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Regular and chaotic advection in the flow field of a three-vortex system
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The dynamics of a passive particle in a two-dimensional incompressible flow generated by three point
vortices advected by their mutual interaction is considered as a periodically forced Hamiltonian system. The
geometry of the background vortex flow determines the degree of chaotization of the tracer motion. Two
extreme regimes, of strong and weak chaos, are specified and investigated analytically. Mappings are derived
for both cases, and the border between the chaotic and regular advection is found by applying the stochasticity
criterion. In the case of strong chaos, there exist coherent regular structures around vortices~vortex cores!,
which correspond to domains withKAM curves. An expression for the radius of the cores is obtained. The
robust nature of vortex cores, demonstrated numerically, is explained. In the near-integrable case of weak
chaotization, a separatrix map is used to find the width of the stochastic layer. Numerical simulations reveal a
variety of structures in the pattern of advection, such as a hierarchy of island chains and sticky bands around
the vortex cores.@S1063-651X~98!03612-5#

PACS number~s!: 47.32.Cc, 47.52.1j, 05.45.1b
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I. INTRODUCTION

The motion of small particles in flows, known as adve
tion, has been related in many recent publications to s
areas as fluid stirring, chemical reactions, pollution of
atmosphere and the ocean, visualization of flows, etc. Sp
ing about a small particle, we have in mind a particle th
does not influence the flow. Other terms are sometimes u
such as tracers, passive particles, or Lagrangian particles
cases when the flow is stationary, incompressible, and in
cid, an advected particle trajectory coincides with the strea
line of the flow, and the information obtained from the a
vection describes the structure of the flow. The general fo
of the advection equation is

ṙ5v~r ,t !, ~1.1!

wherer is a coordinate vector of the particle, andv is a given
velocity field which defines the flow. Formally, Eq.~1.1!
describes a dynamical system which, generally speak
possesses chaotic solutions for some parameter values
initial conditions. In this case the advection is known as c
otic. The notion of Lagrangian turbulence is also used
chaotic solutions of Eq.~1.1!. Chaotic advection has bee
observed in numerous experiments and computer sim
tions, and a number of different theoretical descriptions h
been published~see, for example, Refs.@1–10#, which rep-
resent only a small part of the actual list of important pub
cations!.

For a divergence-free velocity field (divv50), system
~1.1! can be written in Hamiltonian form. This form i
known explicitly for the three-dimensional stationary ca
v5v(x,y,z), and for two-dimensional generic casev
5v(x,y,t), when Eq.~1.1! can be rewritten as

ẋ5vx~x,y,t !5]C/]y,
~1.2!

ẏ5vy~x,y,t !52]C/]x,
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using the stream functionC5C(x,y,t) that plays the role of
a Hamiltonian. Both the above mentioned cases belong
so-called Hamiltonian systems with 11

2 degrees of freedom
Such a Hamiltonian system possesses chaotic advection
some domains of the phase space, which is simply an~x,y!
plane for case~1.2!.

Application of the methods of the dynamical syste
theory to the chaotic advection problem has become an
tablished technique. By now chaotization of the tracer m
tion has been observed and studied in a large numbe
systems, including point vortex flows@11–14#, Rayleigh-
Bénard convection@15,16#, blinking vortices@1#, an oscillat-
ing vortex pair@5,6#, and a vortex pair perturbed by anoth
point vortices@17#, point vortex flows in bounded domain
@18–20#, etc. We want to emphasize that the corresponde
of a trajectory of an advected particle in physical~coordi-
nate! space to the phase-space trajectory of a Hamilton
system implies more than just the appearance of Lagran
chaos in a generic unsteady velocity field. One should a
expect the configuration space of a tracer to contain all
typical structures of Hamiltonian phase space, such as
lands of regular motion around elliptic points, cantori, hie
archy of island chains, thin stochastic layers inside the
lands, etc. In fact, such structures were observed in a num
of works devoted to the chaotic advection in the tim
periodic flows, where the possibility of constructing
Poincare´ map for the tracer motion provides us with a co
venient visualization technique@5,18–22#. The importance
of this observation is due to the crucial role of these obje
for the transport process. For Hamiltonian systems with1

2

degrees of freedom, one can establish connections betw
the topology of the phase space and the properties of tr
port @23#, which makes a detailed study of the phase sp
topology more significant.

Point vortex flows, a singular solutions of the two
dimensional~2D! Euler equation, are one of the most natu
and most frequently addressed examples of velocity fie
generating the Lagrangian chaos of the tracers. A traditio
7330 © 1998 The American Physical Society
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subject matter of fluid mechanics for over a hundred ye
~see Refs.@24–26# for a review!, point vortex systems, on
the one hand, share certain features with the more invo
case of coherent vortex structures in 2D turbulence@27–31#,
and, on the other hand can be regarded as Hamiltonian
tems with few degrees of freedom; thus not only the adv
tion, but the dynamics of the flow itself~in a Lagrangian
framework!, can be attacked by the machinery of the Ham
tonian dynamics.

The motion of a passive particle in a three point vort
system, sometimes called the restricted four-vortex prob
due to its analogy to the restricted three-body problem
celestial mechanics@13#, is one of the oldest examples of 2
chaotic advection. It is worthwhile to mention here that t
nonintegrability of the general four-vortex system was est
lished in Ref.@32#, and further discussed in Refs.@33,34#.
The nonintegrability of the equations for tracer trajectories
the field of three vortices, and the existence of chaotic m
tion in this system, were demonstrated numerically in R
@11#, and analytically, using the Melnikov method@35#, in
Ref. @12#, actually before the term chaotic advection esta
lished itself.

In Sec. II the governing dynamical equations are spe
fied. In the case of a three point vortex system, the flow p
of the dynamics is integrable, and the velocity field can
found in an explicit form. We write the solution for the vo
tex trajectories, and give a brief review of the types of vor
motion.

The integrability of the underlying vortex motion makes
possible to carry out a detailed analytical study of the adv
tion. In Sec. III, we consider the case of strong chaotizat
of the tracer motion. We apply the traditional tools of chao
dynamics to the problem of the coherent vortex cores—
areas of regular advection around vortices. The appear
of nonmixing patches is by far not limited to point vorte
flows; in fact, these constitute a robust feature of practica
any flow with regions of concentrated vorticity@27–30,36–
39#. The comparative numerical study of advection in po
vortex systems and in 2D turbulence carried out in Ref.@27#
revealed certain common features of advection pattern
these two cases. Point vortex models have enormous ad
tages for an analytical treatment of the tracer motion, an
particular, for a study of coherent cores. These advanta
stem from the fact that the vortices themselves are adve
by the flow and thus, as we already mentioned, their mo
can be described via Hamiltonian equations. The appropr
dynamical variable for the problem of a tracer moving c
herently with the vortex is the displacement of the tra
from the vortex; in other words, the coordinates of the tra
in the moving vortex reference frame. It is clear that t
equations governing the dynamics of the displacement
be Hamiltonian, since those for both vortex and tracer a
The possibility to study the problem completely explains
origin of the near-vortex isolated nonpenetrable core. Its s
cific structure possesses a level of universality which can
efficiently used for a tracer dynamics in the multivortex sy
tem. The existence of the cores as coherent structures ca
utilized for speculations on 2D vortex turbulence, since e
vortex can be considered as an advected particle in a m
vortex system. Using the equations in the moving vor
frame, we construct a mapping for the trajectories of
s,
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tracer inside the coherent core. Applying the stochastic
criterion to this map,~see Refs.@10,40# concerning chaos in
area-preserving maps!, we obtain the analytic expression fo
the radius of the coherent core, which is in a good agreem
with numerical results.

In Sec. IV, we address the case when the vortex motio
close to a steady rotating equilateral triangle configurati
The motion of the tracer is chaotic only inside the thin lay
around the destructed separatrices of the integrable ‘‘equ
eral’’ case. The Melnikov method, used in Ref.@12# to prove
the nonintegrability of a restricted four-vortex problem, al
allows one to obtain the width of the stochastic layers in
case of weak chaotization. To do this, the separatrix m
@41,10# for the tracer motion is constructed.

Numerical studies in Refs.@13,27# demonstrated the exis
tence of coherent cores around the vortices, with a sh
border between regular and chaotic regions. In Ref.@13#,
different regimes of advection were simulated, and Poinc´
sections of the tracer trajectories were constructed to vis
ize the geometry of the mixing region. In Sec. V, we pres
a more detailed description of the structures in the advec
pattern, paying special attention to the boundaries betw
the areas of chaotic and regular motion. Apart from typi
sticky island hierarchies on the border of islands around
liptic points, we have found that, for certain geometries
the vortex motion, the boundaries of the regular cores s
rounding vortices contain a complex mingling of small, e
tremely elongated islands, that create strong stickiness.

