
  

Convection parameterisations II Introduction

Holger Tost

Max Planck Institute for Chemistry, Mainz, Germany

Convection parameterisations
Part II

WaVaCS summerschool 
Autumn 2009

Cargese, Corsica 



  

Convection parameterisations II

Overview

● What is a parameterisation and why using it?

● Fundamentals of convection parameterisations

● A little parameterisation application

● Examples of convection schemes for larger 
scale models

● Differences of convection schemes and 
implications for large scale modelling

Introduction
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Examples of
convection schemes 

for larger scale models

Schemes
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Convection schemes 

Schemes

● more than 50 schemes in the peer – reviewed literature

● all schemes fulfill the characteristics described 
previously, but differ:

– in the closure assumptions

– in the detailedness

– in the (numerical) formulations
● some schemes are more useful for meso – scale, 

others for global modelling

● each model with a resolution of more than a few km 
needs a convection parameterisation to treat non –  
resolved smaller clouds
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Convection schemes 

Schemes

● Sometimes a differentiation between schemes and 
concepts is not straight – forward, e.g. the “moisture 
adjustment” scheme of Manabe et al (1965) is both a 
scheme, but also a concept on which other schemes 
are based.

● Organisation of convective clouds is one of the most 
outstanding issues for convection parameterisations.

● All schemes perform an adjustment of moisture and 
energy by redistribution and precipitation processes.

● All schemes will have an impact on the model 
results.
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Arakawa – Schubert – Scheme (I)

Arakawa - Schubert

Arakawa, 1974
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Arakawa – Schubert – Scheme (II)

Arakawa - Schubert

● originally presented by Arakawa & Schubert
(Journal of Climate, 1974)

● considers three types of clouds:
– shallow  PBL clouds

– deep clouds originating from the PBL

– mid – level convection (deep clouds originating from above the PBL)

● inclusion of mass – balancing subsidence
● treatment of entraining up – and downdrafts
● combination of type I and type II closure
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Arakawa – Schubert – Scheme (III)

Arakawa - Schubert

● a spectral (in terms of cloud height) distribution of clouds

Arakawa, 1974

M cz =∫
0

max

mBz ,d 
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Arakawa – Schubert – Scheme (IV) 

Arakawa - Schubert

● cloud base conditions from boundary layer 
scheme (mixed layer s

M
, q

M
, h

M 
)

● no feedback on the sub – cloud layer    
(in the original version, updates include a downdraft model)

● some drawbacks:

– solution is not a 100% positive definite

=> complicated to implement in a GCM
● several updates / implementation strategies
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Convective Cloud Field Model (I)

CCFM

● substantial extension to Arakawa – Schubert  
(Nober & Graf, ACP, 2005)

● single cloud model + cloud spectrum calculations

● entraining parcel model (at a very high vertical resolution of 100m)

● “cloud” (=entraining parcel) types, that can exist at 
different initial conditions
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Convective Cloud Field Model (II)

CCFM

Nober & Graf, 2005
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Convective Cloud Field Model (III)

CCFM

● existence of the different cloud types determined 
by the Lotka – Volterra equation (principles of 
population dynamics) 

● individual clouds compete for CAPE
● Lotka – Volterra equation for clouds is mostly not 

chaotic, but yields a stationary solution!

dni
dt

=ni⋅r i 1−∑
j=1

N

ij⋅n j n
i
 = population member

r
i

= environmental factor
α

ij
= interaction matrix factors
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Convective Cloud Field Model (IV)

CCFM

● individual clouds depend on boundary layer 
parameters for triggering of convection

● generalisation of Arakawa – Schubert:

– kinetic energy equilibrium is not assumed

– using an explicit cloud model

– stationarity is not assumed => dynamical 
evolution over sub – timesteps

=> diagnostic at the end of a GCM timestep
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Tiedtke – Scheme (I) 

Tiedtke

● original description (1989), but with many 
modifications (also updates depending on the 
base model)

● Mass flux scheme of a cloud ensemble
(better of a mass flux ensemble):

● original: moisture – convergence closure, 
updates: CAPE relaxation closure

● used in ECMWF, ECHAM, COSMO, REMO,......

M=∑
i

Mi=∑
i
iwi
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Tiedtke – Scheme (II)

Tiedtke

● basic equations:

● similar set of equations for downdrafts

∂Mu

∂ z
=Eu−Du

∂Musu
∂ z

=Eus−DusuLcu

∂Mu lu
∂ z

=−Du lucu−Pu

∂Muuu

∂z
=Eu u−Duuu

∂Muqu

∂ z
=Eu q−Duqucu

∂Muvu
∂ z

=Eu v−Duvu

E = Entrainment
D = Detrainment
c

u
 = release of latent heat    

from condensation
P

u
 = precipitation formation
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Tiedtke – Scheme (III)

Tiedtke

● organised entrainment:

– for a single cloud of the 
ensemble:

Ei=M ii
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Tiedtke – Scheme (III)

Tiedtke

● organised entrainment:

– for a single cloud of the ensemble:

