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Introduction

“Observational records and climate 
projections provide abundant evidence that 
freshwater resources are vulnerable and 
have the potential to be strongly impacted 
by climate change, with wide-ranging 
consequences for human societies and 
ecosystems.” IPCC (2008) Climate Change and 
Water
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• Increased Precipitation
• More Intense Rainfall
• More droughts
• Wet regions get wetter, 

dry regions get drier

Precipitation Change (%)

CLIMATE MODEL PROJECTIONS IPCC WGI

Precipitation Intensity

Dry Days
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How should the water cycle 
respond to climate change?

Precipitation Change (%) relative to 1961-1990: 2 scenarios, multi model (IPCC, 2001)

See discussion in: Allen & Ingram (2002) Nature; Trenberth et al. (2003) BAMS
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How should mean precipitation 
respond to warming?

Allen and Ingram (2002) Nature
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Projected changes in specific 
humidity and precipitation (A1B)

Held and Soden (2006) J Climate
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Models achieve muted precipitation response by reducing 
strength of Walker circulation. 
Some observational evidence of this (Vecchi and Soden 2006 Nature)

P~Mq

Circulation response
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             CC Wind Ts-To RHo

Muted Evaporation changes in models are 
explained by small changes in Boundary Layer:
1) declining wind stress
2) reduced surface temperature lapse rate (Ts-To)
3) increased surface relative humidity (RHo)

Richter and Xie (2008) JGR

Evaporation
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If the flow field remains 
relatively constant, the 
moisture transport scales with 
low-level moisture.Model simulation

scaling

Held and Soden (2006) J Climate
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Projected (top) and 
estimated (bottom) 

changes in 
Precipitation minus 
Evaporation d(P-E)

Held and Soden (2006) J Climate

~
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Using observations and a 
physical basis to inform 

projections in future changes 
in the water cycle
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Low-level water vapour rises with temperature in 
models & observations in accordance with 
Clausius Clapeyron equation

…despite inaccurate mean state, Pierce et al.; John and Soden (both GRL, 2006) 

 - see also Trenberth et al. (2005) Clim. Dyn., Soden et al. (2005) Science

John et al. (2009)
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1979-2002

For a given precipitation event, more 
moisture would suggest more intense rainfall
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Daily Satellite Microwave Observations over 
tropical ocean appear to confirm warmer months 
are associated with more frequent intense rainfall

Allan and Soden (2008) ScienceMore frequentLess frequent
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Frequency of rainfall 
intensities vary with 

SST in models and obs

• Frequency of intense 
rainfall increases with 
warming in models and 
satellite data

• Model scaling close to 
7%/K expected from 
Clausius Clapeyron 

• SSM/I satellite data 
suggest a greater 
response of intense 
rainfall to warming

dP/dSST=7%/K

Allan and Soden (2008) Science
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• Large spread in the response 
of the heaviest precipitation to 
warming between models and 
compared with satellite data.

• But intense vertical motion 
and PDF of precipitation events 
in models are unrealistic:   
Wilcox and Donner (2007) J Clim;  
Field and Shutts (2009) QJ

• Changes in extreme vertical 
motion may be important:       
Gastineau & Soden (2009) GRL; 
O’Gorman & Schneider (2009) PNAS; 
Lenderink & van Meijgaard (2008) 
Nature Geoscience

M
od

el
s

Change in Frequency of Precipitation 
(% per K warming) in Bins of Intensity

 Light Rain Heavy Rain 



  © University of Reading 2009 r.p.allan@reading.ac.ukWater vapour in the 
climate system

Changes in Extreme Precipitation Determined by 
changes in low-level water vapour and updraft velocity

Above: O’Gorman & Schneider (2008) J Clim

Aqua planet experiment shows extreme 
precipitation rises with surface q, a lower 
rate than column water vapour

Right: Gastineau and Soden (2009) GRL 
Reduced frequency of upward motion 

offsets extreme precipitation increases.
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Yu and Weller (2007) 
BAMS

(Wentz et al. 2007, Science)

Does Observed Mean Precipitation and 
Evaporation Follow Clausius Clapeyron?



  © University of Reading 2009 r.p.allan@reading.ac.ukWater vapour in the 
climate system Trenberth et al. (2009) BAMS



  © University of Reading 2009 r.p.allan@reading.ac.ukWater vapour in the 
climate system

Models simulate robust response of clear-sky 
radiation to warming (~2-3 Wm-2K-1) and a resulting 
increase in precipitation to balance (~2-3 %K-1)        
e.g. Allen and Ingram (2002) Nature, Stephens & Ellis (2008) J. Clim
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Allan (2009) J Clim

dP/dQ~[1000 mm/m 86400 s day-1/(1000 kgm-3 x 2.5x106 J/kg)]~0.035 mm/day per Wm-2, 
P~3mm/day
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Surface Temperature (K)

