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Summary
★ AIRS and MLS seem to have good agreement at around 215 hPa (see gradient test results in Figure 4) but 

above that the AIRS AK’s indicate it loses sensitivity to H2O.

★ Combining the AIRS & MLS H2O profiles using their averaging kernels we create the first global remote 
sensing dataset of H2O throughout the entire troposphere and stratosphere.

★ Using AIRS data alone can lead to a moist bias in the tropical UT with AIRS data being up to ~30%, in water 
vapor and RHICE, more moist than the joined dataset.  This, again, is due to AIRS losing sensitivity in parts 
of the UT leading to retrievals pulling in H2O information from lower parts of the atmosphere.

✤ RHICE strongly correlates with T at 100 hPa but at 215 hPa the relationship is stronger with H2O.  When 
looking at supersaturation the we see that the σT drives the σRHICE at 100 hPa while σH2O drives σRHICE at 
215hPa.  This could explain the strong relationship between high CTH and high RHICE.

✤ CloudSat and CALIPSO clouds show consistent horizontal spatial patterns as well as vertical distribution.

✤ AIRS and MLS see dryer RHICE for the deep convective clouds.  This may be because AIRS and MLS are 
averaging in air from the dry downdraft regions of these systems due to the coarser instrument resolution 
in the UT.

✤ AIRS and MLS do not sample regions with deep convective clouds well as compared to regions of cirrus 
removed from convection.

✦ Clear-sky radiative heating doesn’t contribute much to the budget in the UT but at 100 hPa there is a small 
positive heating contribution which corresponds to a region of high supersaturation.  It has been shown 
that small positive radiative contributions in ice-supersaturated regions in the TTL can lead to changes in 
moisture transport (Fusina, et.al, JGR, 2007)

✦ Cirrus (RADAR) contributes to heating heating between 9-13km while cirrus (LIDAR) contributes to 
heating between 13-17km consistent with the cloud distributions shown in Figure 11. Heating rates 
for both clouds types tend to be stronger in the southern hemisphere over the warm pool region.

✦ Heating rates are for both cloudy cases exhibit very little statistical relationship but shows strong 
correlation with clear-sky RHICE, however different clouds show differences between their PDF’s.
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Figure 8: Transect of RHICE (color scale) with 

cloud tops of various cloud types plotted as 

black dots.  Plot also show regions of clear-sky 

near clouds.  Notice the heterogeneity of cloud 

types even in very small latitude bands.  Also 

shown at the far top left is an indicator of where 

the AIRS/MLS joined profile data becomes 

important.
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Figure 7: (A) All-sky relative 

humidity (ice) vs T and H2O joint 

PDF’s at 100 hPa and 215 hPa.  

Correlation between RHICE and T  

@100 hPa is strong but not w/H2O, 

while RHIce @ 215 hPa is more 

strongly correlated with H2O than T, 

(B) looking at supersaturation the 

temperature variance (σT) seems to 

partialy explain the variance in 

supersaturated RH (σRHICE) @100 

hPa while σRHICE @+215 hPa seems 

to be tied the variance in H2O 

(σH2O) as oppose to σT; color scale 

is frequency of occurrence 
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Figure 9: Frequency of occurrence for each cloud type.
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Figure 11: Relative Humidity (RHICE) vs CTH joint PDF’s for each cloud type; color scale is 

frequency of occurrence.  Strong relationship between high RH and high cloud tops seems 

to be determined by the σT (see Figure 7).

Figure 10. All-sky relative humidity (ice) PDFs with listed clouds in scene
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Figure 1: Sample AIRS and MLS averaging kernels (AK) and the verticality (sum of 
averaging kernels, indicates how much information is received from the instrument 
radiances) for 6 pressure levels;  also shown is the FWHM definition.

Figure 3: (A) Shows vertical distribution of where AIRS is “detecting” H2O at each 
pressure level for land and ocean pixels.  (B) Verticality distribution at each retrieval level.
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There have been various studies in the past that have investigated upper 
tropospheric (UT) humidity structure in relation to clouds (e.g. Soden (2004), 
GRL ; Comstock,et. al. (2004), GRL).  More recently global analyses of UT 
humidity in relation to clouds, using a combined A-Train humidity (AIRS 
only) and cloud products (Cloudsat and CALIPSO), have quantified the UT 
structure in relation to various cloud types (e.g. Kahn, Liang (2008), ACP, 
Kahn, et.al. (2009), JGR).

The A-Train provides upper troposphere (UT) water vapor (H2O) retrievals 
from the Atmospheric Infrared Sounder (AIRS) and Microwave Limb Sounder 
(MLS).  AIRS loses sensitivity at the elevated portions of the UT so we 
investigate the use of the AIRS and MLS averaging kernels (AK) to combine 
both H2O profiles into a single product.  Furthermore, we combine the AIRS/
MLS H2O data with CloudSat and CALIPSO cloud profiles to characterize the 
UTH in relation to different ice phase cloud types.  We then quantify the 
radiative fluxes and heating along the A-Train and determine how these 
quantities jointly vary with the humidity and cloud fields.

