1

{Hyy=H;—(Hp)=— 4 =

|2J|e2i0
oy +c.c|+--,

P (B10)

where the dots in the last formula remain for the higher har-

monics.

Since we require, that;(J) in Eq. (B5) does not depend
on 6, {H,} should be canceled by the third term in EB7),

and we then have the equation for the generating function

A parametere in Eq. (B1) has been introduced to keep track which yields Eq.(3.18:

of the order of different terms=1 in the end of the calcu-

lation.
Below we follow canonical perturbation theofsee Refs.

[40,5Q for details of the method Let us look for a transfor-

mation with the generating function
S(3,0) =360+ €S,(3,0) +- -, (B4)

such that, in new variables, the Hamiltonian

H(3;t)=Ho(J)+ eH (3) + (B5)

S
— 39S,
o(J) FTi —{H1}, (B11)
. . |27|62i0
S(3,0)=36+| 57— >, —5—+ccl. (B1)
87T|wm#p 2mp

Substituting this in Eq(B6), we obtain Eq.(3.19 for the
first order adiabatic invariant.

APPENDIX C: CHAOTIC LAYER WIDTH FOR A~1

As a first step to obtain the positions of the vortices up to

the lowest order ire [Eq. (4.6)], we expand solutiorfA24)
of Eq. (A19) in powers ofe. Using Egs.(A21), (A25), and

does not depend on the new angle up to the first order, an@\26), we obtain

depends adiabatically on time through,. From Eq.(B4),
we obtain a coordinate transformation

. 95(3,0)
1=Tr e B0
39

— 35,(3,6)
P CL
33

(B6)

so that Hamiltonian(B5) is
H(I;0)=H((J,6),6(J,0))
— — S
=Hg(J)+eH(J,0)+ ew(J) %-i- , (B7)

where we have used frequen(3.15:

IHo
0(3)=— (B8)
N

322
a’=——— €2+ 0(e?), y=3/2+0(e),
813 (€9), v (€)
256/2
= e+ 0(€?), (C1
81v3
and, substituting EqA24), obtain
I(t)=1—8/3¢+0O(e?). (C2)

Substituting the above expression into E430) we find
cos 3p;=cos 3, (C3

and taking into account thag, = — (9H/dl,)>0, we obtain
h1=T1.

From Eqg.(C2 and the expression fop, [Eq. (A32)], it
follows that, up to the irrelevant constant phase,

¢2:T.

(C4)

(CH
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Collecting everythingsee Eq.(2.9)], we obtain[Eq. (4.6)]. where

1/2 _ 3
Z(t) = L (e<4wi/3)<m1>+(ﬁ) e i7-(2miZm=1) | a= 1 ﬂ b=0/4. (C10
V3 3 8 7§,|_P3
(Co
Hamiltonian(C9) describes hyperbolic rotations with incre-

where we have used definitigA20) with A=1. ment (decrement

Below we putk=1, andL=1. The asymptotic of the
frequency of the near separatrix solution is defined by the A=4.]a|>-b?, (C1)

motion in the neighborhood of the saddle point; in other
words the period of motion is approximately equal to theand for the time to pass the saddle point we have:
time required to pass through this neighborhood. We intro-

log|h
duce TO~ — —?\l | , (C12
§=7-7), (C7)
. . which is equivalent to Eq4.20.
the dlstance from the §addlg point, and ex-pand sFrggm func- To evaluate the Melnikov integral, we use
tion ¥, [Eq. (4.2)] in its neighborhoodusing definitions
(4.3 and(4.9)]: o¥, 32 O . (13
—=-14~n + =7 C13
= 1 |Z-22p° & 7z 2-p? 2
\If(§,§*)=2|s+ 4— = 3 §+C.C'
T Zg—p and
£ 2 e o) (c8 a¥y__ 1 P2
2 . :__61/2 2 el&)t. (C14)

I+ Aqr p ("2* 3_[)3)2
This expansion can be rewritten, using definitidnl5), as o ) .
Substituting Eqs(C13 and(C14) into Eq.(4.18, and shift-

h=a&?+2b&e* +a* £52+0(&%), (C9)  ing the integration variable, we obtain

1
Ah(tn;om)=— (6¢€)"%p?Im

S 3 3 2
e—imanr st P +27 1 32 Q
L (’2*3_p3)2 2

z* ) dtl . (C19

In this expressiorz;’t) is a solution of the unperturbed

te o POT2ZR 132 0
equation(4.10 on the separatrix, centeredtat0. A particu- Mo, =2Re o © T2 | dm P 0 +5 70 |dt,
lar branch of the separatrix is picked ly,=*1. By an p P (C17)

appropriate rotation the separatrix solution can be made sym-
metric with respect to the real axig(—t)=7*(t), so the with ~zf,‘;p(t) taken on the corresponding separatrix branch.

value of the integral in Eq(C19) is real and we have Numerical evaluation of Eq(C17) gives, for the inner sepa-
ratrices
1 _ _
Ah(tn)z ; (66)1/2p23in QtnMo'ni (C16) M+—1.70, M _=0.560. (C18)
and, for the outer separatrices,
where constantM o, are defined by the integral: M,=0.537, M_=0.790. (C19
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