– for the whole ensemble:

● organised detrainment:

– analogous:

●                              =>

Ei=M ii

E=M =∑
i

M ii=∑
i

Ei

∂Mu

∂ z
=Eu−Du

1
Mu

∂Mu

∂ z
=u−u

E=M =∑
i

M ii=∑
i

Di
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Tiedtke – Scheme (IV)

Tiedtke

● Transport of momentum:

– Entrainment of momentum into the convective plume 
from the surrounding air

– vertical momentum displacement by mass – 
balancing subsidence

– convection induced pressure changes

∂Muuu

∂z
=Eu u−Duuu

∂Muvu
∂ z

=Eu v−Duvu
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Tiedtke – Scheme (IV)

Tiedtke

● Transport of momentum:

– Entrainment of momentum into the convective plume 
from the surrounding air

– vertical momentum displacement by mass – 
balancing subsidence

– convection induced pressure changes

∂Muuu

∂z
=Eu u−Duuu

∂Muvu
∂ z

=Eu v−Duvu

Not used in this scheme
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Tiedtke – Scheme (V)

Tiedtke

● adjustment closure:

● using CAPE relaxation:

∂ T
∂t

≈
1
cp

∂s
∂ z

∂ q
∂t

≈
1


∂ q
∂ z

∂
∂t

CAPE≈− ∫
base

top
g
T v

∂T v

∂t
dz=−MB ∫

base

top

 [1 q]
cpT v

∂s
∂ z


∂ q
∂ z


g
 dz

CAPE= ∫
base

top

 gT v

[T v−T ]−gldz

∂
∂t

CAPE≈−
CAPE

 M=MB∗z 
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Tiedtke – Scheme (V)

Tiedtke

MB=
CAPE

 [ ∫base
top

 [1 q]
cpT v

∂s
∂ z


∂ q
∂ z


g
 dz ]

−1

=MIN 3⋅3600,2⋅3600⋅63/NN 

● initially M
B
 is calculated from moisture 

convergence, since  is not know initially

●  should be smaller with increasing resolution 
(NN is the spectral resolution)
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Tiedtke – Scheme (V)

Tiedtke

CAPE closure Moisture convergence closure

5 year average precipitation using the Tiedtke – scheme with 2 different closures
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Tiedtke – Scheme Flowchart (VI)

Tiedtke

● Define constants, parameters and specific values 
(T,q,q

sat
,s), initialise updraft and downdraft values

● Calculate cloud base, cloud base mass flux from 
moisture convergence and boundary moisture supply

● Cloud ascent in absence of downdrafts  
(ascent for an entraining / detraining plume, including phase transitions and 
momentum)

● Downdraft calculation:
– Level of free sinking (LFS)
– moist descent (descent for an entraining / detraining plume, dry -  

adiabatically descent, including phase transitions and momentum)
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Tiedtke – Scheme Flowchart (VI)

Tiedtke

● Recalculate cloud base mass flux from CAPE 
calculations including downdraft effects

● Recalculate ascent (as before, same routine)

● Adjustment of convective fluxes

● Evaporation of precipitation in sub – cloud layer

● Final Tendencies for T and q, u and v
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Super - Parameterisation

● Running a Cloud Resolving Model (CRM) in each GCM 
grid box (first proposed by Grabowski, 2001)

● CRMs with a grid size of 1 km resolve convection

● Eliminates artificial distinction between large – scale 
and convective clouds, only this CRM is required

● CRMs can be used in 2D (oriented orthogonal to the 
main wind direction of that grid box) or 3D configuration

● Require lots of computational resources

● First studies show a weaker cloud forcing than in 
traditional GCMs



  

Convection parameterisations II Super - Parameterisation

Global Cloud Resolving Model

● Running a fine resolution model for the whole globe

● Initiatives in Japan (Earth Simulator) and USA

● Δx
min

 = 2 km

● Planning, testing (aqua – planet) and implementation 
phase

● Require even more resources than super – 
parameterisations (USA project plans realtime simulations)

● Create huge amounts of data (1 Tb for hourly snapshot)
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Convection Schemes for
 Mesoscale Models
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Convection in Mesoscale Models

● convection still not resolved (Δx = 10 to 50 km)
● less distinction between convective (subgrid – 

scale) and grid – scale condensation / 
precipitation formation

● organisation of convection more important
● hydrostatic assumption not valid for all host 

models

=> Specially designed schemes for this scale
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Scale separation

● larger scale schemes require a (spectral) gap between 
resolved and parameterised scales

– eddies have much smaller time scale than grid – scale 
motions => influence can be diagnosed

● dependent on input values similar clouds appear 
“convective” (=parameterised) or “large-scale” (=resolved)

=> Hybrid approach: 
● evaporation, condensation and vertical momentum fluxes 

parameterised
● moisture and heat fluxes from detrained water between the clouds 

not parameterised
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Organisation of convection
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Organisation of convection

