

The Asian monsoon anticyclone and water vapor transport

Bill Randel Atmospheric Chemistry Division NCAR

Thanks to: Mijeong Park, Louisa Emmons

What is the monsoon anticyclone, and why is it interesting?

• dominant circulation feature of NH summer UTLS

- forced by deep convection over India and Bay of Bengal
- associated with local maxima in trace constituents (water vapor in particular)

convection

water vapor near 10 km observed by AIRS

15 km

moist air within monsoon anticyclone

monsoon circulation near 15 km

Seasonal cycle of lower stratosphere H_2O

summertime lower stratosphere maxima linked to Asia and North American monsoons

Rosenlof et al 1997 Jackson et al 1998 Dethof et al 1999

Dynamical Background

Climatological precipitation in NH summer

GPCP Monthly Mean Precipitation Rate (mm/day) Calendar month JUL Average of 1979—-2007

Dynamical Background

Cyclone at the surface, anticyclone in the upper troposphere

atmosphere response to steady tropical heating (Gill, 1980)

idealized vertical structure

Highwood and Hoskins (1998)

Anticyclones in the UT

Dynamical Background

Anticyclonic circulation extends into lower stratosphere

Randel and Park (JGR, 2006)

Temperatures (anomalies) at 100 hPa

Temperatures (anomalies) at 100 hPa

Cirrus clouds from HIRDLS satellite (Steve Massie)

Persistent anticyclone (Great Red Spot)

Earth

Persistent anticyclone (Great Red Spot)

Earth

Confinement within the anticyclone: idealized transport experiments

- initialize 2400 particles inside anticyclone
- advect with
 observed winds
 for 20 days
- test different pressure levels

transport simulation at 150 hPa

day 10

large fraction remain inside anticyclone

day 20

Confinement within region of strongest winds

This talk:

- Variability of convection, dynamics and water vapor (AIRS observations)
- Transport pathways and links to the stratosphere

Anticyclone structure in terms of:

Time average structure (July-Aug 2003)

Deep convection within monsoon region

variations in convection with time scales of ~10-20 days

active/break cycles of the monsoon

Two diagnostics for strength of anticyclone:

1) area of low potential vorticity (PV)

2) circulation in the upper troposphere

Life cycle of deep convective event

NCEP MPV 360 K (JUL/8/2003)

NCEP MPV 360 K (JUL/9/2003)

NCEP MPV 360 K (JUL/10/2003)

NCEP MPV 360 K (JUL/12/2003)

NCEP MPV 360 K (JUL/13/2003)

NCEP MPV 360 K (JUL/14/2003)

Correlation of PV and tracers: July 10

<u>360 K PV</u>

NCEP MPV 360 K (JUL/10/2003)

AIRS water vapor

(b) AIRS H₂O 350K (JUL/10)

Key points:

- 1) Deep convection in monsoon region varies on 10-20 day time scale. (well-known active/break cycles).
- 2) Transient deep convection is linked to variations in circulation and constituents:

<u>Episodic convection:</u> * stronger anticyclonic circulation * increased water vapor * decreased ozone

- 3) Constituents are confined within anticyclone
- 4) Monsoon effects extend into lower stratosphere

Water vapor from Aura MLS

How do tracers reach the tropopause?

Simulation of CO transport though monsoon

Result: Large-scale circulation can account for observed CO transport into the lower stratosphere

Park et al, 2009 JGR

Transport pathways (over monsoon region)

<u>Refs:</u> Park et al, JGR, 2007; ACP, 2008; JGR, 2009

Water vapor transport and dehydration above convective outflow during Asian monsoon

R. James,¹ M. Bonazzola,¹ B. Legras,¹ K. Surbled,¹ and S. Fueglistaler²

Note: small impact of convective moistening or overshooting convection

Key points:

- Monsoon anticyclone acts to confine air transported upwards in deep convection (high water vapor, surface pollution, etc.)
- Upwards transport above convective ourflow associated with large-scale circulation (part of the balanced Rossby gyre response to monsoon convective heating)
- Circulation extends into lower stratosphere

Evidence of monsoon transport to stratosphere from HCN

HCN observations from ACE-FTS satellite HCN source: biomass burning HCN lifetime: ~4 years in free atmosphere, but sink from contact with ocean

Evidence of monsoon transport to stratosphere from HCN