ABSTRACT
✦ Collocate AIRS v5 support product and MLS v2.2 data at the nearest neighbor points; 

data for entire year of 2008; data for only -40 to 40 latitude; use only clear-sky points 
over ocean.

✦ Using AIRS and MLS averaging kernels to determine where AIRS is most sensitive to 
H2O.

✦ Collocate combined AIRS/MLS humidity profiles with CloudSat and CALIPSO cloud 
profiles (GEOPROF-LIDAR product; Jay Mace) from May, 2008 - February, 2009 (all 
available data which has 4-way co-registration).

✦ Cloudy and clear-sky are criteria determined by AIRS, CloudSat, and CALIPSO; land 
pixels are ignored.

✦ Lidar only Cirrus is forced to be clouds with bases 7km and above.

✦ Humidity fields partitioned by cloud types are chosen such that the cloud type of 
interest is the dominant type in the scene (more than 50% cloud fraction in AIRS FOV).

✦ Use parameterized water content and particle size with Fu-Liou radiative transfer 
model (Fu and Liou, JAS, 1992) to compute radiative fluxes and heating profiles 
(excludes pixels with deep convective clouds).  

METHODOLOGY
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Figure 4: (A) percent change in H2O (q) normalized by the change in pressure joint PDF’s for 

AIRS, MLS, and joined H2O profiles at 261 and 215 hPa.  AIRS  values show smooth transition 
throughout profiles while the MLS and Joined (261 hPa) profiles show “kinks” at 261 hPa.  When 
AIRS and MLS are joined at 215 hPa discontinuity vanishes since the normalized percentage 
difference behaves similarly at 215 hPa for AIRS and MLS; see panel (B) - Joined profiles 
approach same behavior as MLS at higher levels; 261 hPa shows significant differences.
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Figure 2: Shows the original AIRS and MLS H2O profiles along with the 3 ways 
of splicing the H2O profiles.  Horizontal black bars are the MLS error bars.
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Figure 5: All-Sky 2008 climatology of temperature (K), H2O (ppmv), and RHICE at 100, 215, and 300 
hPa.  Notable features is the persistent supersaturation at 100 hPa and the transition to the 
stratosphere in the higher latitudes between 215 to 100 hPa.  Persistent high saturations at 100 hPa 
seems to be driven by temperature (see Figure 10).  
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Figure 6:  Top Row: H2O vertical zonal mean (150 ≤ Long ≤ 200) for joined data and AIRS only; last 
column shows relative percent difference, 100x(JOINED-AIRS)/JOINED, between the two datasets.   
Bottom Row: Same as above but for RHICE; horizontal black line indicates pressure limits shown in the 
H2O cross sections.  H2O and RHICE both show significant differences between 170 and 100 hPa, namely that 

AIRS is too moist in those regions.  
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Figure 13: Zonal mean IR heating profiles (120 ≤ Long ≤ 200) for (A) Clear-sky scenes, (B) scenes 

with Cirrus detected by CloudSat, and (C) scenes with cirrus detected by CALIPSO.  Clear-sky 

shows consistent radiative cooling in the lower parts of the UT but @ 100 hPA there is a large mode 

of slight heating. Figures 5 and 6 show that this region is persistently supersaturated.  In (B) we see 

that there is significant cooling aloft but between 170 to 300 hPa, location of most cirrus clouds 

(between 9-13 km) we see large heating modes, but in (C) we see the heating occurs between 100 

hPa and 170 hPa (13-17km) where more optically thin cirrus reside (see Figure 11).
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✦ Collocate AIRS/MLS for the entire mission; the same for AIRS 
and CloudSat and CALIPSO.

✦ Integrate IWC, De, and τ from the A-Train retrievals; use these 
values in RTM calculations as oppose to parameterizations.

✦ Composite all fields with ECMWF wind fields.

✦ Currently we look at cloud on a pixel by pixel basis; need to 
better partition clouds by cloud systems and quantify humidity 
fields based on these systems.

✦ Use delta-4 stream RTM model to retrieve De and τ from AIRS 
radiances and clouds (Yue, et.al. JAS, 2007)

✦ Better characterize the AIRS/MLS sampling abilities through 
different atmospheric conditions; although we have done some 
of this in this work, we want to better quantify when AIRS and 
MLS can provide high quality humidity fields.

✦ Explore using ice microphysical and radiative retrievals from 
MODIS.

✦ Run back-trajectories starting from CALIPSO and CloudSat 
clouds to explore mechanisms of UT/LS moistening and 
dehydration.  Explore TTL dehydration by thin cirrus.

Figure 12: (A) Global maps of IR heating rates (K/day) for clear-sky, cirrus (RADAR), and 
cirrus (LIDAR) scenes @ 100, 200 and 300 hPa.  Clear-sky heating rates are positive at 100 
hPa a region of persistent supersaturation.  @ 100 hPA large heating rates are seen over 
Pacific. (B) Heating rates show strong relationship with RHICE only for clear-sky scenes, 
although the different clouds have noticeable differences in their distributions.
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