● Outflow might be in the 
next grid box

● Precipitation might get 
horizontally advected

=> Next grid box:  grid – 
scale moisture 
enhancement

● Mass balancing 
subsidence is not in the 
same grid box

● Downdrafts initiate further 
convection (squall line)
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Organisation of convection

● HYMACS (Küll, EGU 2009) 

(Hybrid Mass flux Convection Scheme)

● parameterise updraft / downdraft only

=> Net mass transport by convection scheme

● subsidence treated by the grid scale motion

● simple cloud parcel model

● standard trigger and closure approaches

● applied in COSMO at dx = 7 km
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Convection scheme 
application

Application
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Convection scheme application

● Implementation of several convection schemes 
in the EMAC (ECHAM5/MESSy Atmospheric Chemistry) model 
(Tost et al., 2006, ACP; 2007 ACP, 2009 ACPD)

● Impact of the convection scheme on the climate 
system

● Impact of the convection scheme on 
atmospheric chemistry

Application
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Convection submodel

Application

● 5 running schemes implemented (2 more in preparation):

– Tiedtke (1989 original) and Tiedtke – Nordeng (1994)

– ECMWF (IFS cycle 29)  (Tompkins 2004; modified Tiedtke)

– Zhang – McFarlane – Hack (1995, 1994)

– Bechtold (2001)

– Emanuel (2001)
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Convection submodel

Application

● All schemes are mass flux schemes  
(except the Hack extension of ZH)

● Process formulation differs
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Convection submodel

Application

Su
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● Organising the initialisation of 
parameters

● Organising the input 
parameters for the selected 
convection scheme

● Calling the selected 
convection scheme

● Updating tendencies for 
prognostic variables

● Storing data from 
convection

Tiedtke ECMWF Zhang/HackBechtold

Individual Organising Routines

Individual Basic Parameters

Individual Convection Calculation Routines

Emanuel
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Precipitation Distribution (I)

Precipitation

Observations (GPCP)

Tiedtke-Nordeng

ECMWF

Zhang-McFarlane-Hack

Bechtold
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Precipitation Distribution (II)

Observations (GPCP)

Tiedtke-Nordeng

ECMWF

Zhang-McFarlane-Hack

Bechtold

Precipitation
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Precipitation Distribution (III)
 Spring zonal average

Precipitation
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Precipitation Distribution (III)
Summer zonal averages

Precipitation
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Precipitation Distribution (III)
Autumn zonal averages

Precipitation
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Precipitation Distribution (III)
Winter zonal averages

Precipitation
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Precipitation Distribution (IV)
Taylor diagram

Precipitation
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Precipitation Distribution (V)
Annual cycle

Precipitation
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Precipitation Distribution (VI)
Contribution of convective and large – scale rain

Precipitation

!
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Moisture content of the atmosphere

Moisture content

● Comparison with IWVC (Integrated Water 
Vapour Columns) observed from GOME satellite

● Be careful:
– Satellite “observations” of such quantities have errors 

too !

– Retrieval algorithms (= computer models, including 
simplifications and parameterisations) required to 
translate raw satellite data into quantities as IWVC
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IWVC

Moisture content

Observations (GOME)

Tiedtke-Nordeng

ECMWF

Zhang-McFarlane-Hack

Bechtold
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IWVC

Moisture content
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IWVC

Moisture content
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Zonal mean moisture differences

Moisture content

Tiedtke-Nordeng

ECMWF

Zhang-McFarlane-Hack

Bechtold

Emanuel
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Scatter plots for field campaigns

Moisture content

T1

EC

Ema

ZHW

B1

R2 ≈ 0.83

R2 ≈ 0.81

R2 ≈ 0.89

R2 ≈ 0.85

R2 ≈ 0.80
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Convective Massfluxes 
zonal (global) and temporal average [g/(m2s)]

Mass Fluxes

Tiedtke ECMWF Emanuel

Zhang-McFarlane-Hack-Wilcox Bechtold Global average profiles
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Convection Scheme Impacts:
Energy 

Impacts
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Convection Scheme Impacts:
Temperature

Impacts

Comparison of the temperature in a 
simulation with the ECMWF 
convection scheme to the reference 
simulation using the Tiedtke scheme
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Convection Scheme Impacts 

Impacts

● Implications not only for air mass, energy and 
moisture redistribution (vertical mixing of the 
troposphere)

● Transport of trace gases and aerosols => 
Implications for atmospheric chemistry

● Scavenging of trace gases and aerosols by 
convective precipitation

● Implications for lightning parameterisations, 
which use convective cloud properties
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Convection Scheme Impacts:
Trace gases (222Rn)

Impacts
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Summary

Summary
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Summary (I)
Summary

● A variety of convection parameterisations exists.

● Some schemes have benefits and other 
drawbacks.

● There is no “best” scheme.

● Computational time spent on convection is 
almost unlimited – choice of detail depends on 
the scientific question to be answered.
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Summary (II)
Summary

● Small changes in the formulation of a 
scheme can have big impact, e.g. closure, 
triggering,  microphysics,...

● Feedback on the hydrological cycle

● Feedback on other meteorological parameters.

● Feedback on transport properties.