II. DYNAMICAL EQUATIONS

Point vortex flows are singular solutions of the 2D Eu
equation, and Helmholtz’s vorticity theorems allow one
reduce the dynamics of such a flow to a Hamiltonian syst
with N degrees of freedom, whereN is the number of vorti-
ces. We denote the coordinates of the vortices in the plan
xm and ym , and their strengths askm . It is convenient to
introduce complex coordinate:z5x1 iy , and to specify the
positions of the vortices by means of complex-valued fu
tions of time: zm(t)5xm(t)1 iym(t), m51, . . . ,N. Then,
for the unbounded domain, the motion of the vortices will
governed by the equations@42,34#

żm* 5
1

2p i (
j Þm

kj

zm2zj
~m, j 51, . . . ,N!. ~2.1!

Below we consider the system of three-point vortices
equal strengthk[km , m51, 2, and 3. The dynamics o
three-point vortices was studied extensively by several
thors, and by now we have a complete description of mot
types for arbitrary vortex strengths@43–46#. For the conve-
nience of our readers, we will briefly outline the solution
Eq. ~2.1! for the case of three identical vortices, followin
the method of Ref.@34#. For vortices of different strength, in
order to put Eq.~2.1! into Hamiltonian form, physical coor-
dinates should be rescaled, which can be done in diffe
ways; see for example, Refs.@14,34,47#. In the case of iden-
tical vortices, canonical coordinates coincide with the phy
cal coordinates in the plane, and Eqs.~2.1! have a Hamil-
tonian form:
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żm* 5@zm* ,H#5
k

2p i (
j Þm

1

zm2zj
~m, j 51,2,3!,

~2.2!

with a Hamiltonian function

H52
k

4p (
j Þm

lnuzm2zj u2 ~2.3!

and fundamental Poisson bracket

@zm ,zj #50, @zm ,zj* #522idm j . ~2.4!

As a result of translational and rotational invariance of
Hamiltonian~2.3!, vortex ‘‘momentum’’

Q1 iP[(
j 51

3

zj ~2.5!

and ‘‘angular momentum’’

L2[(
j 51

3

uzj u2 ~2.6!

are conserved during the motion. Using Eq.~2.4!, one can
form three integrals in involution for system~2.2!; they are
H, L2, andQ21P2. Thus the Liouville theorem guarantee
the integrability of Eq.~2.2!. Components of the vortex mo
mentum Q and P define the coordinates of the center
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vorticity, and below, by placing the origin of coordinate sy
tem in this point, we will putQ5P50. With this choice of
the coordinate origin,L2 equals to the average squared d
tance between the vortices:

L25 1
3 (

j .m
uzj2zmu2 ~ j ,m51,2,3!. ~2.7!

This defines the spatial scale of the motion, and can be m
equal to 1 by an appropriate rescaling of coordinatesz
→z/L. The vortex strengthk also can be scaled out by re
defining the time variable:t→(k/L2)t. The only parameter
that distinguishes different types of motion is the value of
HamiltonianH, which can be related to the geometry of th
vortex configuration, e.g., to the product of side lengths
the vortex triangleL:

e22pH5L[uz12z2uuz22z3uuz32z1u, ~2.8!

written in the dimensionless form withk5L51. These pa-
rameters vary fromH50 andL51, when vortices stay in
the vertices of uniformly rotating equilateral triangle, up
the limiting valuesH5` andL50, when two of the three
vortices coalesce.

It is shown in Appendix A how system~2.1! can be re-
duced to Eq.~A19! for the ‘‘area variable’’ I (t), propor-
tional to the square of the area of the triangle spanned
vortices @see definition~A17!#, and eventually, solved in
quadratures. The solution has the form
zm~ t !5621/2Leif2/2@~12I 1/2!1/2e22p i ~m21!/3e2 if1/21~11I 1/2!1/2e24p i ~m21!/3eif1/2#, m51,2,3, ~2.9!
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with expressions forI (t), f1(t), andf2(t) given in Appen-
dix A @formulas~A24!, ~A30!, and~A32!#. This form will be
used in Secs. III and IV to find the domains of regular a
chaotic advection of the flow produced by three vortices.

The relative motion of vortices is described by the term
square brackets in Eq.~2.9!, and is periodic for anyL except
for the separatrix caseL5Lc[1/& @see Eq.~A24!#; its
periodTrel is given by Eq.~A29!. Characteristic features o
the two types of relative motion~L.Lc and L,Lc! are
described in considerable detail in Refs.@43,26#. We point
out, that, for the ‘‘triangular’’ case,L.Lc , the vortex con-
figuration oscillates between two isosceles triangles—
acute one, when the area of the triangle reaches its m
mum; and an obtuse one with minimum area. During o
period of relative motion, each of these shapes is repe
three times, corresponding to three different cyclic permu
tions of vortices in the vertices of the triangle. Vortices nev
reach a collinear configuration, and the orientation of vor
triangle s, defined ass511 for the counterclockwise ar
rangement of vortices 1, 2, and 3 along the perimeter of
vortex triangle, ands521 for the clockwise arrangemen
does not change during the motion. All three vortices
equivalent; the trajectory of each one can be obtained f
the trajectory of the others by a symmetry transformat
consisting of a rotation and a time shift~see Ref.@48#!. The
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relative motion of vortices in the ‘‘two plus one’’ case,L
,Lc , is distinctly different from the caseLc,L. Now the
shape of the vortex triangle oscillates between two congru
acute isosceles triangles with different orientations, pass
through the linear configuration in the midway. There is
longer any equivalence between the three vortices—on
them becomes special; it always stays in the sharp corne
the triangle, never coming as close to either of the other
as they come to each other.

The overall motion is quasiperiodic, since after one per
of relative motion a vortex triangle is rotated by a certa
angleQ~L! @see Eq.~A33!#, which is in general incommen
surate with 2p. It is convenient to consider vortex motion i
a reference frame, corotating with vortices with frequen
V(L)[Q(L)/Trel . Trajectories of vortices in the corotatin
frame, which we denote asz̃m(t), are simply related to the
laboratory frame trajectories:

z̃m~ t !5zm~ t !e2 iVt, m51,2,3. ~2.10!

They satisfy

z8m* 5
k

2p i (
j Þm

1

z̃m2 z̃j
1 iV z̃m* , ~2.11!
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and are periodic with periodTrel .
Once vortex trajectories are found, the flow field is co

pletely specified. Its stream function is given by a sum
stream functions corresponding to individual vortices@42#:

C~z,z* ,t !52
k

4p (
m51

3

lnuz2zm~ t !u2. ~2.12!

The advection equation~1.2! takes the form

ż* 5@z* ,C#5
k

2p i (
m51

3
1

z2zm~ t !
, ~2.13!

wherez5x1 iy is a complex coordinate of the tracer pa
ticle. In the corotating frame, Eq.~2.13! transforms to

z8* 5@ z̃* ,C̃#5
k

2p i (
m51

3
1

z̃2 z̃m
1 iV z̃* , ~2.14!

where z̃5ze2 iVt is the tracer coordinate in the corotatin
frame, and

C̃~ z̃,z̃* ,t !52
k

4p (
j 51

3

lnuz̃2 z̃j~ t !u21
V

2
z̃z̃* ~2.15!

is the stream function@Eq. ~2.12!#, with an additional term
corresponding to rotational ‘‘energy.’’ Due to the periodici
of the vortex motion in the corotating frame,C̃ is also peri-
odic with periodTrel , and therefore Eq.~2.14! represents a
periodically forced Hamiltonian system. The character of
tracer particle motion~regular or chaotic! depends on the
geometry of the vortex flow~specified byL!, and on the
initial position of the tracer relative to the vortices. The p
riodicity of the flow ~in the corotating frame! enables us to
construct a Poincare´ map of tracer trajectories, and visualiz
the structure of the advection phase space~z̃ plane!.

Below, we will give a brief description of the vortex mo
tion and the resulting advection pattern for different valu
of L. We start from a ‘‘triangular’’ type of vortex geometry
Lc,L,1. For the lowest energy configuration,H50, L
51, there is no relative motion—in the corotating frame vo
tices just stay in the vertices of equilateral triangle. Adve
tion in this case is regular@Fig. 1~a!#. For H close to zero~L
close to 1!, vortices perform small near-circular oscillation
around the vertices of the equilibrium triangle, destroyi
separatrices of Fig. 1~a!. Two stochastic layers are formed
their place. Due to the fact that original separatrices are v
close to each other, these two stochastic layers merge
gether for fairly small deviation of vortices from equilib
rium; see Fig. 1~b!. The domain of chaotic advection grow
rapidly asL decreases; a well-developed stochastic sea
ready exists forL50.990 656@Fig. 1~c!#. A typical phase
portrait of the advection in the caseL.Lc @Fig. 1~d!# is
characterized by a large connected region of chaotic mo
with immersed islands where regular dynamics domina
Three islands around the vortices~vortex cores! are easily
distinguished: they have a smooth, near circular border,
are robust—they exist for anyL. Among the near-circular
KAM curves filling the inside area of the cores there are a
of narrow resonant islands@Fig. 1~d!# ~see Sec. V Fig. 6 for
-
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details!. The other type of island, which we will refer to as a
elliptic island, is as a rule irregularly shaped and extrem
sensitive to the smallest variations inL.

