PC 1 : DISSIPATION, ENERGETICS, AND TURBULENT CASCADE

Goals:

- To manipulate the equations, the concept of dissipation and associated energetics; To introduce dimensional analysis of turbulent regimes.

1. Dissipation rate

Consider an incompressible viscous fluid contained in a volume Ω (bounded or not). We will denote its velocity and its pressure $\underline{u}(\underline{x},t)$, $p(\underline{x},t)$.

(a) The local form of the kinetik energy equation is obtained by multiplying the Navier-Stokes equations by the velocity \underline{u} . The viscous term of the Navier-Stokes equations for an incompressible fluid being $div(2v\underline{d}) = v \Delta \underline{u}$, show that the viscous term of the kinetik energy equation satisfies the following relationship:

$$D = v \underline{u} \Delta \underline{u} = 2v \operatorname{div} \left(\underline{d} \underline{u} \right) - \varepsilon$$
(1.1)

where

$$= 2\nu \underline{\underline{d}} : \underline{\underline{d}}$$
(1.2)

is the dissipation rate per unit mass, positive definite, and $\underline{\underline{d}} = \frac{1}{2} (\nabla \underline{u} + \nabla \underline{u})$ is the tensor of deformation rates.

ε

(b) Compute the two terms of *D* in the case of a simple steady shear flow $\underline{u} = (\alpha y, 0, 0)$ with shear $\underline{u} = (\alpha y, 0, 0)$. Comment.

(c) Show the following identity :
$$\varepsilon = 2v \, div \left(\nabla \underline{u} \cdot \underline{u}\right) + v \, \underline{\omega}^2$$
 (1.3)
where $\underline{\omega} = rot \, \underline{u}$.

(d) Determine the equation governing the conservation of kinetik energy in the volume Ω . Show that it can be written as:

$$\frac{\partial}{\partial t} \int_{\Omega} \frac{\underline{u}^2}{2} d\Omega = \int_{\partial \Omega} \left[\left(-\frac{p}{\rho} \frac{1}{2} + 2\nu \underline{d} \right) \cdot \underline{u} - \frac{\underline{u}^2}{2} \underline{u} \right] \cdot \underline{n} \, da - \int_{\Omega} \varepsilon \, d\Omega \tag{1.4}$$

where \underline{n} denotes the unit vector normal to $\partial \Omega$.

2. Pressure spectrum

Let $E_{\Pi}(k)$ denote the spectrum of pressure fluctuations $\Pi = \frac{p}{\rho}$ of a homogeneous isotropic turbulent fluid. Using the Kolmogorov theory, determine the scaling law of this spectrum in the inertial range.

3. Size of bubbles

Consider air bubbles in a homogeneous turbulent flow of water, without mean velocity. The interfacial tension between air and water is denoted γ , with dimension $kg s^{-2}$.

Using the Kolmogorov theory, deduce as a function of dissipation ε , of the liquid density (water) ρ_L and of γ , the characteristic radius *R* of the bubbles at equilibrium in this turbulent flow.