Variability and trends in stratospheric water vapor

Bill Randel

Atmospheric Chemistry Division NCAR, Boulder, CO

Photo: Liz Moyer

Climatology

- Seasonal cycle (by far the largest variability)
- summer monsoon circulations

Interannual variability

- HALOE + MLS satellite record
- correlations with tropical cold point temperatures
- brief comparisons with Boulder sonde record

Some Chemistry Climate Model results for comparison

EVIDENCE FOR A WORLD CIRCULATION PROVIDED BY MEASUREMENTS OF HELIUM AND WATER VAPOUR DISTRIBUTION IN THE STRATOSPHERE

By A. W. BREWER, M.Sc., A.Inst.P.

QJRMS, 1949

HALOE solar occultation measurements

HALOE sampling for one year

Latitude Progression

HALOE climatology

HALOE vs. Aura MLS climatology

Climatological tape recorder

Latitudinal structure at 390 K (~18 km)

dehydration

Climatology at Boulder (40° N)

Trajectory simulation of transport on 400 K isentrope

summertime lower stratosphere maxima linked to monsoons

summertime lower stratosphere maxima linked to monsoons

Park et al, JGR, 2006

Seasonal cycle reasonably well understood based on trajectory calculations

* dehydration at cold point *

Fueglistaler et al 2005

Interannual variability from HALOE

Interannual variability from HALOE

decrease after 2001

Extending the satellite record: HALOE + Aura MLS data

Anomalies originate near the tropical tropopause, and propagate coherently with time

Rapid latitudinal propagation in lower stratosphere

POAM Arctic water vapor (lats 55-70 N)

Water vapor differences Pre- vs. post 2001

Water vapor differences Pre- vs. post 2001

Radiative influence on temperature (Fixed Dynamical Heating calculations)

Water vapor decreases associated with warming

Water vapor differences Pre- vs. post 2001

Radiative influence on temperature (Fixed Dynamical Heating calculations)

Correlations with tropical tropopause temperatures

82 hPa water vapor

cold point temperature anomalies

r=0.76 lag=2 months

Correlation between water vapor and cold point temperature anomalies for individual radiosonde stations 1993-2008

Strongest correlations for stations 10 N-S, linked to the QBO

Beware problems with historical radiosonde data

Observed vs. calculated interannual changes

Water vapor - temperature sensitivity

Fueglistaler and Haynes, 2005

Summary:

For satellite record (1993-2008), interannual variability in good agreement with temperature near tropical cold point

Brewer, 1949

What caused the drop after 2001?

Comparison between Boulder sondes and HALOE

see Scherer et al, 2008, ACP

The only two continuous data sets for stratospheric water vapor disagree in 'trends' for 1992-2005.

Frost-point balloon data:

*calibrated, trusted technique

* ~once-month 'snapshot' sampling

HALOE:

*calibrated, trusted technique

*global sampling

*internal geophysical coherence:

- anomalies propagate in latitude/height
- variations strongly correlated with tropical tropopause temperatures

WACCM model climatology

Water vapor in a climate model (WACCM REF1)

In the model, volcanoes dominate interannual variability

Key points:

- Stratospheric seasonal cycle is well understood. Tropical tape recorder, rapid global transport in lower stratosphere, Antarctic dehydration, monsoons in UTLS during NH summer.
- Interannual changes for satellite record (1992-2008) in good (quantitative) agreement with tropical cold point. Remaining differences between Boulder sondes and HALOE.
- Overall similar variability in current chemistry-climate models.

Estimates of tropical upwelling from 'downward control' (momentum balance plus continuity)

from momentum balance, reanalysis,

and thermodynamic balance

<u>Calculated upwelling from mass balance seems reasonable</u>

Interannual anomalies in temperatures and upwelling

r=-0.52 (I am surprised)

Where do the changes in EP flux come from?

EP flux Climatology

Anomaly for 2001-2004

HALOE vs. Aura MLS climatology

1999-2001