The strongest chaotization occurs whenL approachesLc
@Fig. 1~e!#. All elliptic islands dissolve in the stochastic se
and the only structures remaining are vortex cores. A
passing through the valueL5Lc the advection pattern
changes abruptly due to the change of vortex mot
symmetry—now one of the vortex cores is essentially lar
then the other two@compare Figs. 1~e! and 1~f!#. As L be-
comes smaller, elliptic islands reappear and grow, the reg
core around the isolated vortex becomes larger, and the c
around the other two vortices becomes smaller as vort
come closer to each other@Fig. 1~g!#. When L approaches
zero, the advection pattern starts to resemble the regula
vection in the field of two point vortices with strengthsk1
5k andk252k @Fig. 1~h!#. However, the region around tw
coalescing vortices~with linear size of orderL! has a com-
plex structure for anyL: inside, there are two vortex core
separated by a thin stochastic layer from each other,
from a band of regular trajectories going around bo
vortices—this piece can be regarded as advection in the
of two vortices slightly perturbed by the third vortex~in
particular, this perturbation is responsible for the splitting
the inner separatrix!. Around it there is a transition region
from scaleL to scaleL filled with a chaotic sea.

III. CASE OF STRONGLY CHAOTIC ADVECTION

Phase portraits, presented in Sec. II, show that, in
immediate neighborhood of vortices, advection is alwa
predominantly regular—fluid around a vortex forms a coh
ent structure moving together with it. What determines
size of such a core? A general observation@27# is that the
size of the vortex core is approximately equal to the mi
mum distance between the vortex and the nearest hyperb
point of the system of streamlines, which in the case of id
tical vortices is about half of the minimum distance betwe
two vortices during their motion. Chaotization of the pass
particles, moving together with the core, can be achie
only by a direct ‘‘hit’’ by another core. In other words, ther
is no long-range chaotization; inside the cores motion
regular, apart from thin stochastic layers near the bord
Why does this happen, and to what extent it is true? In t
section we will answer these questions, based on an ana
of the advection in three-vortex system~2.2! in the case of
‘‘strong chaos,’’ whenL'Lc .

Vortex cores are filled with regular orbits, whose shape
close to circular, so we may speak about the radius of th
orbits. Let us define the radius of vortex corezc as the radius
of the last~most external! regular orbit in the core. Our aim
is to obtain an analytical expression forzc , and investigate
its behavior as a function of the vortex flow parameterL.
Consider such a core around a particular vortex numbe
with m5p. Since we are interested in the relative motion
the tracer with respect to the vortex in the center of the co
it is convenient to consider the tracer dynamics in the re
ence frame moving with this vortex. To do so, we introdu
the displacement of the tracer from the vortex~in the coro-
tating frame!,

z[ z̃2 z̃p , ~3.1!
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FIG. 1. Poincare´ sections of passive particle trajectories:~a! Regular advection forL51 ~vortices form uniformly equilateral rotating
triangle!. ~b! Destruction of separatrices and onset of chaotic advection,L5129.631027. ~c! L50.990 656; large mixing region alread
exists.~d! Typical advection pattern,L50.752 192. Arcs inside vortex cores are narrow resonant islands; see Fig. 6 for details.~e! and~f!
Strong chaotization forL'Lc : ~e! L50.707 109.Lc ; ~f! L50.707 1066 8,Lc . ~g! L50605 247; a permeable barrier separates
atmosphere around the vortex pair from the rest of the mixing region.~h! L50.353 088.
u

b nly
and make a canonical transformation to new coordinates
ing the generating function

F2~ z̃,z* !5„z̃2 z̃p~ t !…z* 1 z̃z̃p~ t !. ~3.2!

The advection equation~2.14! takes the form

ż* 5@z* ,F#5
k

2p i F1

z
1 (

mÞp
S 1

z2 z̃mp
1

1

z̃mp
D G

1 iVz* ~m51,2,3!, ~3.3!

where we have denoted the relative positions of vortices

z̃mp[ z̃m2 z̃p . ~3.4!
s-

y

The new stream function is

F5C̃1 i /2
]F2

]t

52
k

4p F lnuzu21 (
mÞp

S lnuz2 z̃mpu21
z

z̃mp
1

z*

z̃mp* D G
1

V

2
zz* , ~3.5!

where we have dropped the irrelevant term depending o
on time, and expressed the velocity of the vortexz8 p(t) using
Eq. ~2.11!.
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FIG. 1. ~Continued!.
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The dynamics of the three-vortex system enters into
~3.5!. through relative vortex positionsz̃mp(t). In the case
under consideration, whenL'Lc , vortices move in a typi-
cal near-separatrix fashion—they stay for a long time in
neighborhood of saddle points, periodically performing re
tively fast solitonlike rearrangements~flips!. Thus the vortex
motion has two time scales—an interval between the flipsT,
which is of the order of the period of relative motion@it is
equal toT[Trel/3 for L.Lc , andT[Trel/2 for L,Lc ; see
Eqs.~A27! and~A29!#, and the time width of the flipts @see
Eq. ~A28!#:

ts[
p

3)
, ~3.6!

where we setk51 and L51. As L approachesLc , the
interval between the flips grows logarithmically:Trel; lnuL
2Lcu21 @see Eq.~A27!#, and we have
q.

e
-

T@ts. ~3.7!

During the time between the flips,z̃mp are essentially con-
stant, and Eq.~3.5! has no explicit time dependence. Th
suggests the following strategy. First we introduce actio
angle variables (I ,c) for Hamiltonian~3.5!, considering the
vortex motion to be frozen, i.e., treatingz̃mp as fixed param-
eters. Let us denote by (I n ,cn) the values of the action an
the angle right before thenth vortex flip. Our next step is to
construct a ‘‘flip map’’

T̂:~ I n11 ,cn11!5T̂~ I n ,cn! ~3.8!

relating the values of action-angle pair (I ,c) before two con-
sequitive flips. Finally, we will apply the stochasticity crite
rion for area-preserving maps to Eq.~3.8!, and find the value
of I 5I c when regular trajectories around the vortex bre
down.
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Below, we briefly outline necessary calculations, leav
some details for Appendix B. For the tracers inside the co
the distance to the center of the coreuzu is always smaller
than the distance between two vorticesuz̃mpu, and we can
formally useuz/ z̃mpu as a small parameter. To indicate th
real small parameter, we have to look at the time scale of
tracer motion and compare it to the vortex flip widthts . The
tracer in the core rotates with the angular frequencyv in-
versely proportional to the square of the distance to the v
tex @see Eq.~3.15! below#. Since the tracer is much closer
the central vortex than the vortices are to each other,
rotation is fast compared to the typical vortex timets , and
we may write, for all three time scales of the problem,

T@ts@v21. ~3.9!

An important implication of the second inequality in E
~3.9! is that the time dependence of stream function~3.5! is
adiabatic, sincez̃mp vary much more slowly than the chara
teristic time of the tracer motion. The adiabaticity parame

~vts!
21!1 ~3.10!

is a real small parameter of the problem.
We start by splitting stream function~3.5! into two parts

~putting vortex strengthk51!:

F~z,z* ,t !5H0~z,z* !1H1~z,z* ,t !, ~3.11!

whereH0 is an autonomous part,

H0~z,z* !52
1

4p
lnuzu21

1

2
Vuzu2, ~3.12!

andH1 depends on time through parametersz̃mp(t):

H1~z,z* ,t !52
1

4p (
mÞp

3 S lnuz2 z̃mpu21
z

z̃mp
1

z*

z̃mp* D . ~3.13!

Note thatH1 is of second order inuz/ z̃mpu; see Eq.~B10!. In
the zero-order approximation we dropH1 , and consider the
motion governed by the time-independent Hamilton
~3.12!. In this case solutions are circular rotations,

z5z0eivt1u~0!
, ~3.14!

with the frequency

v~J!5
1

2pz0
22V5

1

4puJu
2V, ~3.15!

where the zeroth order action variableJ is defined by

J5
i

8p R ~z* dz2zdz* !52
1

2
z0

2, ~3.16!

and the zeroth order angle~which is just a polar angle in the
z-plane! asu:

u5arg z. ~3.17!

This approximation is too crude for our purpose—the eff
of the other two vortices is completely neglected. To move
e,

e

r-

ts

r

t
o

the next order, we rewrite stream function~3.11! in variables
(J,u) @see Eqs.~B2! and ~B3!#, and look for a canonica
transformation to new variables (J̄,ū), such that dependenc
of F on ū is eliminated in the lowest order inuz/ z̃mpu. The
required transformation is given by the generating funct
~see Appendix B!

S~ J̄,u;t !5 J̄u1F 1

8p iv~J! (
mÞp

u2J̄ue2iu

z̃mp
2 1c.c.G ,

~3.18!

where the new actionJ̄ is related to the old oneJ by

J̄5J1F 1

4pv~J! (
mÞp

u2Jue2iu

z̃mp
2 1c.c.G . ~3.19!

