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SOLUTION PC 1 : DISSIPATION, ENERGETICS, AND TURBULENT CASCADE 
 

1. Dissipation rate 
 
For an incompressible fluid, the Navier-Stokes equations are : 

   

  

€ 

div u = 0, du
dt

=
∂u
∂t

+ ∇u . u
Term leading to

turbulence

   = −
1
ρ
grad p + ν Δu

Viscous diffusion
  

The viscous term can be expressed as the divergence of the tensor of deformation rates :  which is 

related to the work of viscous constraints per unit mass  avec1  . Multiplying the momentum 

equation with , we obtain the term .  
 
(a) We want to show equation (1.1). We will use the index notations. On the one hand, we have that : 

. On the other hand :   

 .  

From the continuity equation  , 

€ 

2ν div d.u( )  .  

Finally :     

. 

We therefore recover equation (1.1).  
Note that this implies :  

 

  

€ 

DdΩ
Ω
∫ = 2ν d . u . n da

∂Ω
∫

<P >=power of surface 
friction forces

       
− ε dΩ

Ω
∫

<ε >=energy loss due to friction, 
lost as heat. Irreversible energy transfer.

      

(b) Example : Simple steady shear flow : , 

€ 

α = Cstt  

 
 
 
 
The flow being steady, the power of friction forces is balanced by the losses, and we indeed have : .  

We can compute ;   

;  

€ 

ε = 2ν d : d  

€ 

=
ν
2
Tr

α 2 0
0 α 2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

.  

Hence the rate of energy dissipated as heat is equal to the power of surface friction forces needed to maintain the 
steady shear flow.  
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(c) Let's look at each term of equation (1.3). 

€ 

= 2ν ∂
∂xi

u j
∂ui
∂x j

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟   

  

€ 

= 2ν
∂u j

∂xi
∂ui
∂x j

+ u j
∂ 2ui
∂xi∂x j

=0
   

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
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€ 

= 2ν
∂u j

∂xi
∂ui
∂x j

; 

€ 

ν ω 2 = ν ε ijk
∂uk
∂x j

⎛ 
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⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ ε ilm

∂um
∂xl

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  with  

 , hence:  . Finally :   

. Adding these two terms indeed yields . 

 

(d) The enery equation can be obtained from the momentum equation :  

 

€ 

=
∂ u2 2
∂t

+ u . grad u
2

2
= −u . grad p

ρ

⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ +ν u .Δu = 0  where we used the vector identity 

€ 

∇u .u = grad u
2

2
+ω × u .  

Hence : . Using (1.1) and the fact that , we find :  

  

€ 

∂ u2 2
∂t

= div −
p
ρ

1+ 2νd
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ . u

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

Power of external forces
         

− div u2

2
u

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

Energy flux
     

− 2νd : d
Dissipation
   . Equation (1.4) follows using  

 
2. Pressure spectrum 

 
We denote  the spectrum of pressure . The dimension of  is deduced from : 

 with , so : . The Π theorem leads to: 

  

€ 

EΠ ε k
L 5 2 −1
T −4 −3 0

  ⇒ ⇒  ⇒  

 
 

3. Size of bubbles 
 
A population of bubbles in a liquid at rest tend to merge and form a large bubble, in order to reduce the interfacial 
energy.  
 
In the presence of turbulence, the large bubbles are sheared and can split, while the small bubbles merge to form 
larger ones. Hence there exists an "equilibrium radius" which results from those two competing effects.   
Let R denote the radius of a bubble, and let l denote the spatial scale of the turbulence. There are three possible 
cases: 
 
Case n°1   
 
→ Convection ⇒ shocks between bubbles ⇒ coalescence ⇒  
 
 
Case n°2   
 
→ No effect (capillary waves) 
 

 

R 

R 
l 
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Therefore, a bubble reacts locally to fluctuations induced by turbulent scales which have the same order of 
magnitude as the bubble itself  .  
 
 
 
Case n°3  
 
 
 
 
→ Stretching – Deformation – Fragmentation, if the energy input is sufficient 
 
Let's look for the conditions for equilibrium at this scale. To that end, we need to look at pressure variations. For a 
bubble of radius R :  where  ( = pressure inside the bubble, = pressure outside). The turbulent 

motion at scale l induces pressure variations  ( ). If the scales satisfy , equilibrium is 

possible when  : ⇒ ⇒ .  

 
A note on validity  
This computation is only valid in the inertial range,  , where  denotes the size of the largest structures 

of the turbulence. Hence : ⇒    ⇒  . Another 

requirement is that the upward velocity of bubbles, , should be small compared to . The velocity  is 

the terminal velocity of bubbles when buoyancy forces  ( ) equal drag forces  where C 

denotes the drag coefficient (which is of order unity from the experiments of drag on a sphere). Equating these two 
terms : . It follows that :  hence .  

Replacing R with the expression above, we obtain the following condition: . 

 

R l 