Models simulate robust response of clear-sky 
radiation to warming (~2-3 Wm-2K-1) and a resulting 
increase in precipitation to balance (~2-3 %K-1)        
e.g. Allen and Ingram (2002) Nature, Stephens & Ellis (2008) J. Clim

Lambert & Webb (2008) GRL
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Contrasting precipitation response expected
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 Heavy rain follows moisture (~7%/K)

Mean Precipitation linked to 

radiation balance (~3%/K)

Light Precipitation (-?%/K)

Temperature 
e.g.Held & Soden (2006) J. Clim; Trenberth et al. (2003) BAMS; Allen & Ingram (2002) Nature
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A=0.4 (1-A)=0.6

dPw/dT=7%/K dPd/dT

dP/dT=3%/K

Assume wet region follows 
Clausius Clapeyron (7%/K) 
and mean precip follows 
radiation constraint (~3%/K)

Pw=6 mm/day Pd=1 mm/day

P=3 mm/day

Wet Dry

A is the wet region 
fractional area

P is precipitation

T is temperature
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A=0.4 (1-A)=0.6

dPw/dT=7%/K dPd/dT

dP/dT=3%/K

Assume wet region follows 
Clausius Clapeyron (7%/K) 
and mean precip follows 
radiation constraint (~3%/K)

dP/dT= A(dPw/dT)+(1-A)(dPd/dT) 
 dPd= (dP-AdPw)/(1-A)

Pw=6 mm/day Pd=1 mm/day

P=3 mm/day

Wet Dry

A Pw Pd dPd/dTs

(mm/day/K)

“
(%/K)

0.4
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-0.1
-0.05

-10
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0.1 10.5 2.2 +0.02 +0.9

A is the wet region 
fractional area

P is precipitation

T is temperature
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Contrasting precipitation response in ascending and 
descending portions of the tropical circulation

GPCP/NCEP Models

ascent

descent

Allan and Soden (2007) GRLP
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Models ΔP [IPCC 2007 WGI]

There is limited 
observational evidence 
of a contrasting 
precipitation responses 
in wet and dry regions 
over land (Zhang et al. 2007 
Nature)

A further consequence:

Rainy season: wetter

Dry season: drier
Chou et al. (2007) GRL

Precip trends, 0-30oN

The Rich Get Richer?
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• It is notoriously difficult to measure 
changes in precipitation from space

Are observing systems adequate?

John et al. (2009) GRL
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 Could changes in aerosol be imposing direct and indirect 
changes in the hydrological cycle? e.g. Wild et al. (2008) GRL 

Wielicki et al. (2002) Science; Wong et al. 
(2006) J. Clim; Loeb et al. (2007) J. Clim

Mishchenko et al. (2007) Science

http://images.google.co.uk/imgres?imgurl=http://scienceclips.net/geology/volcanoes/volcano3.gif&imgrefurl=http://scienceclips.net/geology/volcanoes/illustrations.asp&h=176&w=169&sz=3&hl=en&start=3&usg=__8aXxJK2osiYWDN7ll3fD46co_58=&tbnid=ji-wi3FeOFp2oM:&tbnh=100&tbnw=96&prev=/images%3Fq%3DVolcano%2Bcartoon%26gbv%3D2%26hl%3Den%26rlz%3D1T4GGLJ_en___GB259
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Precipitation response depends 
upon the forcing and the feedback

Andrews et al. (2009) J Climate

Partitioning of energy between atmosphere and 
surface is crucial to the hydrological response
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Are the issues of cloud feedback 
and the water cycle linked?

2008

Allan et al. (2007) QJRMS
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Towards regional prediction 
of the water cycle…
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Conclusions
• Low level moisture responses robust

– Less clear over land and at higher levels. 
– Inaccurate model mean state?

• Precipitation extremes linked to moisture
– Moisture response at lowest level? 
– Changes in updraft velocity?
– Differences between individual models/obs

• Mean and regional precipitation response: a tug of war 
– Slow rises in radiative cooling (~3 Wm-2K-1)
– Rises in low-level moisture (~7%/K) faster than precipitation (~3%/K) 
– Reduced frequency? Wet get wetter and dry get drier
– Who cares about drought/flooding over the ocean?

• Recent Precipitation Responses appear larger in observations than models.
– Could aerosol be influencing decadal variability in the hydrological cycle?
– Are observing systems up to monitoring changes in the water cycle?

• Understanding changes in near surface conditions may be important
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Unanswered questions
• How does UTH really respond to warming?
• Do we understand the upper tropospheric moistening processes?
• Is moisture really constrained by Clausius Clapeyron over land?
• What time-scales do feedbacks operate on?
• Apparent discrepancy between observed and simulated changes 

in precipitation
– Is the satellite data at fault?
– Are aerosol changes short-circuiting the hydrological cycle?
– Could model physics/resolution be inadequate?

• Could subtle changes in the boundary layer be coupled with 
decadal swings in the hydrological cycle?

• How do clouds respond to forcing and feedback including 
changes in water vapour?

• Are the cloud feedback and water cycle issues linked?
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