The generating function~3.18! depends explicitly on time
through relative vortex positionsz̃mp(t). The new Hamil-
tonian, describing tracer dynamics, is given by

H̃~ J̄,ū,t !5F~ J̄,ū,t !1
]S

]t
~ J̄,ū,t !. ~3.20!

The equation for the evolution of the adiabatic invariant f
lows immediately from Eqs.~3.20! and ~3.18!:

JG 52
]H̃

]ū
~ J̄,t !52

]2S

]ū]t
~ J̄,ū,t !

5
u2Ju

2pv~J!
F (

mÞp
e2iu

z8mp

z̃mp
3

1c.c.G , ~3.21!

where we have replacedū by u on the right-hand side with
an accuracy of the first approximation.

The rate of change ofJ̄ is practically zero when vortices
stay near the saddle point, and the relative vortex veloci
z8mp are negligible. The total change ofJ̄ during the vortex
flip can be evaluated by integrating right side of Eq.~3.21!
through the time of the flip:

D J̄~J,u~0!!5E
Dt

JG dt5
u2Ju

2pv~J!
@e2iu~0!

A~J!1c.c.#,

~3.22!

where

A~J![E
Dt

e2iv~J!t (
mÞp

z8mp

z̃mp
3 dt, ~3.23!

and the unperturbed tracer trajectory@Eq. ~3.14!# is substi-
tuted under the integral. Note that we can use relative vo
positions for the separatrix vortex motionL5Lc in Eq.
~3.23!, i.e., setz̃mp(t;L)5 z̃mp(t;Lc) and extend the integra
tion to 6`, since during the time of the flip they are prac
cally indistinguishable from each other. Now we can clo
the contour of integration, and the integral in Eq.~3.23! will
be given by the sum of contributions from singular points
the upper part of the complex plane. Due to the fast deca
the integrand up in the complex plane@v is large; see Eq.
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~3.10!#, it is enough to take only the singularity, which
closest to the real axis. It turns out to be at the point

t05 i
pts

2
5 i

p2

6)
, ~3.24!

and, for integral~3.23!, we obtain

A~J!5Apv~J!e2pv~J!ts, ~3.25!

where constantsAp , depending on the particular vortex an
particular flip, were evaluated numerically:

uApu5 H A1'148 corner-center flip
A2'2.4 corner-corner flip; ~3.26!

here the first valueA1 should be taken when the vortex und
consideration stays near the central equilibriumz̃p50 before
or after the flip, and the second valueA2 when it stays out-
side.

The flip-map~3.8! now can be written

Jn115Jn1D J̄~Jn ,un!,
un115un1v~Jn11!T~L!,

~3.27!

with D J̄ defined by Eq.~3.22! andv(J) by Eq. ~3.15!.
To find whether a trajectory with a given initial value ofJ

is regular or chaotic, we note that the change of the adiab
invariant per pulse@Eq. ~3.22!# is small, and the chaotizatio
occurs mainly due to phase instability, so the stochasti
criterion can be written in a form@10#

K[ max
uP@0,2p#

Udun11

dun
21U.1. ~3.28!

For the flip map~3.27!, this gives

K5 max
uP@0,2p#

Udv~J!

dJ
T~L!

dD J̄~Jn ,un!

dun
U.1. ~3.29!

From Eq.~3.22!, we obtain

max
uP@0,2p#

UdD J̄~Jn ,un!

dun
U52

u2Ju
pv~J!

uA~J!u, ~3.30!

and Eqs.~3.15! and ~3.16! give

dv~J!

dJ
5

1

4pJ2
. ~3.31!

After substitution of Eqs.~3.30! and ~3.31! into Eq. ~3.29!,
we arrive at the following condition for the motion of th
tracer to be chaotic:

K5
uApuexp„2pv~J!ts…

p2uJu
T~L!.1. ~3.32!

To obtain the final form of Eq.~3.32!, we have to substitute
the frequency of the tracer rotationv(J) from Eq. ~3.15!.
For the frequency of overall rotationV~L!, entering into Eq.
~3.15!, we can use its value atL5Lc , i.e., to setV(L)
tic

ty

5V(Lc)53/(2p). ~The inaccuracy of the final result intro
duced by this substitution turns out to be negligible.! Thus,
the tracer rotation frequency is given by

v~J!5
1

4puJu
2

3

2p
. ~3.33!

The stochasticity criterion~3.32!, rewritten in terms of the
tracer orbit radiusz5A2uJu, takes the form

K5
2uApuexp~p)/6!

p2z2
expS 2

p

6)z2D T~L!.1,

~3.34!

where we have used Eqs.~3.6! and ~3.33!.
In the limit of small orbit radius (z→0), K is exponen-

tially small, and motion is regular no matter what the para
eters of the problem are. Chaotization occurs only for
orbits with radiusz.zc , where the critical radiuszc ~radius
of the regular vortex core! is defined by

K~zc!51. ~3.35!

Using Eq.~3.34!, we obtain the following equation for the
radius of the vortex core:

zc
2expS 2

p

6)z2D 5
2uApuexp~p)/6!

p2
T~L!. ~3.36!

Note that Eq.~3.36! has no solutions if the right-hand side
less thanCmin5pe)/18'0.82 . . . , andthere are two solu-
tions if the right-hand side is larger thanCmin . In our case,
constantsAp are fairly large@see Eq.~3.26!#, and the interval
between the vortex flipsT(L) is bounded from below by a
number of order 1, so the second possibility is realized—
~3.36! has two solutions. It is the smaller one that defines
vortex core radius; the larger one should be discarded, b
out of range of approximations made forz.

The geometry of the background vortex flow enters in
the equation forzc only through the interval between th
vortex flips T(L). This dependence seems quite stron
since T diverges logarithmically whenL→Lc @see Eq.
~A27!#:

T~L!5
2p

3)
lnudLu211C11O~ udLu lnudLu!, ~3.37!

where we have denoteddL[L2Lc . However, the expo-
nential dependence on the left-hand side of Eq.~3.36! makes
the core radius essentially independent ofT(L). In Fig. 2,
we plot solutions of Eq.~3.36! versus the flip intervalT. The
solid line corresponds to the case when the vortex un
consideration participates in corner-center flips, and
should takeuApu5A1 in Eq. ~3.36!. This happens to all three
vortices in the ‘‘triangular’’ caseL.Lc , and to the pair of
vortices which are close to each other in ‘‘two plus one
caseL,Lc . The dashed line gives the radius of the isolat
vortex for L,Lc , when uApu5A2 . In the same picture we
plot several ‘‘experimental’’ values ofzc , obtained by mea-
suring the size of the cores in the numerically construc
Poincare´ section. The error bars are due to the slightly ov
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shape of the real cores—the lower limiting value was tak
as a minimum half-diameter of the core, and the upper a
maximum half-diameter. Experimental values agree with
~3.36! up to 10% accuracy, which is the same accuracy w
which the radius of the core can be defined; however, t
are systematically larger as a result of the approximati
being made while deriving Eq.~3.36!, in particular, the use
of the zeroth order adiabatic invariant@Eq. ~3.16!# to define
the core radius. It is possible to make corrections to
~3.36! using first order adiabatic invariant~3.19! instead of
Eq. ~3.16!; in this case the equation for the core bord
J̃(J,u,z̃mp)5Jc describes an oval, which periodicall
changes its shape with time due to periodic changes
z̃mp(t).

Note that whenT is changed fromT55.04 in Fig. 1~d! to
T516.57 in Fig. 1~e!, the sizes of the cores practically do n
change, while the pattern of elliptic islands becomes tota
different with the smallest change inT. On the other hand
when we pass from Fig. 1~e! (L.Lc) to Fig. 1~f!
(L,Lc), there is a drastic increase in the radius of one
the cores due to the change in the type of its motion.

In the limiting casedL→0, the right-hand side of Eq
~3.36! becomes large due to the logarithmical growth ofT,
and within a good approximation we can write an expli
formula for the core radius in terms of the geometrical p
rameter of vortex motiondL:

zc5F p)

18~ ln lnudLu211 ln 4C2!
G 1/2

, ~3.38!

where

C252uApuexp~p)/6!/p2. ~3.39!

Formulas~3.36! and ~3.38! indicate that the core radiu
should tend to zero asdL→0 andT→`. Thus, in principle,
regular cores around vortices can become much smaller
the half-distance between the vortices—the chaotic sea
reach any orbit with a finite radius. Nothing like this happe

FIG. 2. Radius of the coherent core around vortices vs. inte
between vortex flipsT(L). Dashed line—radius of the outside vo
tex core~only for L,Lc andm51! according to Eq.~3.36!. Two
data points for this case~stars! correspond toL50.707 097 897,
T514.80 andL50.707 106 780 96,T527.60. Solid line—radius
of the vortex core in other cases@according to Eq.~3.36!#. Data
points ~diamonds! correspond toL50.707 108 878,T516.54 and
L50.707 106 783 15,T524.97.
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in practice; direct simulation of the advection equati
shows no visible variation of the core size as the initial p
sitions of vortices are taken to be closer and closer to
critical configuration@see Fig. 1~d!, where dL'531022;
and Fig. 1~e!, wheredL'231026#. The form of the asymp-
totics of zc provides an explanation for this effect—zc de-
creases extremely slowly, asL→Lc @note the double loga-
rithm in Eq. ~3.38!#, and the accuracy of the simulation
insufficient to notice any significant decrease in core rad
Even machine precision calculation~dL;10216, T'45!
will result in less than a 10% change ofzc .

The radius of the external boundary of the mixing regi
can be found in a similar way. The flow field, generated
vortices far from the center of vorticity, is close to that of
single point vortex of strength 3k located at the origin. For
particles near the outer border of chaotic region, we can c
sider the ratiouz̃mp / z̃u as a small parameter. This suggests
following splitting of the stream function~2.15! into a main
time-independent part and perturbation,

C̃~ z̃,z̃* ,t !5H0~ z̃,z̃* !1H1~ z̃,z̃* ,t !, ~3.40!

with @settingk51 and substitutingV5V(Lc)53/2p#

H0~ z̃,z̃* !52
3

4p (
j 51

3

lnuz̃u21
3

4p
uz̃u2 ~3.41!

and

H1~ z̃,z̃* ,t !52
1

4p (
j 51

3

lnu12 z̃j~ t !/ z̃u2. ~3.42!

The unperturbed part@Eq. ~3.41!# describes circular rota
tions in the field of a point vortex of triple strength:

z̃~ t !5Reiv~R!t1u~0!
5A2uJueiv~J!t1u~0!

, ~3.43!

with frequency

v~J!52
3

2p
~121/R2!52

3

2p
~122/uJu!, ~3.44!

where action-angle variables (J,u) are defined in a way
similar to Eqs.~3.16! and ~3.17!:

J52uz̃u2/2, u5arg z̃. ~3.45!

Expanding the logarithm in Eq.~3.42! in powers ofz̃j / z̃,
we obtain, in the lowest order,

H1~ z̃,z̃* ,t !52
1

8p (
j 51

3

„z̃j
2~ t !/ z̃21c.c.…

52
1

16puJu (
j 51

3

„z̃j
2~ t !e22iu1c.c.….

~3.46!

Note that first order terms cancel due to the conservation
the center of vorticity@Eq. ~2.5!#.

The dependence of the Hamiltonian on the angle varia
can be eliminated by a canonical transformation to the n

al



n

is

,

e

h

on
d

he
in-
ion.

-
-
the
ill
e
he

the
d

ces,

e

ase.

PRE 58 7339REGULAR AND CHAOTIC ADVECTION IN THE FLOW . . .
variables (J̄,ū). The corresponding generating functio
S( J̄,u;t) can be found from@compare to Eqs.~3.18! and
~B11!#

v~ J̄!
]S

]u
52H1. ~3.47!

~The averaged part of perturbation^H1&50 in this case, and
$H1%5H1.! The dynamics of the new action variable
given by @compare to Eq.~3.21!#

JG 52
]2S

]ū]t
~ J̄,ū,t !5

1

8pv~J!uJu
F (

j 51

3

e22iuz8 j z̃j1c.c.G ,

~3.48!

where ū is replaced byu in the same way as in Eq.~3.21!.
The change of action during the vortex flip is

D J̄~J,u~0!!5E
Dt

JG dt5
k

8pv~J!uJu @e2iu~0!
B~J!1c.c.#,

~3.49!

where

B~J![E
2`

`

e22iv~J!tS (
j 51

3

z8 j~ t;Lc!z̃j~ t;Lc!D dt.

~3.50!

We use separatrix (L5Lc) values for vortex trajectories
and extend the integration limit in Eq.~3.50! in the same
manner as we did for Eq.~3.23!.

In contrast with Eq. ~3.23!, integral ~3.50! depends
weakly on J if the passive particle is not too close to th
origin. For such particles, the advection frequencyv(J) @in
the corotating frame; see Eq.~3.44!# is close to its limiting
value

v~J!'2V523/2p, ~3.51!

and we can approximateB(J) by B(`), which is evaluated
numerically:

B~J!'B[E
2`

`

e23i t /p(
j 51

3

z8 j~ t;Lc!z̃j~ t;Lc!dt

50.41101 . . . . ~3.52!

The flip map for the far region now can be written

Jn115Jn1B„4pv~J!uJu…21cos 2un ,

un115un1v~Jn11!T~L!, ~3.53!

where v(J) is given by Eq.~3.44!. Stochasticity criterion
~3.28!, applied to Eq.~3.53!, gives the following equation for
the boundary value of actionJc :

K~Jc!5
BT~L!

puJcu3
51. ~3.54!

The radius of the mixing regionRmax[A2uJcu is equal to
Rmax5S 4BT~L!

p D 1/6

. ~3.55!

For L'Lc , a typical value of the vortex flip intervalT
516 givesRmax51.60. This agrees within 10% error wit
the results of direct simulation; see Figs. 1~e! and 1~f!. The
asymptotics of Eq.~3.55! for L→Lc can be obtained, using
Eq. ~3.37!:

Rmax5S 8B lnudLu

3)
D 1/6

; ~3.56!

this indicates a slow growth of the size of the mixing regi
as L→Lc and T→`. This tendency is more pronounce
then the asymptotic decrease ofzc given by Eq.~3.38!, and
can be verified numerically, but to a very limited extent—t
value ofRmax stays between 1.5 and 1.7, and its further
crease is checked by the finite accuracy of the computat

IV. CASE OF WEAK CHAOS, L'1

When the vortex configuration is close to one of the lim
iting casesL'0 or L'1, the amplitude of the vortex mo
tion in the corotating frame is small, and the advection in
resulting flow field is predominantly regular. Below, we w
consider the onset of chaotic tracer dynamics in the casL
'1, when vortices perform small oscillations around t
equilibrium equilateral triangular configuration~Fig. 3!. The
appearance of chaotic trajectories in the area around
separatrices of the integrable caseL51 can be demonstrate
analytically @12#, via the Melnikov method@35#, and the
width of stochastic layers, replacing destroyed separatri
can be found using the separatrix map@41,10# ~see also Ref.
@49#!.

Vortices are in a stable equilibrium whenL51; their
positions in a corotating frame are constant@indeed, Eq.
~A24! yields I (t)[1, and the rest follows from Eq.~2.9!#:

z̃m~ t !5
L

)
e2~4p i /3!~m21! ~m51,2,3!. ~4.1!

The stream function of the flow in the corotating frame@Eq.
~2.15!# has no explicit time dependence, and is equal to

C̃0~ z̃,z̃* ![2
k

4p
lnuz̃32r3u21

V

2
uz̃u2, ~4.2!

where the frequency of the overall rotationV is

V5
3k

2pL2 , ~4.3!

and we have denoted byr the distance from vortices to th
origin:

r[L/). ~4.4!

Advection is regular—tracers follow the level lines ofC̃0 .
Figure 3 shows singular points and separatrices of this c

Below we consider the deviation ofL from unity,
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e[12L, ~4.5!

as a small parameter, and look at the advection for the c
e!1. In the lowest order ine, corrections toz̃m(t) can be
found by consequitive expansion of the corresponding
mulas of Appendix A~see Appendix C for details; compar
to Ref. @12#!:

z̃m~ t !5
L

)
Fe2~4p i /3!~m21!1S 2e

3 D 1/2

3e2~2p i /3!~m21!e2 iVtG , m51,2,3. ~4.6!

Up to this order the stream function of the flow in the rot
ing frame is:

C̃~ z̃,z̃* ,t !52
k

4p
lnuz̃32r31~6e!1/2e2 iVtz̃r2u2

1
V

2
uz̃u21O~e!. ~4.7!

If we stay out of the immediate neighborhood of the vo
tices, i.e.,uz̃2 z̃mu/L@Ae, m51, 2, and 3, we can expan
Eq. ~4.7!, and rewrite it as

C̃~ z̃,z̃* ,t !5C̃0~ z̃,z̃* !1e1/2C̃1~ z̃,z̃* ,t !1O~e!, ~4.8!

where the autonomous partC̃0( z̃,z̃* ) is given by Eq.~4.2!,
and the perturbation is

C̃1~ z̃,z̃* ,t ![2
k

4p
61/2S z̃r2

z̃32r3 e2 iVt1c.c.D . ~4.9!

Equations of the tracer motion following from Eq.~4.8! are

FIG. 3. Stable vortex triangleL51. Separatrices of the stream
function @Eq. ~4.2!#. Asterisks—vortex positions@Eq. ~4.1!#; solid
circles—hyperbolic points@Eqs.~4.11! and ~4.12!#.
se

r-

-

-

z8* 5@ z̃* ,C̃#5
k

2p i

3z̃2

z̃32r3 1 iV z̃*

2
k

2p i
~6e!1/2

r2~r312z̃3!

~ z̃32r3!2 e2 iVt.

~4.10!

Below we setk51 andL51. The unperturbed system~L
51, e50! has two sets of three saddle points~see Fig. 3!,
which we denote as

z̃s,1~m!5
2

)
cos

4p

9
exp„p i /312~m21/2!ip/3…,

m51,2,3 ~4.11!

z̃s,2~m!5
2

)
cos

p

9
exp„2~m21!ip/3…, m51,2,3.

~4.12!

Corresponding values of separatrix energyC̃0 are

C1
s[2

1

4p
lnuz̃s,1

3 2r3u21
3

4p
uz̃s,1u2'0.2681,

~4.13!

C2
s[2

1

4p
lnuz̃s,2

3 2r3u21
3

4p
uz̃s,2u2'0.2653.

~4.14!

For eÞ0, near-separatrix motion becomes chaotic.
find the width of the chaotic layers, we construct the sepa
trix map in a usual way: we define a pair (hn ,tn), wherehn
is the deviation of the unperturbed stream function from
separatrix value,

hn[C̃02C l
s , l 51,2, ~4.15!

at the point when the advected particle comes closest to
saddle point in itsnth passage through the saddle po
neighborhood, andtn is the moment of the center of the ne
velocity pulse. The dynamics of the above defined variab
is governed by the mapping T̂sep: (hn11 ,tn11)
5T̂sep(hn ,tn), which has the forms@41,10#

hn115hn1Dh~ tn ;sn!,

tn115tn1p/v~hn11!. ~4.16!

The change in energy per pulseDh is given by the Melnikov
integral

Dh~tn ;sn![e1/2E
tn2`

tn1`

$C̃0 ,C̃1%„z̃sn

sep~ t2t0!,t…dt

~4.17!

52i e1/2E
tn2`

tn1`S ]C̃0

] z̃

]C̃1

] z̃*
2c.c.D

3„z̃sn

sep~ t2t0!,t…dt, ~4.18!
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where the sign variablesn561 indicates on which branch
the separatrix solutionz̃sn

sep(t2t0) should be taken. Expres

sions forDh(tn ;sn) andv(h) ~asymptotic for smallh! are
derived in Appendix C@see Eqs.~C16! and ~C12!#:

Dh~ tn ;sn!5
k

p
~6e!1/2r2sin VtnMsn

, ~4.19!

v~h!'
2pl

lnuhu21 , ~4.20!

where constantsl andMsn
, evaluated numerically, are liste

in Appendix C. The width of the stochastic layers is fou
from the equation~see Refs.@41,10#!

maxUdtn11

dtn
21U5max

p

v2 Udv

dh

dDh~ tn!

dtn
U'1. ~4.21!

Using Eqs.~4.19! and ~4.20!, we obtain the full width~both
sides of separatrix! of the stochastic layer in the stream fun
tion:

hsl5
A6~M 11M 2!

4p2l
e1/2. ~4.22!

Substitution of the constants@see Eqs.~4.20!, ~C18!, and
~C19!# yields, for the first~inner! set of three saddle points

hsl,150.33e1/2; ~4.23!

and, for the second~outer!,

hsl,250.29e1/2. ~4.24!

The visible width of the layer, i.e., its space width on a pla
near the saddle points, is given by

Dx5uhsl /C9u1/2, ~4.25!

where the derivative is taken along the direction transve
to the bisectrix of the angle between the separatrices.
separatrices of the system are very close to each other
Figs. 3 and 4 and Eqs.~4.13! and ~4.14!; for fairly small e
5e0;1026, their stochastic layers merge together@see Fig.
1~b!#, which puts a limit on the use of Eq.~4.22!. We also
have to keep in mind, that in reality the stochastic layer d
not grow smoothly, but step by step, absorbing thin stoch
tic layers around the island chains of the resonances
outside the main layer. Figure 4~b! shows a closeup of the
outer stochastic layer near the saddle point fore5
2.431027. Its width agrees with Eq.~4.25! up to the factor
1.5.

V. STRUCTURES IN THE ADVECTION PATTERN

The Hamiltonian form of advection equation~1.2! allows
one to identify the coordinates of the passive particle w
the canonical pair ‘‘coordinate-momentum,’’ and the flo
plane can naturally be regarded as a phase space of a H
tonian system with 112 degrees of freedom. In general, th
phase space of such systems is highly nonuniform, and h
multiscale hierarchy of topological structures. Roughly it c
,

al
he
ee

s
s-
st

h

il-

s a
n

be described as domains of chaotic motion~stochastic sea!
mingled with islands, inside which stable quasiperiodic m
tion dominates. Transport of the passive particles in the
chastic sea depends not only on such coarse characterist
the chaotic domain as its size and general shape, but als
the fine scale formations, like singular zones around isla
boundaries, which may act as particle quasitraps and
cially affect all kinetic properties.

A numerically constructed Poincare´ map of the tracer mo-
tion is an expedient tool for a search of fine-scale topolog
structures in the phase space of a Hamiltonial system w
11

2 degrees of freedom. Once it enters into a quasitrap
trajectory has little chance to escape, so it stays there f
long time, resulting in a higher than average point density
this area of the Poincare´ section~dark regions!. The ergodic
property would destroy this effect if the time of computatio
is much longer than trapping time.

We mentioned in Sec. II that the typical advection patte
of the three-point vortex system contains regular islands

FIG. 4. ~a! Stochastic layers forL5(1 – 2.4)31027. ~b! Mag-
nification of the area around the saddle point.
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FIG. 5. ~a!–~c! Hierarchy of islands forL50.709 688.
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two types. Elliptic islands vary considerably in number, si
and shape with small changes in the parameter of the b
ground vortex flow~see Fig. 1!. Their general outlook is very
typical—similar kinds of structures are observed in ma
other cases of Hamiltonian chaos. An important feature
these objects is a singular zone around the boundary, con
ing of a sticky island-around-island chain. The fractal stru
ture of this singular zone may have a strong effect on tra
transport. Several island generations around a large ell
island in Fig. 5~a! (L50.709 688) are presented in Fig
5~b! and 5~c!. Dark bands around the higher order islan
indicate the strong stickiness of these areas. Contrary to
elliptic islands, vortex cores are very robust. As shown
Sec. III in the range of parameter values where the str
chaotization of the tracer motion occurs, the size of th
near-circular islands depends only slightly on the ba
ground flow. The inside area the cores has a structure c
acteristic of the phase space of a near-integrable l
dimensional Hamiltonian system—it is filled with KAM
curves, and stratified with thin stochastic layers; see Fig
,
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6.

Our simulations have shown that in certain range of val
of L, the boundary of the cores exhibits strong stickine
~Fig. 7!. A tracer particle which enters into the region of da
narrow bands around the cores in Fig. 7~a! moves coherently
with the vortex for a long period of time, before bein
ejected back into the mixing region. These bands are
uniform; magnification of a piece of the boundary in Fi
7~b! shows a multitude of small stretched regular subislan
embedded into the background of the chaotic motion. Th
subislands, in turn, have a complex structure, very sensi
to variations of the system parameters. A closeup of one
the subislands is shown in Figs. 7~c! and 7~d! for two close
values ofL.

An interesting effect is observed forL,Lc when two of
the vortices are somewhat isolated from the third. In this c
~excluding the situationL'Lc!, they form a separate struc
ture, with a common boundary which develops from t
separatrix, dividing their cores. When the third vortex
brought closer, this boundary is connected to the main
chastic sea~Fig. 8!, but does not dissolve in it until the third
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vortex is brought even closer, up toL'0.7. This indicates
that, in the multivortex system, a pair of vortices of the sa
sign traveling together, apart from individual cores, posse
common coherent ‘‘atmosphere,’’ and allows one to estim
how close the perturbing vortex should approach the pai
order to break it.

VI. CONCLUSION

Analysis of advection in the flow field of three identic
point vortices, performed in this paper, reveals a numbe
features which are relevant in the case of more general
incompressible flows, and particularly in multivortex sy
tems. The case of three-vortex flow is special—it is one
the simplest systems generating Lagrangian chaos. The
tion of the vortices, specifying the flow, is governed by
Hamiltonian system, which turns out to be integrable due

FIG. 6. ~a! KAM curves inside a vortex core,L50.752 192.
The homoclinic orbit~second from outside! is in fact a narrow
stochastic layer with a complex structure.~b! Magnification of the
piece of this layer in the vicinity of theX point. Two close-by KAM
curves are shown for contrast.
e
a

te
in

f
D

f
o-

o

the sufficient number of independent conservation laws. T
advection equation~1.2!, written in a reference frame coro
tating with vortices, has the structure of a periodically forc
Hamiltonian system, which allows one to carry out its d
tailed analytical and numerical study, using a well develop
methods for Hamiltonian systems with 11

2 degrees of free-
dom. In particular, it is possible to derive an expression
the radius of the mixing region and the radii of the regu
islands around the vortices in the case of strong tracer ch
tization. The formation mechanism of the vortex cores,
rather a reason for their extreme stability, is clear from
derivation: tracers inside the cores spin so rapidly that typ
perturbations turn out to be adiabatic, and are averaged
Inside the cores, tracers move in a typical pattern charac
istic of a near-integrable low-dimensional Hamiltonia
system—the core is filled with near circular KAM curve
narrow resonant islands, and thin stochastic layers.

Among other structures observed in the advection patt
sticky bands around the vortex cores deserve special a
tion. These strong quasitraps affect transport properties
particles in the mixing region—and thus, whenever we ha
a regular core around vortex, we may expect an influenc
its boundary on the kinetic properties. It is tempting to ge
eralize this result for multivortex systems and other flo
with coherent cores around concentrated patches of vortic
However, the numerical construction of Poincare´ sections is
impossible for quasiperiodic and chaotic velocity fields, a
some other method should be used for an analysis of
structure of the core boundaries in this kind of system.
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APPENDIX A: DYNAMICS OF THREE IDENTICAL
POINT VORTICES

Below, we derive the solution of the equations of moti
~2.1! of three point vortices of identical strength and pola
ization using the change of variables introduced in@34#. We
repeat the solution for the area variableI (t) @see Eq.~A17!
below#, presented there, and write expressions for the ‘‘c
figuration angle’’ f1(t) and ‘‘rotation angle’’ f2(t) @see
Eqs.~A30! and~A32!#, thus completely specifying the pos
tions of vortices as functions of time@Eq. ~2.9!#.

Let us start from Eqs.~2.1!, where we can putk51 with-
out loss of generality:

żm* 5
1

2p i (
j Þm

1

~zm2zj !
~ j ,m51,2,3!. ~A1!

Three independent integrals in involution for this system
the Hamiltonian function
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FIG. 7. ~a! Stickiness of the vortex core boundaries,L50.716 66.~b! Magnification of the central part. Thin white areas inside the ba
are regular island structures. Their zoom~stretched in thex direction! is shown for two close vortex geometries:~c! L50.716 82,~d! L
50.716 917.
ose
H52
1

4p (
j Þm

lnuzm2zj u2 ~ j ,m51,2,3!, ~A2!

and two quadratic invariants

Q21P25 (
i , j 51

3

zizj* ~A3!

and

L25(
j 51

3

uzj u2. ~A4!

Quadratic formsQ21P2 and L2 can be simultaneously di
agonalized by a discrete Fourier transform of an array
vortex positions:
-
of

Qn1 iPn[
L

)
(
j 51

3

ei ~2pn/3!~ j 21!zj ~n50,1,2!. ~A5!

Poisson brackets for new canonical variablesQn ,Pn are

@Qn ,Pm#5dnm , @Qn ,Qm#50, @Pn ,Pm#50

~m,n50,1,2!. ~A6!

For n50, transformation~A5! shows thatQ0 andP0 are
proportional to the coordinatesQ and P of the center of
vorticity @Eq. ~2.5!#:

Q05Q/), P05P/), ~A7!

and are identically equal to zero, since we agreed to ch
the origin of coordinates at the center of vorticity.
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We have already reduced the number of variables to o
two pairs (Qn ,Pn), n51, and 2. It is convenient to use pola
coordinates (Jn ,un) instead, defined by

A2Jneiun[Qn1 iPn ~n51,2!. ~A8!

Invariant ~A4! is linear inJ1 andJ2 :

L252~J11J2!. ~A9!

Vortex positions in terms of (Jn ,un) follow from the inverse
of Eq. ~A5!:

zj5
L

)
(
n51

2

A2Jneiune22ipn~ j 21!/3 ~ j 51,2,3!.

~A10!

The Hamiltonian function~A2!, written in new variables, is

H52
1

4p
ln@8„J1

31J2
322~J1J2!3/2cos 3~u22u1!…#,

~A11!

with Poisson brackets

@Jm ,un#5dmn , @Jm ,Jn#50, @um ,un#50 ~m,n51,2!.
~A12!

Since Eq.~A11! depends only on the angle differenc
f1[u22u1 , new canonical variables are useful:

I 15~J22J1!/2, f1[u22u1 ,
~A13!

I 25~J21J1!/2, f2[u21u1 .

It follows from Eq. ~A9! that I 25L2/4 is an integral of mo-
tion. Indeed, a Hamiltonian, expressed in new variables,

FIG. 8. L50.568 000. The vortex pair atmosphere is a coher
structure, traveling with the pair; individual cores are wrapped b
less rigid coherent structure.
ly

H52
1

4p
ln@16„I 2~ I 2

213I 1
2!2~ I 2

22I 1
2!3/2cos 3f1…#,

~A14!

does not depend onf2 . VariableI 1 has a geometrical inter
pretation, which is very helpful in the analysis of the types
vortex motions. From Eqs.~A5!, ~A8!, and~A13! it follows
that

I 15sA123/), ~A15!

whereA123 is the value of the area of the triangle with ve
tices in the current position of the point vortices~vortex tri-
angle!, ands561 is the orientation, which we chose to b
s511 for the counterclockwise arrangement of vortice
with m51, 2, and 3 along the perimeter of the vortex t
angle, ands521 otherwise.

The equation governing the dynamics ofI 1 follows from
Eq. ~A14!:

İ 15
]H

]f1
52

12e4pH

p
~ I 2

22I 1
2!3/2sin 3f1 . ~A16!

The angle variablef1 can be excluded from the above equ
tion, using the conservation of Hamiltonian~A14!. It is con-
venient to introduce a new ‘‘area variable’’

I[~ I 1 /I 2!25 16
3 A123

2 /L4, ~A17!

and use the geometrical parameterL defined in Eq.~2.8!,

L5e22pH, ~A18!

instead of the value of the HamiltonianH. The resulting
equation forI has the form

S dI

dt D 2

52I @ I 316I 213~328L2!I 18L2~2L221!#

[P4~ I ;L! ~A19!

where the rescaled time variablet is

t5
3

2pL2L2
t. ~A20!

t
a

FIG. 9. Roots of the cubic@Eq. ~A21!# vs L.



f
.

-

s

c

.

-
s

nd

e,
the

ion
e-

x-

le

:

nts

7346 PRE 58LEONID KUZNETSOV AND GEORGE M. ZASLAVSKY
The dynamics ofI coincides with the motion of a particle o
mass 2 in the potential2P4(I ;L) with zero total energy, Eq
~A19! being a law of energy conservation.

The potential 2P4(I ;L) has zeros atI 50 and at I
5I (n), whereI (n) is the roots of the cubic in Eq.~A19!:

I ~n!~L!52@~118L2!1/2cos„1
3 ~2pn1d!…21#, n50,1,2,

~A21!

with

cosd~L!5~28L4220L211!/~118L2!3/2. ~A22!

They are always real and satisfyI (1),I (2),I (0). As L grows
from 0 to 1, the largest rootI (0) increases from 0 to 1,I (2)

increases from23 to 1, andI (1) decreases from23 to 28.
At L5Lc51/&, root I (2) crosses zero, this value corre
sponds to the unstable collinear configurationI 50 ~saddle
point! and aperiodic separatrix motion~see Fig. 9!.

To write the solution of Eq.~A19!, we arrange the zero
of the potential in decreasing order, defining

J~0!5I ~0!, J~1!5max$0,I ~2!%,
~A23!

J~2!5min$0,I ~2!%, J~3!5I ~1!.

Now I (t) can be expressed in terms of Jacobi elliptic fun
tions:

I ~t;L!5
J~0!2J~3!a2sn2~gt!

12a2sn2~gt!
, ~A24!

where

a25~J~0!2J~1!!/~J~3!2J~1!!,
~A25!

g5 1
2 „~J~0!2J~2!!~J~1!2J~3!!…1/2,

and the modulus of the Jacobi elliptic function is

k5@~J~0!2J~1!!~J~2!2J~3!!#/@~J~0!2J~2!!~J~1!2J~3!!#.
~A26!

Solution ~A24! is periodic, with a periodT equal to

T~L!5
4pL2L2

3

K~k!

g
, ~A27!

whereK(k) is the complete elliptic integral of the first kind
During the motion,I stays betweenJ(1) and J(0); it never
reaches 0 forL,Lc , and does so periodically forL.Lc .

CaseL5Lc is special @k51, and period~A27! has a
logarithmic singularity#; there is an unstable equilibrium so
lution I 50, and a family of aperiodic solitionlike solution
given by
-

I 5F11
2

)
cosh„)~t2t0!…G21

5F11
2

)
coshS 3)

2pL2
~ t2t0!D G21

, ~A28!

wheret0 ~or t0! corresponds to the center of the soliton, a
the scaling@Eq. ~A20!# was used withL25Lc

25 1
2 .

After one periodT, the vortex triangle, repeats its shap
but the vortices are redistributed among the vertices of
triangle. It takes several periodsT to return to the initial
arrangement. This time defines the period of relative mot
of the vortices, when the initial order of the vortices is r
stored, and is equal to

Trel~L!5 H2T
3T

if 0 ,L,Lc

if Lc,L,1. ~A29!

To specify the motion completely, we have to supply e
pressions for the angle variablesf1 andf2 . Conservation of
H immediately yields, for the ‘‘configuration angle’’f1 ,

cos 3f15
~113I !24L2

~12I !3/2
. ~A30!

For the ‘‘rotation angle’’f2 , we have to go back to the
Hamiltonian in the form of Eq.~A14!, from which we obtain

ḟ252
]H

]I 2
5

3

4pL2L2

4L22I 223I

12I
. ~A31!

Using Eq.~A19! we can rewrite this as a quadrature,

f2~ t !5E I ~ t ! 4L22I 223I

2~12I !AP4~ I !
dI, ~A32!

where the polynomialP4(I ;L) is defined by Eq.~A19!.
During one period of relative motion, the vortex triang

rotates by an angle

Q~L!5f2~Trel!2f2~0!, ~A33!

which can be found from Eqs.~A31! or ~A32!. This defines
the frequency of the overall rotation of the vortex triangle

V~L![Q~L!/Trel5„f2~Trel!2f2~0!…/Trel . ~A34!

Performing the inverse transformation~A10!, we arrive at
the final expression for vortex positions in terms of consta
of motion and functionsI (t), f1(t), andf2(t) defined by
Eqs.~A24!, ~A30!, and~A32!:
zm~ t !5621/2Leif2~ t !/2@„12I 1/2~ t !…1/2e22p i ~m21!/3e2 if1~ t !/21„11I 1/2~ t !…1/2e24p i ~m21!/3eif1~ t !/2# ~m51,2,3!.
~A35!
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APPENDIX B: DERIVATION OF ADIABATIC INVARIANT

Here we derive the adiabatic invariant~3.19! and gener-
ating function~3.18! of the corresponding coordinate tran
formation. Let us start from the stream function~3.11!, ex-
pressed through the zero order action-angle variables~3.16!
and ~3.17!, considering the slow time dependence ofz̃mp to
be frozen:

C̃~J,u;t !5H0~J!1eH1~J,u;t !, ~B1!

with H0(J) obtained from Eqs.~3.12! and ~3.16!,

H0~J!52
1

4p
lnu2Ju2VJ, ~B2!

andH1(J,u;t) from Eqs.~3.13!, ~3.16!, and~3.17!:

H1~J,u!52
1

4p (
mÞp

F lnu ieiuAu2Ju2 z̃mpu21
ieiuAu2Ju

z̃mp

2
ie2 iuAu2Ju

z̃mp* G . ~B3!

A parametere in Eq. ~B1! has been introduced to keep tra
of the order of different terms.e51 in the end of the calcu
lation.

Below we follow canonical perturbation theory~see Refs.
@40,50# for details of the method!. Let us look for a transfor-
mation with the generating function

S~ J̄,u!5 J̄u1eS1~ J̄,u!1¯ , ~B4!

such that, in new variables, the Hamiltonian

H̃~ J̄;t !5H̄0~ J̄!1eH̄1~ J̄!1¯ ~B5!

does not depend on the new angle up to the first order,
depends adiabatically on time throughz̃mp. From Eq.~B4!,
we obtain a coordinate transformation

J5 J̄1e
]S1~ J̄,ū !

]ū
1¯ ,

u5 ū2e
]S1~ J̄,ū !

] J̄
1¯ , ~B6!

so that Hamiltonian~B5! is

H̃~ J̄;t !5H„J~ J̄,ū !,u~JW ,ū !…

5H0~ J̄!1eH1~ J̄,ū !1ev~ J̄!
]S1

]u
1¯ , ~B7!

where we have used frequency~3.15!:

v~ J̄!5
]H0

] J̄
. ~B8!
nd

Now we expandH1( J̄,ū) @the second term in Eq.~B7!#,
defined by Eq.~B3! ~we can setu5uW in the first order!, in
Fourier series inu, and introduce the averaged part

^H1&[
1

2p E
0

2p

dū H1~ J̄,ū !52
1

4p (
mÞp

lnuz̃mpu2,

~B9!

and the oscillating part

$H1%[H12^H1&52
1

4p (
mÞp

F u2Jue2iu

z̃mp
2

1c.c.G1¯ ,

~B10!

where the dots in the last formula remain for the higher h
monics.

Since we require, thatH̄1( J̄) in Eq. ~B5! does not depend
on u, $H1% should be canceled by the third term in Eq.~B7!,
and we then have the equation for the generating func
S1 :

v~ J̄!
]S1

]u
52$H1%, ~B11!

which yields Eq.~3.18!:

S~ J̄,u!5 J̄u1F 1

8p iv (
mÞp

u2J̄ue2iu

z̃mp
2

1c.c.G . ~B12!

Substituting this in Eq.~B6!, we obtain Eq.~3.19! for the
first order adiabatic invariantJ̄.

APPENDIX C: CHAOTIC LAYER WIDTH FOR L'1

As a first step to obtain the positions of the vortices up
the lowest order ine @Eq. ~4.6!#, we expand solution~A24!
of Eq. ~A19! in powers ofe. Using Eqs.~A21!, ~A25!, and
~A26!, we obtain

a252
32&

81)
e3/21O~e2!, g53/21O~e!,

k5
256&

81)
e3/21O~e2!, ~C1!

and, substituting Eq.~A24!, obtain

I ~ t !5128/3e1O~e3/2!. ~C2!

Substituting the above expression into Eq.~A30! we find

cos 3f15cos 3t, ~C3!

and taking into account thatḟ152(]H/]I 1).0, we obtain

f15t. ~C4!

From Eq. ~C2! and the expression forf2 @Eq. ~A32!#, it
follows that, up to the irrelevant constant phase,

f25t. ~C5!
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Collecting everything@see Eq.~2.9!#, we obtain@Eq. ~4.6!#.

z̃m~ t !5
L

)
S e2~4p i /3!~m21!1S 2e

3 D 1/2

e2 i t2~2p i /3!~m21!D ,

~C6!

where we have used definition~A20! with L51.
Below we put k51, and L51. The asymptotic of the

frequency of the near separatrix solution is defined by
motion in the neighborhood of the saddle point; in oth
words the period of motion is approximately equal to t
time required to pass through this neighborhood. We in
duce

j[ z̃2 z̃s,l , ~C7!

the distance from the saddle point, and expand stream f
tion C̃0 @Eq. ~4.2!# in its neighborhood@using definitions
~4.3! and ~4.4!#:

C̃~j,j* !5S l
s1

1

4p F z̃s
422z̃sr

3

z̃s
32r3

j2

2
1c.c.G

1
V

2
jj* 1O~j3!. ~C8!

This expansion can be rewritten, using definition~4.15!, as

h5aj212bjj* 1a* j* 21O~j3!, ~C9!
d

ym

d

e
r

-

c-

where

a[
1

8p

z̃s,l
4 22z̃s,lr

3

z̃s,l
3 2r3

, b[V/4. ~C10!

Hamiltonian~C9! describes hyperbolic rotations with incre
ment ~decrement!

l[4Auau22b2, ~C11!

and for the time to pass the saddle point we have:

T~s!'2
loguhu

l
, ~C12!

which is equivalent to Eq.~4.20!.
To evaluate the Melnikov integral, we use

]C̃0

] z̃
52 14p

3z̃2

z̃32r3
1

V

2
z̃* ~C13!

and

]C̃1

] z̃*
52

1

4p
61/2r2

r312z̃* 3

~ z̃* 32r3!2
eiVt. ~C14!

Substituting Eqs.~C13! and~C14! into Eq. ~4.18!, and shift-
ing the integration variable, we obtain
Dh~ tn ;sn!5
1

p
~6e!1/2r2ImFe2 iVtnE

2`

1`

eiVt
r312z̃* 3

~ z̃* 32r3!2 S 1

4p

3z̃2

z̃32r3
1

V

2
z̃* D dtG . ~C15!
ch.
-

In this expressionz̃sn

sep(t) is a solution of the unperturbe

equation~4.10! on the separatrix, centered att50. A particu-
lar branch of the separatrix is picked bysn561. By an
appropriate rotation the separatrix solution can be made s
metric with respect to the real axis,z̃(2t)5 z̃* (t), so the
value of the integral in Eq.~C15! is real and we have

Dh~ tn!5
1

p
~6e!1/2r2sin VtnMsn

, ~C16!

where constantsMsn
are defined by the integral:
-

Msn
[2 ReE

0

1`

eiVt
r312z̃* 3

~ z̃* 32r3!2 S 1

4p

3z̃2

z̃32r3
1

V

2
z̃* D dt,

~C17!

with z̃sn

sep(t) taken on the corresponding separatrix bran
Numerical evaluation of Eq.~C17! gives, for the inner sepa
ratrices

M 151.70, M 250.560. ~C18!

and, for the outer separatrices,

M 150.537, M 250.790. ~C19!
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